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This paper represents a further generalization, beyond that
given recently, of an earlier theory by Wangsness and the author.
In common with this theory, it is assumed that the spin system is
weakly coupled to its molecular surroundings and that the latter
can be considered as a heat reservoir which remains in thermal
equilibrium at the absolute temperature 7". The condition that
the coupling is weak demands that its effects upon the spin
system, calculated in first and second approximation and measured
in a frequency scale, are small compared to the inverse of the
correlation time 7. as well as of the time 8=#4/%T. The principal
progress over the earlier work consists in the fact that it imposes
no additional conditions upon the energy of the spin system; in
particular, it dispenses with the necessity that the dominant part
of this energy is independent of the time. A linear differential
equation of the first order for the distribution matrix is derived
which is valid in this very general case and which contains the
earlier results as special cases. The derivation of this Boltzmann
equation is carried out in a form which is independent of any
particular representation, used for the spin system, and which
leads directly to a system of differential equations for the expec-
tation values of spin functions. Beyond the earlier results, it is

shown that the coupling with the molecular surroundings leads in
second approximation not only to relaxation terms but also to a
correction of the spin energy which has the nature of a “self-
energy.” As a considerably more restricted case, the situation is
investigated where the dominant part of the spin energy varies
little during a time of order 7. and 8. It is shown that, in this
case, relaxation causes the distribution matrix to tend towards
the form, corresponding to thermal equilibrium at the instan-
taneous value of the dominant part of the energy. The case where
the frequencies of the spin system as well as their relative rate of
variation are small compared to 1/7. but arbitrary compared to
1/8, is likewise discussed and shown to lead to a simple form of
the Boltzmann equation. The general formalism is finally applied
to a spin system with a single spin of value 1/2, exposed to a
rotating field. One obtains in this case a phenomenological equa-
tion for the expectation value of the spin vector which is far more
general than the one derived earlier; instead of requiring merely
the knowledge of the longitudinal and the transverse relaxation
time, relaxation is here characterized by five time constants
which may all be different. The stationary solution is derived and
applied to a number of familiar special cases.

1. INTRODUCTION

HE theory of relaxation has received a new

impetus through the recent intensive study of
nuclear and electronic spin resonances in bulk matter
and their wide field of applications. Depending upon
the goal, the problems posed have been treated by
several different methods, primarily distinguished by
the character of simplifying assumptions and by the
stage at which they are introduced in order to facilitate
the discussion of particular cases.

Foregoing both a complete description and an evalu-
ation of the rather extensive literature, the work of
Bloembergen, Purcell, and Pound' shall serve as the
first example. Important conclusions about their
relaxation phenomena are reached here by assuming
from the outset that nuclear spin systems are subjected
to given fluctuating actions, arising from their molecular
surroundings. While it is of great help in interpreting
these actions in classical terms, the procedure has the
disadvantage that it leads to a thermal equilibrium of
the spin system in which all states are equally populated
and that it is thus equivalent to the assumption of an
infinitely high temperature 7. This feature arises not
only from the fact that the compensating changes of
energy are neglected in the treatment of the molecular
surroundings but also from the inconsistency, intro-
duced by regarding its variables as classical functions
of the time and retaining an essentially quantum-
mechanical description of the spin system. Indeed, the

I N. Bloembergen, Nuclear M agnetic Relaxation (thesis, Leyden;
Schotanus and Jens, Utrecht, 1948); Bloembergen, Purcell, and
Pound, Phys. Rev. 73, 679 (1948).

existence of discrete energy levels of the spin system
is in contradiction to a consistent classical treatment
which demands a continuous variation of the energy
and which, in fact, would lead to the proper equilibrium
at a finite temperature. On the other hand, opposite
transitions between discrete energy levels, induced by
a finite spectral frequency w of the molecular sur-
roundings, must have a relative weight which is given
by the Boltzmann factor with the characteristic
exponent #w/kT. The result of equal weights, mentioned
above, arises from treating the molecular system in the
limit #—0 with the same effect upon the Boltzmann
factor as going to the limit 7—c. The proper finite
value of the exponent was shown by Ayant? to appear
in a natural way through a quantum-mechanical
generalization of the concept of a random function.

A different approach has been chosen by Wangsness
and the author® through formulating the dynamics of
relaxation totally within the framework of quantum
mechanics. As the principal basic assumption, dis-
sipative features are here introduced by considering the
molecular surroundings as a heat reservoir which
remains in thermal equilibrium while their exchange of
energy with the spin system is fully taken into account.
The procedure was first applied in I to the simplest
situation where the representative spin system is that
of a nucleus, characterized by its spin and magnetic
moment and under the superposed action of a strong
constant magnetic field Hy and a weak time-dependent
magnetic field H;. An extension of the same method to

2Y. Ayant, J. phys. radium 16, 411 (1955).

*R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1956)
(referred to as I).
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far more general systems was recently presented,*
assuming that the energy of the spin system contains a
dominant time-independent part %ZE, and a relatively
small time-dependent part #E; without, however,
restricting their form or the nature of the spin system.
Under stated conditions, it was thus possible to derive
equations which are applicable, irrespective of whether
their determining coefficients can be explicitly evaluated
or not. Besides permitting the discussion of more
general features, they represent a basis for that of par-
ticular problems, either in cases where these problems
are simple enough to permit a solution in terms of
certain constants, to be compared with the experiment,
or where the actual situation is so complex that one has
to resort to trial solutions, containing plausible features
such as, for example, that of a “spin temperature.”

Among the more general results of 11, it is particularly
to be noted that relaxation tends to establish popula-
tions of the spin states with Boltzmann factors, deter-
mined by the large part #E, of the spin energy. Another
way of formulating this result is to state that the
distribution matrix ¢ assumes in thermal equilibrium
the form

o= (e FFo (1.1)
with
B=%/kT, (1.2)
and where
¢=[Tr(e#k) ] (1.3)

represents the inverse diagonal sum of ¢=#%0. While this
statement is independent of the representation, it was
actually derived® in the special representation in which
E, appears as a diagonal matrix. Under the special
circumstances considered in I, where the behavior of
the macroscopic polarization is correctly represented
by phenomenological equations,® Eq. (1.1) leads to a
constant equilibrium polarization, determined by the
strong and constant magnetic field.

There are, however, cases of interest for which either
the constant field is too weak or the applied alternating
field too strong for the former to be considered as the
dominating part. More generally, there arise situations
in which the total energy #E of the spin system depends
explicitly upon the time in such a manner that its
variation can be appreciable. It is clear that for suffi-
ciently slow variations, irrespective of their magnitude,
one can, at any instant, treat the total energy like the
previously considered static part #Ey so that the dis-
tribution matrix will tend towards the quasi-stationary
value

go={e BE®,

¢O=[Tr(ePE®) ], (1.5)

which is obtained by replacing E, in Egs. (1.1) and
(1.3) by the operator E(f). It has indeed been sug-

(1.4)
with

4 F. Bloch, Phys. Rev. 102, 104 (1956) (referred to as II).
5 Equation (2.35) of II.
6 F. Boch, Phys. Rev. 70, 460 (1946).
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gested,” in the case of the phenomenological equations,
that they should be modified by replacing the constant
equilibrium value of the polarization by the instan-
taneous equilibrium value, corresponding to the total
time-dependent magnetic field, in order to obtain a
better agreement with experiments at low fields. There
arises thus the interesting question whether and to
what extent such a procedure can be justified; while
there can be no doubt about the result (1.4) being
correct in the limit of very slow variations of E, it
remains to be seen under which conditions this limit
represents a sufficiently good approximation.

The first problem of this type has been treated by
Gorter and Kronig® for the case of a weak oscillating
magnetic field, with resulting expressions for the real
and imaginary parts of the susceptibility as functions
of the frequency. More recently, Garstens® has con-
sidered the case of a constant field and an oscillating
field at right angles with relaxation provided by col-
lisions of short duration, without assuming the constant
field to be necessarily predominant. Similarly it was
shown by Wangsness,'® under the assumption of equal
longitudinal and transverse relaxation times, that relax-
ation by short collisions leads in the case of a rotating
field to the same conclusions as the previously men-
tioned substitution of the instantaneous equilibrium
polarization into the phenomenological equations.

The idea that short collisions should result in a
tendency to establish equilibrium with respect to the
instantaneous field suggests a treatment of the relaxa-
tion mechanism in which the assumed shortness of the
correlation time 7,=1/w* plays a decisive role. This
assumption was already necessary in I and II, and it
will be shown here to permit an extension of the earlier
method to the case of an arbitrary spin system with an
arbitrary time-dependent energy #E(f). Indeed, it is
possible, under certain conditions to be discussed below,
to derive a differential equation for the distribution
matrix which encompasses this quite general case and
reduces to the more special Boltzmann equation,
derived in II under the assumption of a dominant
constant part in the total energy of the spin system.
It will further be seen that, more generally than in IT,
relaxation produces indeed a tendency of the dis-
tribution matrix towards the expression oo of Eq. (1.4),
provided that the variation of E is inappreciable not
only during the correlation time 7. but also during the
time @3, defined in Eq. (1.2).1

7 Codrington, Olds, and Torrey, Phys. Rev. 95, 607 (1954).

8 C. J. Gorter and R. Kronig, Physica 3, 1009 (1936) ; R. Kronig,
Physica 5, 75 (1938).

9 M. A. Garstens, Phys. Rev. 93, 1228 (1954).

1 R. K. Wangsness, Phys. Rev. 98, 928 (1955).

1 Similarly to the remark, made above about the Boltzmann
factor, the condition of sufficient shortness of the time 8 does not
appear in the treatment of Garstens and Wangsness who consider
the variables of the molecular surroundings as classical functions.
Since B vanishes for #—0, there is no occasion, in this limit, to
state the sufficiently small variation of E during this time.
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2. BOLTZMANN EQUATION

As in T and TII, it shall be assumed that the Hamil-
tonian of the total system has the form

5e=hE+hF+4G, 2.1)

where the first and second part stand for the energy of
the spin system and the molecular system, respec-
tively, and are operators, acting only upon the variables
of the corresponding subsystem. The coupling between
the two is represented by the third part, to be con-
sidered as a small perturbation. In order to describe
given variations of external fields, E will be assumed,
in contrast to F and G, to be an explicitly time-depend-
ent operator.

The development of the density matrix p in time will
be followed in a representation, to be characterized by
the double symbol (fux), in which F is diagonal with
eigenvalues f and where # denotes any additional
quantum numbers, necessary to completely specify a
stationary state of the molecular system with a given
energy 7f; the number of such states in the interval
df of f is given by 7.(f)df. While the existence of a
dominant constant part E, of E made it convenient,
in IT, to use for the spin system a representation in
which E, is likewise diagonal, there exists in the case
of a general time-dependent operator E({) no such
privileged representation. One is thus led to choosing
an arbitrary representation, indicated by the symbol #;
this symbol will denote any complete set of quantum
numbers which characterize a state of the spin system.
The total system will thus be described in a repre-
sentation, denoted by the triple symbol (nfu).

In order to eliminate the part E from the differential
equation

dp/dt=—i[ E+F+G, p] (2.2)

for the density matrix p, a transformation operator S(¢)
is to be introduced which satisfies the equation

dS/dt=iSE(t), (2.3)
with its inverse S, satisfying
dS™'/di=—iE()S. (24)

In consistency with these equations, S and S are
Hermitian conjugate since E is Hermitian. It should be
noted that E and, therefore, also S and S~ are “spin
functions,” i.e., operators, acting only on the quantum
numbers 7 of the spin system. Introducing, instead of
p and G, the transformed expressions

p*=eiFLSpS—lg—iFt, (2.5)
Gs=SGS, (2.6)
G¥=eF'Gge i, 2.7

the elimination from Eq. (2.2) of both E and F is
achieved, and it follows with (2.3) and (2.4) that

dp*/dt=—i[G*p*]. (2.8)

BLOCH

Given p*(f) at the time ¢, the increment during a short
time interval 7, keeping linear and quadratic terms in
G*, is obtained from (2.8) by two successive approxi-
mations in the form

(140) =" ()= =i [ [G*(7'), o0 D'~

ff(f"[(;*(t+r'), [G*(t++"), p*(t)]]dr”)dr'_
L (2.9)

The analogous relation was used in I'* and IT and
applied as explicit matrix relation in a representation
where E, is diagonal. Similarly, it could be written out
and applied as a matrix relation in the (nfu)-represen-
tation. In view of the fact, however, that the » repre-
sentation for the spin system is here quite arbitrary, it
is indicated to introduce a notation in which the symbol
n does not appear. For this purpose, the general matrix
element of an operator O in the (nfu)-representation is
to be written in the form

(nfu|O|W/'f'u)= (| (fulO| f'u')|%"), (2.10)

with the significance that (fu|O| f'«’) will be considered
as an operator, specified by the pair of double symbols
(fu), (f'«"), which acts only upon the variables of the
spin system. It follows from this definition that the
Hermitian conjugate of this operator is given by

(ful O] f'u')1= (f"u'| O] fu), (2.11)

where Ot is the Hermitian conjugate to O and, hence,
for two operators O; and O, that

((fulOr] fu') (f'u'| 02| fu))t

= (fulOa!| f'u!) (f'u' | Ot | fu), (2.12)
to be noted for later purposes. The addition and multi-
plication rules of any two such operators take the same
form which they would have in a pure (fu) representa-

tion. With F diagonal in such a representation with
eigenvalues f, one has

(ful =] f'u") = ety p8ur,
and for any spin function Q, such as, for example, S, S,

(ful Q1 f'u")=QbsyBuur.

It is, therefore, from (2.5)
(fue| o*| f'u") = eSS (fu|p| f'u’) S (2.13)

The distribution matrix, to be described in the =
representation by (#|a|n’), has in this notation the
invariant definition

o=2su(fulp| fu). (2.14)

12 Except for the particular choice =0 and the fact that a
small part E; was separated from E and included in the first
approximation, Eq. (2.9) is equivalent to the Eqs. (2.17), (2.18),
and (2.19) of 1.



GENERALIZED THEORY OF RELAXATION

Therefore, from (2.13),
2 ru(fulp*| fu)=os,
os=SaeS L

(2.15)
with
(2.16)

Referring to a statistical average over the molecular
system, assumed to be at any instant ¢ in thermal equi-
librium at the absolute temperature 7', the density
matrix at this instant is to be replaced by the expression

(fulo(O ] fu')=aO)P(f)8s70u, (2.17)
P(f)=e®/( ),
I’

where

(2.18)

and B is given by Eq. (1.2). Equation (2.17) is con-
sistent with the definition (2.14) of ¢, and one further
obtains with (2.13) and (2.16)

(fulp* )| f'u")=os(OP()osrrdur.  (2.19)

In order to carry out the integrations over 7’ and 7'’
in (2.9), it is necessary, through (2.7), to know the
time-dependence of Gs. Although the operator G has
no explicit dependence upon {, that of .S provides,
through the transformation (2.6), a corresponding
dependence of Gs. It will be assumed that this trans-
formation results in a series—or integral—of periodic
terms of the form

Gs()=SWGS()=3, Greir, (2.20)

where the operators G” shall not explicitly depend
upon £4!3 Since G must be Hermitian, then in view of
the Hermitian conjugate character of .S and S, Gs
must also be Hermitian. Defining

W_p=—wy, (2.21)
one has to demand, therefore, that
(GNt=G, (2.22)

ie., that G" and G~ are Hermitian conjugate. In
analogy to (2.5) and (2.13), one obtains from (2.7)
and (2.20)

(fu|G*()| f'u') =3, el +et(fu| G| f'u’). (2.23)

The steps which lead, with the use of Eq. (2.15) and
of the expressions (2.19) and (2.23), from the increment
(2.9) of p* to that of os and, hence, to a differential
equation for this quantity follow in close analogy the
procedure, carried out in detail in T and also used in II,
to arrive at the Boltzmann equation for the transformed
distribution matrix, formerly denoted by ¢*. The fre-
quencies w, play here the same role as did formerly the

13 This assumption implies no more than that of the operator
E(t) being likewise expandable in its time dependence as a series
or integral of periodic terms and does not, therefore, represent
any physical restriction of generality. The case of particular
importance for resonance experiments, where E consists of a
constant and a periodic term, is particularly suitable for an
expansion of the form (2.20) which, however, encompasses far
more general situations.
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differences of the eigenvalues of E, and are, in fact,
identical with these differences in the special case
where E has the constant value E, so that, from (2.3)

and (2.4),
Sl — gEiot,

If one uses a representation in which E, is diagonal, Eq.
(2.32) of T and Eq. (2.8) of II are in this case direct
consequences of Egs. (2.13) and (2.23) in this paper.
Postponing the discussion of those points which differ
from the treatments in I and II, the differential equation
for o5 can be written in the following form:

dos

—_— —i[As,Us]—i Z ei“’”’(f (o's{GTG‘?} wrte
dt s c1
— —ﬂ(wr+x){GrG.SGs}wﬁx)x—ld_x

—_— ({Ger}—w¢+zo,S__e—ﬂ (—wstz)
C2

x{GraSGs}—wsﬂ)rldx), (2.24)

where the paths of integration C; and C. follow the real
axis from — «© to + o with the exception of the im-
mediate vicinity of the point =0, to be bypassed on
the positive imaginary side for C; and the negative
imaginary side for C,. The first term on the right side
represents the result of the first-order approximation in
G with

Ag=SAST, (2.25)
and

A=Y f (NP (fulGl fuydf.  (2.26)

This term contributes similarly to £ and hence to the
unperturbed energy of the spin system as the corre-
sponding term AE of Eq. (2.22) in II.

The sum over 7 and s on the right side of Eq. (2.24)
contains the result of the second-order approximation
with the following abbreviations:

Wre= 0, Ws, (2.27)
(GG =X [ FHP()
X (ful G| f+a, w) (f+a, /|G| fu)df, (228)
(G061} =X [n(Pne(f+a)P()
X (ful G| fa, w)Q(f+e, o' |G| f)df.  (2:29)

The last expression contains, for later purposes, an
arbitrary spin function Q, but it is used in (2.24) for
Q=05 Equation (2.28) can be considered as a special
case of (2.29) with Q chosen as the unit operator. In I
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and II, only the imaginary contribution to the integrals
of Eq. (2.24) in the immediate vicinity of x=0 has been
retained, since it is this contribution which has the
nature of a damping term and leads thus to relaxation.
Although the part corresponding to the integration
along the real axis occurs actually also in the earlier
treatments,'* it was there neglected. As will be seen
below, it leads, in addition to A, to a correction to E
of the second order in G. In view of the fact that in I
and IT the principal part Eq of E was assumed to be
large compared to second-order corrections, this neglect
was indeed justified. However, E is here assumed arbi-
trary and not subjected to such a restriction so that
there is no @ priori reason for neglecting this term,
although it can have a noticeable effect only for suffi-
ciently small values of E.

Another difference enters in the conditions of validity
of the Boltzmann equation; in I and II they involved
the magnitude of E,,'® while this quantity can evidently
not enter into the more general treatment, presented
here. Common to I and II there exist, however, con-
ditions which arise from the required order of magnitude
of the time interval 7 of Eq. (2.9) and which have to
be fulfilled for the validity of the Boltzmann equation
(2.24).

Indeed, the direct evaluation of the first-order term,
divided by 7, does not lead to the expression given by
(2.25) and (2.26) but, instead, to

As(n)=X% e“r'g, (N | nu(HP(N)(fu| G| fu)df,

(2.30)
with
g:(7)= (e™r"—1)/ (iw,7).

While it is true, in view of Eq. (2.20) that lim,_,As(7)
=Ag, there are lower limits to be imposed on 7 to
insure the validity of the second-order terms, so that
a milder condition for the smallness of 7 has to be
established. In fact, denoting the order of magnitude
of the first-order term by |Al, it is sufficient, for the
replacement of Ag(7) by Ag, to demand that

r<1/]A], (2.31)

so that for all terms in the summation over r of (2.30)
for which

XAl (2.32)
it is

w <], (2.33)

and one may replace ¢,(r) by unity. Owing to the
presence of the periodic factors eir!, only these terms
cause in fact an appreciable change of o, reached after
lapse of a sufficiently long interval of ¢ of order 1/]|A].
On the other hand, terms for which

w>|A| (2.34)

14Tt appears, e.g., in Eq. (3.11) of I with £=u1.
15 Equation (3.21) in I and (2.33) in II.

BLOCH

contribute only changes of o5 of relative order of mag-
nitude |A|/w, or |A|/wAr for w,r=1 or w31,
respectively, so that they are in either case negligible
compared to the terms satisfying (2.32). Hence, there
occurs, effectively, an automatic suppression of those
terms which do not warrant the replacement of ¢.(7)
by unity, and it is permissible to make this replacement
throughout in Eq. (2.30), so that As(7)=As under the
sole condition (2.31).

Although somewhat more involved, there appear
similar conditions for the validity of the second-order
terms. If their order of magnitude is denoted by the
symbol |T'|, one must here demand that

r<1/|T| (2.35)

in order that all those terms in the summation over r
and s of (2.24) are correctly represented for which

w1, (2.36)

Again, the periodic factors e’ lead, effectively, to an
automatic suppression of all other terms for which the
condition (2.36) is not satisfied.

In analogy to T and II, there are further limits to be
imposed on 7 to justify the form of the second-order
terms given in Eq. (2.24) and, in particular, the fact
that 7 does not appear in these terms. The first condition
of this type demands that the limits of integration over
x along the real axis are sufficiently extended so that

lx| 71, (2.37)

where |x| indicates the order of magnitude of either
the negative lower limit or of the upper limit of inte-
gration. Secondly, if one defines a characteristic
frequency w* of the molecular surroundings such that,
for all values of f which give an appreciable contribution
to the integrands in Egs. (2.28) and (2.29), the functions

nu'(f‘f‘a)» (fulGrlf—*_a’ u/)y (f+01, u,‘GS:fu')

do not vary appreciably upon an increment of «, small
compared to

w*=1/7,, (2.38)
then it has to be demanded that
w*r>1. (2.39)

The time 7. of Eq. (2.38) has the significance of a
characteristic correlation time of the molecular system.
With |x| to be chosen comparable or even large com-
pared to ¥, the condition (2.39) includes that expressed
by Eq. (2.37). Since e~#= varies appreciably only upon
an increment of x of order 1/8, the occurrence of the
Boltzmann factor P(f) of Eq. (2.18) in the Eqs. (2.28)

and (2.29) demands similarly that
7/B3>1. (2.40)

Summarizing the independent conditions Eqs. (2.31),
(2.35), (2.39), and (2.40), one has to demand, therefore,
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that 7 must be chosen so as to fulfill the relations

which is possible, provided that the condition
(Al ITh<(1/8) (242)

is satisfied. It indicates that both of the quantities on
the left side be small compared to both of the quan-
tities on the right side without, however, implying a
relation of order of magnitude between the members of
either pair.!®

At the same time it should be noted, in view of Egs.
(2.36) and (2.41), that it is permissible to use in Eq.
(2.24) the relation

wrsL(w¥,1/8), (2.43)

since the terms in the summation over r and s for which
this relation does not hold are in effect automatically
suppressed. The right side of Eq. (2.24) can be greatly
simplified by the use of this relation. For this purpose,
we write temporarily

() (f+a) (ful G| f+a, v')
X (fHa, w'[G°| fu)=A=(f+30), (244)

where the difference and the average of f+4+a« and f
have been introduced as upper index and argument of
A, respectively. In the evaluation of the expressions
(2.28) and (2.29), there appears thus an integral of the
form

Be= f P(f)A(f+1a)df.

If one adds an increment e to « and introduces f43e
as a new variable of integration, noting that from Eq.

(2.18)
P(f—3e)=¢€¥P(f),

16 The conditions (2.23) and (2.25) in II are equivalent to Egs.
(2.33) and (2.36), respectively, of this paper, if one replaces w-,
by g—¢’, ws by g”’—¢"', and ¢ by 7. In the corresponding notation,
it would lead to the suppression of those terms for which, according
to Eq. (2.24) and Eq. (2.26) of II, w,70 and w,,#0, respectively,
assuming that here these terms are of order of magnitude |E,
This implies, therefore, through Eq. (2.27) of II, that 7>>1/|Eq/|,
thus causing the appearance of | Eq| on the right side of the con-
dition (2.33) of II. One obtains from this condition the far less
stringent condition of validity of the Boltzmann equation, for-
mulated in the relations (2.42) of this paper, by adding for com-
pleteness the quantity |A| on the left side, using the abbreviation
(1.2), and, in the absence of any restriction on E, omitting the
quantities |E;| on the left and |Eo| on the right side. While the
semiclassical treatment of Garstens and Wangsness demands only
the sufficient shortness of the correlation time 7.=1/w* (see
reference 11), it can be readily seen by a qualitative argument
that the shortness of the time 8 is likewise relevant if quantum
features are to be consistently observed. Indeed, the treatment
of relaxation processes demands that they can be meaningfully
pursued during a time A¢ short compared to the relaxation time.
The latter being of order of magnitude 1/|T'[, one therefore has
to demand that A¢&1/|T'|. On the other hand, it is necessary for
a meaningful definition of the temperature 7" of the molecular
surroundings, that the corresponding indeterminacy AE of the
energy be small compared to £7". From AE<kT and the relation

indeterminacy AFEAf~#%, one has kT/|T'|>#% and hence
1/8>|I'| as postulated in Eq. (2.42).

(2.45)
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Bote= e%ﬁefP(f)A“+‘ (f+%a)df

In view of the previous assumption concerning the
dependence on « of the left side of (2.44), A«t¢ differs
appreciably from A< only if € is of the order of the
frequency w*, introduced in (2.38). If € is small com-
pared to w*, it is therefore permissible to write

Bete=gieBe,
or, going back to (2.28) and (2.29),
{Ger}a-{—e:e%ﬂe{Ger}a

and
{G"QG*}te=e<{G"QG*}~ (2.46)
for e<w™®.
Introducing, besides (2.27), the abbreviation
Vrs=3(w,—w,), (2.47)

it is

— 1 —_ 1
wWr= Vrs+§wrs; TWs=Vys— 3Wes.

In view of the permissible use of the relation (2.43)
and applying (2.46) for e=4w,s, one may write w,= —w,
=v,, in the double sum over r and s of Eq. (2.24).
Applying this procedure in particular to the contri-
butions arising from the integration along the real axis
of x, it is seen that the parts containing {G"ssG*} cancel
and that in the remaining parts the relation

{Ger}wﬂHv: {Ger}—wa-f—z: {Ger} vrstz

can be used.

The contributions arising from the integration over
x in the immediate vicinity of zero, yield the integrand,
taken for x=0, multiplied with —ir and +ir for the
first and second integral, respectively. The Boltzmann
Eq. (2.24) can thus be rewritten in the form

dos/dt+i[As+Ts, os5]
=7 Z eiwrst(evﬂwr{Gro.SGs}wr_O,S{Ger}w,
o {GTo G} — {G'G®}sag), (2.48)

with the abbreviation!”
I's=>" ei""ﬂ‘j (GG}t GGy o)~ dx. (2.49)
rs 0

The well-defined integral over x in Eq. (2.49) has been
obtained by dividing the integration along the real axis
into a part from — « to 0 and one from 0 to 4+« and

17 The symbol I' is here chosen to indicate that the expression
(2.49), although neglected in the earlier treatments, is of sec-
ond order in G, i.e., that it shares this feature with the relaxa-
tion coefhcients which were introduced in Egs. (3.16) and (2.17)
of I and II, respectively. Under the corresponding particular
assumptions, the latter appear actually on the right side of Eq.
(2.48). (See reference 18.)
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by changing in the former the variable of integration
x into —x.

In order to show that with ¢s Hermitian the right
side of (2.48) is likewise Hermitian, it is to be noted,
with the help of Eqgs. (2.12) and (2.22), that the
Hermitian conjugate of the expressions (2.28) and (2.29)
with Q=g¢s is given by {G—°G~"}= and {G~*csG~"}%,
respectively. Noting further with (2.21), (2.27), and
(2.47) that

W_s,—r— —Wrsy Vs, —r= Vrs,

replacing ¢ by —i, r by —s, and s by —7, it is seen that
the operator T's, defined in Eq. (2.49), as well as the
sum over 7 and s in (2.48) are indeed Hermitian. It
is also readily shown that the diagonal sum or ‘“‘trace”
of this sum vanishes. For this purpose one needs the
relations

Tr(os{G"G*)*r) = ePr Tr({G'osGT) ™)
(2.50)
Tr({G'G*}~“sa5)=e s Tr({GosG}*),

obtained from the fact that the first factor of an operator
product in the trace can equally well be written at the
end of the product and by replacing in the definition
(2.29) the variable of integration f by f+4a as well as
u by «'. Interchanging in the summation » and s with
wrs=w,, from (2.27), it is then seen that the trace of
the right side in Eq. (2.48) vanishes through cancelation
of the first term by the fourth and of the third term by
the second. Since the trace of the commutator on the
left side vanishes identically, one sees therefore that

(@/dt) Tr(os)=0,
thus permitting the normalization
Tr(os)=Tr(s)=1. (2.51)

The Eq. (2.48) for os can be used to obtain the
Boltzmann equation for the distribution matrix o.
Applying

dos/dt=S (i E,c )+do/dl)S,

as a consequence of (2.3), (2.4), and (2.16) and multi-
plying from the left with S72, from the right side with .S,
one obtains

do/di+i[ E+A4T, 0]
=7 Z eiwrs t(e—ﬂw,{G_ro,G_s} @r— U{G_TG_.S} wr

+e/3ws{G_ro.G_s}—ws_ {G_'G‘s}—wso—)’ (252)
with
G_ms=8571G"sS, (2.53)
and .
T=5TsS=3 gior f (GG}t
rs 0
{G_Gsyr)aldx, (2.54)

A more convenient form of Eq. (2.52) is obtained
by using for the right side the abbreviation I'(s) and
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by simplifying this expression through the summation
over s and 7 in the first two and the last two terms
in the parentheses, respectively. Using Eq. (2.27) and
observing that

SoreertG =851, €GN S=5"'G,S=G, (2.53)
as a consequence of Eq. (2.20), one obtains thus
do/di4+1[ E+A+T,0]=T(0), (2.56)
with
Tlo)=72_, ewrt(e=Por{G_10G}er— a{G_"G}r
+efor{GoG_"} o — {GG_"}"*7a), (2.57)
and
G_r=S7G"S. (2.58)

The principal problem in applying the Boltzmann
equation to a particular case, either in the form (2.48)
for o5 or (2.56) for ¢, is to find the transformation
operator S and its inverse S~ For given internal energy
of the spin system and external actions upon it, i.e.,
for a given operator E(?), it requires the solution S(¢)
of Eq. (2.3). Given further the coupling between the
spin and molecular system, expressed by the operator
G, one obtains then from Egs. (2.6) and (2.20) the
frequencies w,,, and the operators G™* which enter in
Eq. (2.48) and from Eq. (2.58) the operators G_" which
enter in Eq. (2.57). The degree of complication in fol-
lowing this procedure as well as in solving thereupon
Eq. (2.48) or Eq. (2.56) to obtain os(t) or ¢(¢), respec-
tively, will evidently depend upon that of the situation
considered. As a relatively simple special case, that of
a rotating magnetic field will be treated in Sec. IV.

Once obtained, the knowledge of os(f) or o(f) is
sufficient to find the expectation value of any spin
function Q in its dependence upon time. It is given by

@ O=Tr[Qsos(DI=TrQo(],  (2.59)
Qs=SQS. (2.60)

Because of the invariance of the trace, the numerical
value of Eq. (2.59) is independent of any particular #
representation of the spin system which may be chosen
for reasons of convenience.

Similar to Eq. (4.10) of 1, it is possible, from the far
more general Eq. (2.56), to derive differential equations
for expectation values without an explicit knowledge
of the distribution matrix ¢. Indeed, multiplying Eq.
(2.56) by Q and forming the trace, one obtains

with

H0)/d+i[0, B+A+T)=(T(Q), (261
with
TQ))=m 22, e'rt(ePer({GQG-}or)
—{GG}eQ)+efer({G_QG} ")
—(Q{GG-}~er)).  (2.62)

While it is no simpler, in general, to use this result
rather than to solve Eq. (2.56) and then to obtain
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(Q)(?) from Eq. (2.59), there are special cases, like the
one treated in Sec. IV and those discussed in I, where
Egs. (2.61) and (2.62) yield a system of simultaneous
differential equations between the expectation values
of certain spin functions of particular experimental
interest.

3. SLOWLY VARYING EXTERNAL FIELDS

The condition (2.42) for the validity of the Boltzmann
equation (2.52) permits its application to the special
case E= E, considered in I and II, where E,, the prin-
cipal part of E, is independent of the time and satisfies
the condition |Eq|>>|A|, |T'|. According to Eq. (2.3),
the transformation operator S assumes in this case
the approximate form

S=eifiot,

3.1)

The expansion (2.20) of G5 is obtained by using a
representation in which Eq is diagonal with eigenvalues
g. If one writes

G=2..G, (3.2)

the operators G” are then defined by having in this
representation nonvanishing matrix elements only
between those pairs of eigenvalues (g,g’) where the
difference
g—g=p (3.3)
has a given value .
It follows, therefore, with

wr= '_'P, (34)
that
[EnG ]=w,G", 3.5)
and from (3.1), that
SGTST =¢iertGr, (3.6)

This signifies that the frequencies w,, appearing in
(2.20), have here the significance of differences between
the eigenvalues of E,. It is further to be observed, in
view of the condition | Eq|>>|T|, that only the terms
with w,,=0 will give an appreciable contribution to the
right side of Eq. (2.48) and, hence, to that of Eq. (2.52).
According to (2.27), the double sum over r and s can
thus be replaced by a single sum over the different
values of p=—w,=w, Denoting the corresponding
operators G” and G* by G? and G, respectively, with

G_?=S5"1GPS=¢'?!G?,
and
G P=8§71G PS=¢P!G?,

as a consequence of Egs. (2.53) and (3.6), the right
side of (2.52) can therefore be written in the form
T'(o)=m 2 ,(2ef?{GPaG—P}~P

—a{G?*G?}?—{G*G?}"?s). (3.7)
This notation agrees with that used in Eq. (2.34) of
IT; except for the neglect of the corrections A and T,
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justified in view of their smallness in comparison to E,,
Eq. (2.34) of II is in fact seen, with (3.7), to become
identical with Eq. (2.52) of this paper, written out in
the representation in which Eq is diagonal with eigen-
values g.!8

While the preceding treatment leads to the special
cases of T and IT and is applicable only if the principal
part of E is independent of the time, there exists a
similar simplification under the condition that it is
sufficiently slowly varying. This condition can be
formulated through

|dE/dl| /| E|<w*, 1/,

and is evidently always satisfied for sufficiently short
values of the correlation time r.=1/w*, as well as of
the time B, i.e., according to Eq. (1.2) for sufficiently
high temperatures. For given values of . and 3, the
relation (3.8) demands that E consist predominantly
of a part E,(¢) which varies relatively little during time
intervals of the order of either 7. or 8, but it permits
also the existence of an additional small term E;(¢)
with a relative rate of change w, comparable to |Eo|
=~ |E|, so that w/|E| =1. With |dE./dt| =w|E,|, the
condition (3.8) requires thus

| E; | << (w*,1/8).

This situation is of particular interest for resonance
experiments, where the resonance condition demands
indeed a magnitude of w comparable to |E|. This
latter quantity, i.e., the magnitude of the resonance
frequencies, is not excluded to be comparable or even
large compared to »* and 1/8. The same holds thus for
the relative rate of change w of Ei, provided that the
magnitude of this rapidly varying term satisfies the
condition (3.9) which is also contained in Eq. (2.33)
of II.

By virtue of (3.8), the instantaneous eigenvalues of
E(t), as well as their differences, to be denoted by
w,(#), are slowly varying functions of the time in the
sense that they vary appreciably, neither during a time
interval of order 7. nor during one of order GB. In
analogy to (3.2) and (3.5), one can define a series of
operators P such that

G=3, P,

(3.8)

3.9

(3.10)
and

[E,Pr]=w,P". (3.11)

These operators are likewise slowly varying and it can

18 The symbols defined in Eqgs. (2.28) and (2.29) of this paper
are in the case E~E, simply related to the relaxation coefficients,
defined in II, Egs. (2.16), (2.17), and (2.45). Referring, for
example, to the case where the eigenstates of E, are not degener-
ate, one has, by comparison of this last equation with Eq. (2.29)
of this paper, 7 (¢| {G"QG~?}7?|g') =Ty, *(g+p|Ql¢'+p) for an
arbitrary spin-function Q such as, for example, o5 and ¢; and
the matrix element (g|T'(s)|g’) of the expression (3.7) in the
representation where F, is diagonal is seen to be identical with
the corresponding symbol on the right side of Eq. (2.34) of II,
omitting the quantum numbers v and o".
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be seen that, in analogy to (3.6),

SPrS1=¢ivGr, (3.12)

with

()= f w-(1)dl', (3.13)

where G™ is another slowly varying operator. While for
(=0, i.e., S=1, one has G'=P7, it is possible, after a
sufficient lapse of time, that G differs appreciably
from Pr.

Except for the replacement of w. by ¢, + ¢, the
form of the Boltzmann equation (2.52) can be seen to
remain unaltered. Indeed, the procedure of forward
integration over the time interval =, which led to Eq.
(2.52) and, hence, to Eq. (2.56) is equally applicable
here since the condition 7>3>(7.,8), implied by Eq.
(2.41), is compatible with a choice of 7 such that all
slowly varying functions can, during this interval, be
replaced by their instantaneous value at the time 7.
The expression (2.57) is thus to be replaced by

T (0) = ZT eter (e—ﬁwr{GATa.G} wr U{G_TG} wr
+efor{GoG_"} o —{GG_"}c), (3.14)

where the definition of G_7 is still given by Eq. (2.58)
and where G and w,, instead of being independent, are
slowly varying functions of the time /.

The expression (3.14) can be considerably simplified.
In the first place, it follows from (3.12) that

etorG_r=¢ier STIGTS =P,
so that
T(o)=7 Y, (e P {PaG}or—a{PG}""
+efer{Ga Py~ r—{GP"} ).
It follows further, from (3.11), that

0/08(e BEP )= — ¢ BE[ E P )PP = —w,e PEP AT,

(3.15)

and since
(e BEPrePE)s_o=Pr,

one has, through integration from 0 to 8,

¢—BE PreBE — g—Bur pr (3.16)

and, analogously,

eBE Pre—BE — gBur Pr. (3.17)

Inserting these expressions in Eq. (3.15), and including
o in the curly brackets of the second and fourth terms,
one obtains

L(o)=m 2 (e P*{[Prefra]G}er
+(GLoe?®, Py 7).

This form is not only more concise than that given by

Eq. (3.14) but it also has the advantage of showing

directly the fact, mentioned in Sec. I, that relaxation
will establish a tendency of the distribution matrix

(3.18)
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towards the value o, given by Eq. (1.4), provided that
the condition (3.8) is satisfied. Indeed, one has

(3.19)

ePloy=geefP=¢.

Being a mere number, i.e., proportional to the unit
operator, { evidently commutes with P" so that one
has I'(¢¢) =0, and hence

I'(¢)=T(c—00). (3.20)

The corrections A and I' on the left side of Eq. (2.52)
can be incorporated in the total energy of the spin
system by substituting E for E4+A-4T, and it is per-
missible, in view of the condition (2.42) and of Eq.
(2.46), to make the same substitution in (3.18). With
E and w, referring to this newly defined total energy
of the spin system, Eq. (2.56) can thus be written in
the form

do/di+i[ E,c ]=T (o), (3.21)
or with Eq. (3.20)
do/dt+i[ E,c ]=T(c—0v), (3.22)

with T'(s), and hence I'(c—a0), given by Eq. (3.18).
Introducing further the deviation,

(3.23)

X=0—aq,

of the distribution matrix ¢ from the value ¢, corre-
sponding to the instantaneous equilibrium, and noting
that E commutes with ¢, one has for x the inhomo-
geneous equation,

dx/dt+i[ Ex]—T (x)= —dov/dl,
with the condition of normalization
Tr(x)=0

as a consequence of Eq. (2.51) and the fact that one
has, from Eqs. (1.4) and (1.5), Tr(so)=1. Equation
(3.24) shows that the deviation from the instantaneous
equilibrium distribution is proportional to the rate of
variation ¢ and, hence, to that of E(¢).

It is to be noted that the condition (3.8) for the
validity of Eq. (3.18) permits E and, hence, some of
the frequencies w, to have magnitudes comparable or
even large compared to the inverse correlation time w*.
Consequently, I'(¢) may contain features arising from
an appreciable dependence of the curly brackets in Eq.
(3.18) upon w,.!* A further simplification is obtained,
however, if not only the condition (3.8) but also the
condition

(3.24)

| E| <<w*, (3.25)
equivalent to w,<Kw*, is satisfied. It is then possible to

9 In the simplest case, treated in I, this feature underlies the
distinction between the longitudinal and the transverse relaxation
times 7'y and T, respectively. The former arises from the terms
in (3.18) where the magnitude of the frequency w, is equal to
that of the Larmor frequency of precession in the strong field,
while the latter corresponds to those where w,=0.
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apply Egs. (2.46) for a=0, e==+w, and to write
([Pr##01G)or=eter®( [P19%5TG)",

and

{GLoeSE Pry=wr=¢=Ber/{G[gef¥, P},

respectively. Using further, in analogy to Eqgs. (3.16)
and (3.17),

—, 2 — p—BE/[2 E/[2
eBurl2 Pr— —BE[2 Pref /’

and
Bwr 2Pr_ BE/[2 Pr —BE/[2
e / =ée / € / ,

it is then possible, through Eq. (3.10), to carry out the
summations over 7 in Eq. (3.18), with the result

T'(0) =7 ({[ePEGePE 25 G )0
+{[G,0ePE2GeBEIXT}Y).  (3.26)

It is seen, as in the more general expression (3.18), that
I'(e0)=0, so that the Eqgs. (3.21), (3.22), and (3.24)
retain their validity but permit, in this case, the use
of the simpler form Eq. (3.26) for I'(¢) and, hence
I'(e—a0), I'(x). It is this fact which, in essence, repre-
sents the justification of the treatment presented by
Wangsness.?

In addition to the expression I'(¢) for the right side
of Egs. (2.52) and (2.56), given by Eq. (3.18) under
the condition (3.8) and by Eq. (3.26) under the addi-
tional condition (3.25), there exists a third simple form
of T'(¢s) which may be useful. It is obtained if the
condition (3.8) is replaced by the less stringent one

|dE/dt| /| E|<w*, (3.27)

maintaining at the same time the condition (3.25). In
contrast to the two previous cases of this section, no
condition for the shortness of the time 8 of Eq. (1.2)
has to be satisfied beyond that implied by (2.42).
Provided that the condition (3.27) is not violated,®

2 Wangsness’!? procedure is indeed based upon the validity of
the condition (3.25). Contrary to the more general case of Eq.
(3.18) (see reference 19), it does not permit the distinction between
Ty and T. A further simplification, implied in his treatment, con-
sists in the assumption of a sufficiently high temperature, i.e., of a
sufficiently small value of 8. Since x=0—a, will, in first approxi-
mation, be proportional to 8, it is permissible in I'(x) on the left
side of Eq. (3.24), obtained by replacing ¢ by x, to let 3=0. The
error thus committed will be only of order 82 The (single) relaxa-
tion time is then independent of E and, hence, of the time. This
feature is indeed implied by using the phenomenological equations
with constant values of 7'y and T'; and with M, introduced as the
instantaneous equilibrium polarization.

21 Tt should be noted that the definition of the correlation time
7. in Eq. (2.38) or of the characteristic frequency w* of the
molecular surroundings refers to the dependence upon a of the
integrands in (2.28) and (2.29). Through their additional de-
pendence upon f, the integrands are weighted with the Boltzmann
factor P(f) which favors the lower values of f, the lower the
temperature of the molecular surroundings. Owing to the fact
that the dependence upon a is related to that upon f, the effective
order of magnitude of w* will thus depend upon the temperature.
With the motion of the molecular surroundings slowed down for
lower temperatures, one may in general expect w* to decrease
with decreasing temperature. This decrease being of entirely
different origin from the linear decrease of 1/8 with decreasing
temperature, which has nothing to do with the specific nature of
the molecular surroundings, the clear distinction between the
orders of magnitude of the two frequencies w* and 1/8 remains
nevertheless in force.
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this case allows thus the application towards lower
temperatures than the case which resulted in Eq. (3.26).
With the notations of Sec. II, the conditions (3.27)
and (3.25) can be combined into the condition

W Lw¥, (3.28)

valid for all frequencies w, which enter in their defining
equation (2.20). They permit therefore in (2.57) the
application of the formulas (2.46) for a=0, inserting
+w, for ¢, G_" for G”, and G for G* with the result
T(o)=m 2, elert{ePer?[G_"0,G ]
+eferl?[GoG_ ]}
The summation over r in this expression can be
formally carried out by noting from (2.20) that

3, eierFiBerGr= S (1 1iB)GS (1 LiB),

i.e., by replacing in this formula ¢ by /#£348. Therefore,
by applying S7!(¢) from the left and S(#) from the
right on both sides of this equation, one has with (2.58)

(3.29)

>, etortTiborG r=U (46, HGUH(£B, 1), (3.30)
where
U (B, )=S"1(1)S(tx£3iB), (3.31)
and
U (B, )=S"1(1£218)S(4). (3.32)

The operators U#! are thus known if the transformation
function .S and its inverse are known; they can also be
determined as solutions of a differential equation,
obtained by taking the partial derivative with respect
to 8 on both sides of Egs. (3.31) and (3.32) and ob-
serving Eqgs. (2.3) and (2.4). Indeed, omitting the
argument ¢ in U#!, one has thus

U (£P)/8= F3U (£B)E(I£3iB8), (3.33)
and

QU (£6)/9B=HAE(E}B) U™ (),

respectively, with the “initial” condition for g=0,
obtained from (3.31) and (3.32), that

U0)=U710)=1. (3.35)

If one applies Eq. (3.30) to (3.29), the latter then
becomes

I'(o)=m{[UBGU(B)s,G]
+[G, sU(=B)GU(—=B)]}* (3.36)

as a generalization of Eq. (3.26). This latter equation is
directly obtained if, in addition to (3.27), one postulates
also |dE/d!|/|E|<1/B8, thus demanding the fulfill-
ment of the complete condition (3.8) as well as that of
Eq. (3.25). Indeed, this additional condition implies
that the variation of E({), treated as an analytical
function of ¢, upon an increase of its argument of order
of magnitude |B| is negligible, thus allowing the re-
placement in (3.33) and (3.34) of E(/=4=3i8) by E(?).
The solution, satisfying (3.35), of these differential

(3.34)
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equations has then the simple form

U(£B)=€TPER, UY(Lp)=e=fE  (3.37)

with E to be taken at its instantaneous value E(f). The
substitution of the operators U and U~!, given by
(3.37), into (3.36), yields indeed Eq. (3.26) and thus
represents an independent check upon this expression
for I'(¢) and its conditions of validity.

4. ROTATING MAGNETIC FIELD

To illustrate the very general results obtained in the
previous section, Egs. (2.56) and (2.61) will here be
applied to a special case which is not only of experi-
mental interest but lends itself also to a relatively simple
explicit treatment. The representative spin system is
in this case that of a single spin /=%, with magnetic
moment u’, and, hence, with a gyromagnetic ratio
vy=2u'/%h, exposed to an external magnetic field with
components

H .= (w1/7) coswt, Hy=— (w1/7) sinwt, H,=wo/vy. (4.1)

The quantities wo and w;, with the dimensions of a
frequency, are constant and represent a measure of the
fixed component in the z-direction and of the transverse
component, rotating with the circular frequency w,
respectively.

The energy of the spin system, divided by #, has
here the form

E=—wol,— w:(I,coswi— I,sinwf), (4.2)

where 7., I, I, are the components of the spin operator
I. By direct substitution, one verifies that the solutions
of Egs. (2.3) and (2.4) for the transformation operator
S and its inverse can be written in the form

= g~ i(QolAwilz) tp—iwl ot
S=¢i@olwilz gmivlzt,

(4.3)

; I
S‘I— elw}zfel(A( IAwilz) l,

(4.4)
respectively, with the abbreviation

(4.5)

AoEwo— w.

Owing to the fact that their exponents do not commute,
the product of the two exponentials in (4.3) and (4.4)
cannot be combined into a single exponential and their
order is essential. An exception arises, of course, for
negligible values of w; where Eq. (4.3) is seen to be
equivalent to Eq. (3.1). A more convenient form is
obtained by introducing the operators,

S,=¢iwlst (4.6)
Sor=e7i 2t 4.7
So=e—h, (4.8)

and their inverse, with

w'=(A+Hwd)i, (4.9)
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and tanf=wi/A,, so that

Ay=0w’ cosf, (4.10)
and
w1=w’ sinf. (4.11)
Indeed, the transformations
Sol :S¢71=1, cosf—1, sinb, (4.12)
SBIySG—l=Iy7 (4.13)
Sol ,Sgt=1, sinf-+1, cosd (4.14)

represent a rotation of the spin vector I by the angle 6
around the y-axis. In particular, multiplying the last
equation on both sides with ’f, observing Eqs. (4.10)
and (4.11), and applying the result to the first and
second exponential in Eqs. (4.3) and (4.4) respectively,
one obtains
S=SoSa,/Sg‘ISw, (4.15)
and
S1=S5,"156S, 1567 (4.16)

The coupling energy #G of Eq. (2.1) with the mo-
lecular system is here due to the interaction of the
magnetic moment with a magnetic field H’, arising
from the molecular surroundings. If one introduces the
vector operator

h=—vyH’, (4.17)

the components /., . of h have the dimension of a
frequency and are to be represented by matrices which
are diagonal in the variables of the spin system. With
the notations

=1, I#=TI,+il, (4.18)
and
ho=h., hy=%(h.Fih,), (4.19)
one has
G=th-D=3, h.I* (4.20)
and from Egs. (2.6) and (2.20)
Gs=2, hSI*ST'=3", Greirt, (4.21)

as the defining equation for the operators G- and the
frequencies w,. In order to obtain explicit expressions
for these quantities, it is necessary to express the
result of the three transformation operators (4.6), (4.7),
and (4.8) upon the spin operators I*. The former two
transformations represent rotations around the z-direc-
tion by the angles w/ and w’f and hence yield, through
Eq. (4.18),

SolbS = ot[r (4.22)
and

S PASyl =gt tN (4.23)

respectively. Since one deals with a rotation around the
y direction by the angle 6, the result of the transforma-
tion Sy and of its inverse Sg~'=S_4 can be expressed in
the form

SaI)‘So_1=Z,. q,,)‘I"', (424)
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and

S UHSp=D"» f)\“l}‘. (4.25)
The indices A, g, » in Egs. (4.20) to (4.25) are meant to
assume independently the values —1, 0, 1. Upon using
Egs. (4.12) to (4.14) and (4.18), the elements of the
matrices p and ¢ in (4.24) and (4.25) are explicitly given
by the following equations:

P11=P——1_1= q11= qﬁ1_1=%(C050+1),
P_11:P1~1:q_11:q1‘1= %(COSO—‘ 1),

= qud= cosh, (4.20)
po'=pit=—2p"=—2p ,'= —qo'=—¢qo"
=2¢,"=2q_,"=siné.
They satisfy the relations:
9:M(0)=pN(—0), (4.27)
20 DAt =, (4.28)
2w DA =0, (4.29)
pxTE=p, (4.30)
gE =gk (4.31)

Through the expressions (4.15) and (4.16) for .S and
S~1 and the successive use of the transformations (4.22)
to (4.25), one obtains

SI;;S—I — Z)\V p)\uqv)\e—i()\w’-pr) tyv.

Inserting this expression in Eq. (4.21) and replacing the
index 7 by the double index (A\,u) with A and u inde-
pendently assuming the values —1, 0, 41, it is

(4.32)

Gs=2 r, GMeiornt, (4.33)

with
GM=1h, 2, g, (4.34)

and
= — (A\o'+uw). (4.35)

With the notation (2.58), one obtains from Eq. (4.34),
through the inverse transformation with S,™'=3S_, and
S, 1=S_, as well as the relation (4.29),

G M=85"1GMS=h, >, p\rglre M. (4.36)

It will now be assumed that the diagonal elements of
the matrices (fu|k,| f'u’) and, hence, those of G vanish
so that from (2.26) A=0. Assuming further a sufficient
magnitude of the external magnetic field, so that the
second-order correction I', given by Eq. (2.54), can be
neglected in comparison to E, one can write the Eqs.
(2.56) and (2.57) in the form

do/dt+i[E,c =T (o), (4.37)
with
I(o)=m 2 X e0 e ipuge Pl huhy} Ml al?
- )iuh,,yl:,,} g [P+ eberu{ i h, Yl g I”
—{ byl la).  (4.38)
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With the use of Eq. (4.36), this last expression is
obtained from (2.57) through the replacement of the
index 7 by (Au), writing G=3_,4,1°, and observing from
(4.35) that wn,—wn= (r—u)w.

As a further simplification, it will now be assumed
that, similar to the treatment of Sec. V in I, the
molecular surroundings have the property of isotropy
so that, on the average, the cross products of the com-
ponents of H’ vanish, and their squares have a common
value. Applied to Eq. (4.38) and with the notations
(4.19), this means that one can write

m{huhp} == €°1°P, ()8, 1, (4.39)

where, in accordance with the abbreviation (2.28),

u(@=eP"r 32 | nu(fmu (f+a)P(f)

X (ful | fa, ) (fa, o [I] fu)df,  (4.40)
and where one has, with Eq. (4.19),
Pu() =P_u(a), (4.41)
281 (@) = 28_1(a) =P (av), (4.42)
and, as a consequence of Eqgs. (4.40) and (4.41),
®, () =P, (—a). (4.43)
With the notations
Aw=2"x P Pulwnn) cosh(Bun,/2),  (4.44)
and
Cur= =221 pr*¢ Pu(en) sinh (Bun,/2),  (4.45)

the expression (4.38) takes then the greatly simplified
form

T'(o)= > ei(y—“)wt(Am[[]yrgj: I—“]
+Cu[lo+al*, I7+]). (4.46)

An alternative way of writing the Egs. (4.44) and (4.45)
is obtained by making use of the relation (4.28). Indeed,
these equations can be seen to be equivalent to

Ap= an+5uv+au0?0”‘]vo+au_ (pl"qyl - P—l“qﬂ_l) ’ (447)
and

C;w = 7u+5pv+ ‘Y,‘OPU“%O‘*‘ 'Yu‘ (PIMQVI - P-x“qfl) ) (4.48)
with the notations
=3[ Bu(pw+w") cosh(ux+r")+Pu(uw—w’)

X cosh (uk—«’) ],
a,"=®, (uw) coshux— [P, (uw+w’) cosh (uk+«’)
+&, (uw—w’) cosh(uk—«')], (4.49)

o= 3@, (ueot-’) cosh (uk+')
—, (uo— ') cosh (ux—r')],
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and
vt =3[ ®u(uw+o’) sinh (uk+«")
+®, (uw— ") sinh (uk—«") ],
V' =By (uw) sinhux— 5[ @, (uw+w’) sinh (ux+«")
+®, (uw—w') sinh (uk—«') ],
¥~ =3[Py (uwt+e’) sinh (uk+«")
—®, (uw—w’) sinh (uk—«")].

(4.50)

The derivation of these expressions is based upon Eq.
(4.35), the relation (4.43), and the abbreviations

k=Pw/2, &=pBuw'/2. (4.51)

A particular consequence of Eqgs. (4.49) and (4.50) is
that
(4.52)

For later use, it is further to be noted that, by changing
the sign of the indices A, p, » in (4.44) and (4.45), one
has with the Egs. (4.30), (4.31), and (4.33),

Cop=—Crp_. (4.53)

While it would be perfectly feasible to insert the
expression (4.46) in (4.37) and to find appropriate
solutions for the distribution matrix o, it is preferable,
in this case, to use Eq. (2.61) directly for expectation
values, with Q standing for any one of the components
of the spin vector I. Omitting again the corrections A
and T' on the left side, inserting the expression (4.2)
for E and observing the commutation relations between
the components of I, one obtains thus the vector
equation

ar =7 =v,"=0.

Ap=A

d()/dt+LoX{D]=(T D), (4.54)
with
(CD))=2 ettt (Au(([I+111"])
+Cu((I 1]+ I+ 1]), (4.55)

and where the components of the vector w are given by

Wy=w1 COSwl, w,=—wisinwl, w,=wo. (4.56)

If one uses the expression (4.46), these equations can
also be obtained by multiplying with I and forming the
trace on both sides of Eq. (4.37).

It is the direct consequence of the commutation rules
for the components of I, representing any value of the
spin, that the double commutator in Eq. (4.55) can be
written in the form of a linear expression for these com-
ponents themselves. On the other hand, it is the par-
ticular feature of the case for spin 1/2, that the ex-
pression [ I—# 11"+ I'[ I+ 1] either vanishes or becomes
a mere number. It is for this reason, similar to the cor-
responding treatment in I, that Eq. (4.54) reduces for
spin 1/2 without further assumptions to a system of
linear “phenomenological” equations for the expecta-
tion value of the components of 1.

By a familiar procedure, to eliminate the explicit
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time dependence occurring on the left side of Eq. (4.54)
through the components w, and w, of © as well as that
on the right side through the exponential in Eq. (4.55),
it is convenient to transform to a coordinate system
which rotates with the magnetic field. This transforma-
tion is achieved by

(0= SIS, = e wetn, (4.57)

where the relation of the starred quantities to the com-
ponents I.*| I* I.* of the spin vector in the rotating
coordinate system is the same as that expressed in Eq.
(4.18) for the original quantities, and where these
quantities satisfy the same commutation rules. In the
case of spin 1/2 one has further, both for the original
and the starred components,

I2=1 LI,+I1.=0,

with the corresponding relations obtained by cyclical
permutation of x, y, 2. By a somewhat lengthy, but
straightforward, application of the above-mentioned
facts and the use of Eqs. (4.10), (4.11), (4.53), and
(4.57), one obtains, from (4.54) and (4.53), for the
expectation values of the spin components 7.*, I*
and I.* in the rotating coordinate system the simul-
taneous differential equations

d{I*)/di— o' {I*) cosf+ A LI *)+al{l.*)=C,, (4.58)
d{I,*)/di+o' ((I*) cosf—{I.*) sinb)
+Au<[y*>:0, (4-59)
d{I ¥/ di4o'(I,*) sind+ A (1.¥)+a.(I.*)=C., (4.60)
with the constant coefficients
A.=2(A11— A1, 1)+ Aoo=2(ciT+ar cosb)
+a0++a00 COS“)B, (461)
Ay=2(An+A41 1)+ 4w
=2(ar+a1° sin?0+a1~ cosh)
+0£0++Ol00 COSZQ, (462)
Az=4A 11=4(a1++%a1° sin20—{—a1_ COS@), (463)
a,=—24 0= —ag" sind cosb, (4.64)
a,=—2410=—2(a1" sinf cosf—ay~ sinf), (4.63)
sz d (C10+C01) = —710 sinf) cosf
41 sinf+1vo sind,  (4.66)
C.=2C11=2(yrt+3v1° sin0+v1 cosb). (4.67)

The second form of these coefficients is obtained from
Eqgs. (4.47) and (4.48) with the use of Eqs. (4.26) and
the relations (4.52).

The differential equations (4.58), (4.39), and (4.60)
represent the generalization of the original phenomeno-
logical equations® for the case of a rotating magnetic
field, referred to the rotating coordinate system. The
corresponding equations for the macroscopic polariza-
tion are simply obtained by multiplying the expectation
values of the spin components with 2nu’ where n
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represents the number of spins per unit volume and u’
their common magnetic moment. The stationary solu-
tion of the equations above is readily found to be

(I.*)= (1/D)[C:(4,4 .+« sin*)

—C.(a;4,—«'*sinfd cosh) ], (4.68)
{I*= (o'/D)[—C:(a. sinf+ A , cosh)
+C.(A,sinf+a, cosf) ], (4.69)
(I.*)=(1/D)[—C:(4,a.—w" sinf cosf)
+C. (4. 4,40 cos?)], (4.70)
with
D=A4,(4.4,—a.a,)+w"*[ A, cos?
+ (a,+a.) sinf cosd+A,sin%0]. (4.71)

In order to illustrate the great variety of facts contained
in these equations, they will be applied to some familiar
special cases:

a. Static Field

It is clear that in this case, i.e., for «=0, the sta-
tionary solution must correspond to the equilibrium
polarization in a constant magnetic field of magnitude

(w02+w12) %,/’Y = w’/‘Y,

inclined at the angle 6 to the z direction. Indeed, it is
seen from (4.49), (4.50), and the relations (4.42),
(4.43), that for w=0 all the coefficients o and v in Egs.
(4.61) to (4.67) vanish with the exception of

ar’=®1(0) —P1(w’) coshe’,  a’=2a1",
art=®,(w’) coshy’, aot=2art,
vim=®1(o’) sinh«’, yo =2y,

The coefficients, entering in Eqgs. (4.68) to (4.71), are
therefore given by

A = 20!()++aoo COSgg, AU= 20[0++a00,
A 2= 2a0++a0° sin20,

C,=v¢ sinf, C.=+¢" cosf,

a,=a,= —a’ sinfd cosh,

and yield upon insertion .
{Iy)=0, (I.)cosf—(I.)sind= (4,/u'){I,)=0,
and further with D= 2a¢t[ 2ast+ad®)?+w'?]:
(I,) cosf+(I,) sinf=~7"/(2ast)=1% tanh«’,

i.e., the proper thermal equilibrium value for the com-
ponent, parallel to the field and the vanishing of the
perpendicular components. The asterisk has been
omitted in these expressions since, for w=0, the rotating
and the fixed coordinate system are identical.

b. Vanishing Transverse Field

The situation for thermal equilibrium must evidently
also be realized if the x and y components of the
external field vanish so that one deals with a static
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field in the z direction. The frequency of rotation has
here only a formal significance and the result must be
independent of any specific value assigned to w. Ac-
cording to Eq. (4.1), one has here w;=0, and therefore
from Egs. (4.9) and (4.5) w'=Ay=wi—w and from
Eq. (4.11) 6=0. Tt follows then, from Eqs. (4.61) to
(4.67), that

A:=A4,=2( o) tat+ad, A.=4(art+ar),
a,=a,=0, C,=0, C,=2(vit+vr),
and from (4.49) and (4.50)

art+ar =& (w+o’) cosh(k+«');
vty =& (w+w’) sinh (k+«').

It is further seen from Eq. (4.51) that x+x"=xo=Bwo/2
since for w1=0 Egs. (4.5) and (4.9) yield w+w’ =wo, so
that one obtains from Eqs. (4.68) to (4.71)

(I*)={1,*)=0,
and further, with D=4,(4 .2+ w"?)
(I*)=2(v1™v1)/4(art+ar) =% tanhk.

The vanishing of (I.*) and (I,*) entails also that of
(I;) and (I,) and one has (I.*)=(I.)=1% tanhko, repre-
senting indeed the proper equilibrium value for a
constant external field of magnitude Ho=wo/v in the
z direction.

c. Weak Transverse Field near Resonance

While the preceding result is rigorously valid only
for w;=0, it applies also to a weak transverse field,
provided that w<<|Ay| = |wp—w], i.e., for conditions far
removed from resonance. It is invalid, however, if | A|
is comparable to w;, even though the latter quantity
may be assumed small, since one has in this case §0.
The fact that one is dealing with a ‘“‘weak” transverse
field is here implied to mean that w<Kw=w, and
Buwi<K1. With |Ay| comparable to wi, o’ is, according to
Eq. (4.9), likewise comparable to wi, so that the case
considered here implies that one has in Eqgs. (4.49) and
(4.50)

B, (wtw) =By (w—w) =Pu(w) =Pu(wo)

and, according to Eq. (4.51),
K<<, xk=ko=Lwo/2.

Consequently, all the coefficients « and v in Egs.
(4.61) to (4.67) vanish, with the exception of

ao+= ‘I’o (w') 5

'yl+ = (I’l (w()) Sinhl(u,

art=®;(wo) coshky,
"= ®(0) —Po(w'),
and one has
A,=A,=2ar+ast+a cos?d, A.=4as",

a,=0, C,=0, C,=2".

Using, further, (4.10) and (4.11), one obtains then from

(4.72)

a,= —ay’ sinf cosb,
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Eqgs. (4.68) to (4.71):

4C¥1+'_ Oloo (2a1++a0++ag° COS20)
(I¥)=Aqwr 1+ 1 tanh,,
D l. Agtwy?
(4.73)
40[1+
(Iy*>=w1 [20[1++010+:]% tanhxo, (474)
D
a1+
(Iz*> = 7[ (2a1+—l-ag+—f—a0° COS29)2+ AOQ:]% tanhxn,
(4.75)
with
D= 4a1+ (2a1++a0++ao° COSQG)2+4C!1+A()2
+ (20[1++Olo+)(x)12. (476)

A considerable simplification of this result is obtained
if, beyond the conditions stated above, the smallness
of w; implies also that wi=w'Kw*. In fact, this addi-
tional condition renders the assumptions made here
equivalent to those made in I and II, and in view of
the treatment presented in I, the expressions (4.73)
to (4.75) must become identical with those obtained
from the solution of the phenomenological equations.®
Indeed, this particular simplicity arises from the fact
that it is here permissible to omit in Eqs. (4.72) the
distinction between ®,(w’) and $,(0) so that agt=¢(0)
and a"=0. One obtains then from (4.73) to (4.76) the
familiar result

(x)]A[)
(I.*)= <[z>o,
14 (AoT2)* Hw? T T
w1T2
<Iy*> = <[z>0:
1+ (AT o)+ wi*T1 T
14 (AT 9)?
<[z*>= <Iz>0:
1+ (A0T2)2+0)12T1T2

where (7.)o=% tanhk, represents the equilibrium value
of {I,) in the absence of a transverse field and where
the inverse longitudinal and transverse relaxation times
aregiven by 1/T1=4®;(wo) coshkoand 1/To=1/2T1+P¢(0),
respectively.

The fact that relaxation can here be characterized by
only two time constants arises from the circumstance
that the two frequencies of relevance, occurring as
argument in the quantities ® of Eqs. (4.49) and (4.50),
are 0 and wo. The general case is actually to be charac-
terized by five time constants, determined by five
quantities ® with the corresponding frequencies 0, o/,
w—o', w, w+w’ as argument, which may all be different.

The result expressed by Eqs. (4.73) to (4.76) is not
quite so general since there occur only three different
quantities, ®;(wo), Po(w’), and P¢(0), in Eqgs. (4.72).
Nevertheless, it contains the rigorous formulation of a
feature previously pointed out by Bloembergen! and
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Redfield,? i.e., that the condition for saturation, ob-
tained from the phenomenological equations, requires
a modification for increasing values of the alternating
field. This is best seen from the expression for (I,*),
corresponding to absorption, under conditions of exact
resonance. Indeed, for Ap=0, and hence, for cosf=0
and o' =w1, one obtains, from Eq. (4.74),

0.)1T2/
<1u*>=

—‘—‘—~“% tanhxo,
1 —I—w12T1T2'

with the same significance,
1/T1=4f1>1(wo) COShKo,

for the inverse longitudinal relaxation time as in the
case of the phenomenological equations, but with the
modified definition

I/T:g,: 1/2T1+<I>o(w1)

for the inverse of an effective transverse relaxation
time. One may be dealing with a dependence of ®¢(a)
upon a such that even for a=wiKwo one has ®o(w1)
~Pg(wo) =2P1(wo). Assuming further that «<<1, one
has then ®(w;)=1/2T1 and hence TY'=T,, i.e., the
value of the effective transverse relaxation time ap-
proaches that of the longitudinal relaxation time.

It is to be noted, however, that the effect of the
distinction between ®¢(w’) and $0(0), permitted in
Eqs. (4.73) to (4.76), cannot generally be described by
the mere introduction of a new transverse relaxation
time. Through the occurrence of cosf and the explicit
occurrence of Aq in Egs. (4.73), (4.75), and (4.76), it is
seen that the dependence upon Ay, i.e., the shape of the
resonance line, is at the same time altered from the
simple Lorentzian line shape, obtained in the absence
of this distinction.

d. Slowly-Rotating Field

The formulas (4.68) to (4.71) contain also the case,
considered in greater generality in Sec. III, where, in
accordance with the conditions (3.8) and (3.9), either
w or w; are sufficiently small. In agreement with the
condition (3.23) it shall also be assumed that w<<w*,
and furthermore, that wy<<1/8. The fulfillment of
these two additional assumptions underlies the treat-
ment of Wangsness!® so that his results must be con-
tained in Eqs. (4.68) to (4.71) as a further special case.

The condition for this case is formulated in our
notation by

w, ' <<Kw*,

so that the argument of all the quantities ® in Egs.
(4.49) and (4.50) may be replaced by zero and by the
further condition

K, K'<K1.

22 A. G. Redfield, Phys. Rev. 98, 1787 (1955). See particularly
Sec. III A.



GENERALIZED

Neglecting all but the linear terms in x and «/, the
hyperbolic cosines in (4.49) can be replaced by unity
and the hyperbolic sines in (4.50) by their argument.
The nonvanishing coefficients @ and + are then given by

art=®1(0), at=2%0(0)=2%,(0),
it =kP1(0), i =«®1(0),
v~ =k'P(0) = 2«'$,(0),
and it follows from Eqgs. (4.61) to (4.67) that
Az=A,=A4.=49,(0),
C,=2®,(0)x’" sinf, C,=2d,(0)(k+«’ cosh).
With Egs. (4.5), (4.10), (4.11), and (4.50), yielding
k4« cosO="7(w+Ao)/2kT=two/ (2kT),

and with D=4®,(0){[4®:(0) ’4+w"?} from (4.71), one
obtains from Eqgs. (4.68) to (4.70)

wAO
) ="w T ,
= [1+[4¢1(0)]2+w'2]/(4kT)
40,(0)w
ll* ="n| = ’
0 [[4@ O)7F +w'2]/( #1)

L*)=t wo——L 4kT).
v [ [4@1(0)]2+w'2]/ D

Going back to the fixed-coordinate system, one has from
Eq. (4.57)

(= (LX) +iT,*))e e

a;=a,=0,

wA0+4z<I>1(0)w
=hw1[1+—————]e—f“’/(4kT),
[49,(0) J*4-w"
and
(I)=(I5).

The corresponding expressions M; and M. for the
macroscopic polarizations are obtained by multiplying
(I'y and (I.,) with 2nu’. Observing that 2nu'#%/(4kT)
=x0/7v, with xo=nu'?/(kET) being the static suscepti-
bility, and with the notatlon M= M, r=1/[49,(0)],
Hi=wi/y, A=A, and a=d', it is seen that the result
thus obtained is indeed identical with that of Wangs-
ness.? In particular, it includes the result of Gorter and
Kronig,® applied to a purely rotating field, i.e., to the
case wo=0, with the in-phase and out—of—phase com-
ponent of the susceptibility given by the real and im-
aginary part of M'/H,, respectively.

5. CONCLUSIONS

Being restricted only by the conditions (2.42), the
Boltzmann equation (2.56) can be claimed to properly
describe a very general class of relaxation phenomena,
based essentially upon the assumption that the mo-

28 See reference 10, Egs. (16) and (17).
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lecular surroundings can be considered to remain in
thermal equilibrium. It is clear that what has been
termed here the ‘“spin system” can be considered as
any other quantum-mechanical system subjected to
any given external actions, and that the ‘“molecular
system” is by no means required to consist of molecules
but could, for example, be equally represented by elec-
tromagnetic radiation in thermal equilibrium.

Applied to nuclear- or electronic-resonance processes,
Eq. (2.56) includes all the previously considered situ-
ations as special cases and it contains, besides, a great
deal of additional information, as is seen in Sec. IV,
even for the simple case of a rotating magnetic field.
With the further progress of the experimental art and
particularly with its extension towards low temper-
atures, there can be little doubt that many of these
additional features will, in due course, become of equal
importance to those considered so far.

While this paper was in progress the author was
informed about similar work carried out by Redfield*
who has likewise realized the possibility of extending
the earlier treatments to cases where the static part
of the spin energy is not dominant. After a general
presentation of the semiclassical approach, mentioned
in the Introduction of this paper, through time-de-
pendent random perturbations upon the spin system,
he follows the procedure of I and IT as well as of this
paper in formulating a consistent quantum-mechanical
treatment, based upon the assumption that the molecu-
lar surroundings can be treated as a heat reservoir
which remains in thermal equilibrium. As an interesting
methodical approach, external actions are introduced
by including their producing devices into the total
system with a coupling term to the spin system which,
originally, does not explicitly depend upon the time.
The explicit time dependence of the spin energy, used
from the beginning in Eq. (2.1) of this paper, results
then from taking the expectation value of the coupling
term with regard to the devices under suitable assump-
tions, chosen to account for their macroscopic character.

Redfield’s treatment does not include a development,
equivalent to Sec. IT of this paper; instead, it is adapted
to those cases of Sec. ITI where in addition to (2.42)
the conditions (3.8), (3.28), and, further, the condition
| E|<<1/B are satisfied and it is augmented by indicating
a series in ascending powers of parameters which, under
strict fulfillment of these conditions, would be negli-
gible. His formulas are likewise presented in a form
which is invariant against a particular representation
of the spin system and he has also independently ob-
served the occurrence of a second-order correction to
the energy of the spin system, arising from its coupling
to the molecular surroundings. As an application he
treats the relaxation of nuclear spins in a metal for an
arbitrary fixed magnetic field intensity. Since the
problem is too complex to permit a rigorous solution,

2 A, G. Redfield, IBM Journal 1 (January 1, 1957).
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it is assumed that the spin system is at any time in
thermal equilibrium with a spin temperature, different
from that of the molecular surroundings; a measure for
the relaxation time is then obtained from the rate of
energy transfer to the molecular surroundings. As
mentioned in the Introduction of this paper, the
generalization of the method of Wangsness and the
author, presented in II, would likewise permit such a
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treatment of this problem, but it could be applied only
for a sufficiently high intensity of the fixed magnetic
field. Redfield’s results, however, can also be applied
to relaxation in an arbitrary small field which is of
considerable experimental interest. The author is
grateful to Dr. Redfield for having received his manu-
script before publication and for an interesting dis-
cussion.
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Luminescence of Potassium Iodide*
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When single crystals of potassium iodide are cooled to —160°C and illuminated with light absorbed in
the first fundamental band they luminesce with a quantum yield between 0.5 and 1. The excitation and
emission spectra of this luminescence are presented. The experiments suggest that pure KI itself luminesces
under the above conditions and that the luminescence can be modified by the presence of impurities or

defects in the lattice.

I. INTRODUCTION

ECAUSE of their simple structure the alkali halides
have played a very important role in the develop-
ment of solid-state physics and it appears that there is
still much to be learned from experiments done on them.
For example, consider the result of illuminating a crystal
with light absorbed in the first fundamental band.
According to one interpretation this results in the
excitation of electrons on the negative ions in the
lattice. One observes, however, that this also results in
a change in the optical properties of the crystal.
F centers, among other things, appear in the lattice
during illumination.! It is also found that  centers may
be ionized by illumination with fundamental band
light.? This type of observation suggests that the energy
of an excited negative ion is not localized at the absorp-
tion site but may be transferred through the lattice and
produce effects some distance from the point of absorp-
tion. Theoretically it is also found that such energy
transfer is possible and several mechanisms for the
transfer have been proposed.? However, it has not as
yet been experimentally determined which of these
mechanisms is important in the alkali halides.
Another way in which the excited negative ion can
get rid of its energy is by the emission of a quantum of
* This work was supported by the U. S. Air Force through the
Office of Scientific Research of the Air Research and Development
Command.
U A. Smakula, Z. Physik 63, 762 (1930).
2E. Taft and L. Apker, Phys. Rev. 81, 698 (1951); 82, 814
(1951); 83, 479 (1951). N. Inchauspé and R. J. Maurer, Air
Force Technical Note OSR-TN-55-281 (unpublished).
3D. L. Dexter and W. R. Heller, Phys. Rev. 84, 377 (1951);

W. R. Heller and A. Marcus, Phys. Rev. 84, 809 (1951); D. L.
Dexter and J. H. Schulman, J. Chem. Phys. 22, 1063 (1954).

light. There is apparently no theoretical reason why
this process cannot occur in the alkali halides, but until
quite recently no experimental observations of lumines-
cence of these substances during illumination in the
fundamental band have been taken seriously. Because
of this, it has been generally accepted that such lumines-
cence does not occur. In the past few years, how-
ever, several workers have reported a low-temperature
luminescence which might be ascribed to pure alkali
halides, while others have observed fundamental band
luminescence which was apparently connected with the
presence of defects in the lattice.* The present work was
motivated in part by the work mentioned above and
also by the realization that a study of the luminescence
of single alkali halide crystals excited by illumination
in the fundamental band can perhaps help solve the
problem of energy transfer mentioned in the first
paragraph. It is interesting to determine whether or
not the pure, perfect alkali halides will luminesce, but
perhaps more important is the use of emission initiated
by the excitation of a negative ion in the lattice as a
tool in the investigation of energy transfer phenomena.
Some experiments to this effect are discussed in the
conclusion of this paper.

II. EXPERIMENTAL

In this paper the luminescence of the potassium iodide
will be described in terms of its excitation and emission
spectra and the quantum yield. Also, the optical absorp-

¢ W. van Sciver and R. Hofstadter, Phys. Rev. 97, 1181 (1956);
W. Martienssen, Z. Physik 131, 488 (1952); W. Martienssen and
R. W. Pohl, Z. Physik 133, 153 (1952); W. Martienssen, Nachr,
Akad, Wiss, Gottingen K. ITa, No. 11, 111 (1952).



