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(1) An effort should be made to correlate dielectric
and internal friction losses in quartz by making both
types of loss measurements on the same sample.

(2) Possibly placing the crystal in a strong electric
field in the optic axis direction at elevated tempera-
tures, would flush out the impurities responsible for the
relaxation peak. Appropriate analyses should be made
before and after this experiment.

(3) If a particular impurity were suspected of
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causing the relaxation peak, possibly the height of the
peak could be increased by diffusing in the impurity,
again with a high field at elevated temperatures.
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The vacancy model of the F center is treated by a simplified Hartree method. The ions are treated as
point charges, and the potential of the lattice is computed. The simplified Hartree equation is solved vari-
ationally, and the electronic polarization is computed by a self-consistent method which takes account of
the screening action of the F-center electron. The lattice distortion is then calculated. The resulting energies
are compared with the available optical data. The agreement is good.

The hyperfine structure of the F center is computed, using a determinantal wave function. The predicted
hyperfine splittings agree fairly well with the experimental results of Lord and Jen on the resolved

hyperfine structure of LiF.

The effects of exchange and overlap are also discussed.

1. INTRODUCTION

HE study of the F center has long occupied a

central place in the investigation of the imper-
fection-determined properties of crystalline solids. An
extensive survey of the theoretical and experimental
work has been given by Seitz.!> There are two well-
known models of the F center. The de Boer or vacancy
model views the F center as consisting of an electron
trapped in the field of a negative ion vacancy. The
interstitial model, on the other hand, assumes the
F-center to consist of an electron trapped in the field
of an interstitial ion; it is thus an interstitial atom.
Thus the interstitial model considers the F center to be
a primary imperfection while the vacancy model repre-
sents it as the stable union of two primary imperfec-
tions.? Consequently, the understanding of the nature
and properties of the F center is an essential step in the

* Work supported by the Bureau of Ordnance, Department of
the Navy.

1 Some of the results presented here have been reported at the
June, 1956 meeting of the American Physical Society in New
Haven, Connecticut.

L F. Seitz, Revs. Modern Phys. 18, 384 (1946).

2 F, Seitz, Revs. Modern Phys. 26, 7 (1954).

3 We shall follow the usage of F. Seitz [Imperfections in Nearly
Perfect Crystals (John Wiley and Sons, Inc., New York, 1952),
p- 3] in considering phonons, electrons and holes, excitons, vacant
lattice sites and interstitial atoms, foreign atoms, and dislocations
as the primary imperfections.

study of the primary imperfections and their inter-
actions.

The purpose of this paper is to study the vacancy
model of the F center. A complete solution of the
problem of the stationary states of the F center at
absolute zero requires a careful consideration of a
variety of physical factors. The proper tool for such
an investigation is a generalized configuration inter-
action calculation which takes account also of the
motion of the ions. Such a calculation is too difficult
for present day techniques. We have attempted to set
up a Hartree-Fock equation for the F-center orbital,
taking account of possible displacements of the ions
near the vacancy. The complete solution of this problem
is still some way off, and it seems reasonable to take
stock of the physical results presently available by a
simplified method. We shall, therefore, proceed to set
up a simplified Hartree equation for the F-center
orbital, neglecting the effects of the finite size of the
ion cores and the effects of exchange. We shall solve
this equation by a variational method, and compute
the effects of electronic polarization and ion displace-
ment. We shall then set up a method for the calculation
of the hyperfine structure, using a determinantal wave
function. This will give us a set of theoretical transition
energies and hyperfine interactions which we shall
proceed to compare with the available experimental
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data. We shall then turn to a discussion of the exchange
and overlap effects, and the influence they are likely to
have on the wave function. From this discussion it will
become clear which of our results can be expected to
change rather little under the action of exchange and
overlap.

2. SIMPLIFIED HARTREE EQUATION

Consider an alkali halide crystal with one F center.
It has N nuclei, n—1 core electrons, and one extra
electron, which we shall call the nth electron. By a
core electron we mean any electron which is attached
to the complete shell of a positive or negative ion. Thus
this name includes the electrons belonging to the
complete valence shell of a negative ion. For the
purposes of Secs. 2, 3, and 4, the core electrons will be
considered as point charges. Thus the nth electron
may be considered to have a potential energy of the
form (a is the nearest neighbor distance)

+o0
VL(I) = Z’ (_ 1)zitvitas

Zi,Yi, 2=

X[(x—ax)*+ (y—ay:)*+ (z—az)' T2 (1)

(We use Hartree atomic units throughout the paper.)
The prime on the summation sign means that the
point (0,0,0) is omitted. We have assumed that the ion
cores were not polarized. This assumption will be shown
to be self-consistent in Sec. 3, where we shall evaluate
the electric field acting on each ion, and will compute
the contribution of the polarization effect to the
binding energy. Our present problem is, therefore, the
determination of the orbital ¢,(r) for the F-center
electron which minimizes the functional*

Epst= f GO~V Vi@ Wi, ()

subject to

f [¥a(®) Pdr=1.

Throughout this section, the lattice will be assumed to
be undistorted; that is, the ions will be assumed to
occupy the same positions they would occupy in the
perfect lattice at 7=0. Later we shall compute the
lattice distortion effects by a perturbation method,
permitting only the nearest neighbor ions to move. It
will be seen that the distortion effect is small in this
approximation.

The usual group theoretical considerations lead one
to the conclusion that V.(r) must belong to the I'y*
(totally symmetric) irreducible representation of the
cubic group.® Let us denote the linear combinations of

4 The wave function ¥, can be taken real because the Hamil-
tonian is real in our problem.

5 We shall denote the irreducible representations of the full
cubic group O, by I';? following H. A. Bethe, Ann. Physik 3, 133

(1929). We have appended the superscript p which stands for
Pp p
“odd” or “even.”
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TaBLE I. Reduced form of the spherical harmonics of order /.

Order ! Reduced form
O Ple
1 I‘Aa
2 Tye+T5e
3 T2+T°+T5°
4 I+ 4Ty +T5¢
S I30+2I°+ 0
6 o4+ +200¢
7 20 +T'50+4-2I°+4-2T'5°
8 T ¢+ 2036+ 20 ¢+ 20¢

the spherical harmonics which belong to a given
irreducible representation I';? of the cubic group Oy by
the symbol

+1
Q(I‘ﬂ’,l,y;lﬁ, 90) = Z C(I‘ip)l’“l; m) Ylm(gy W)’ (3)
m=—1

Here y; is an index used to differentiate among several
Q’s of the same /, belonging to the same I';?. Thus the
maximum possible range of y; is 0<u;<2!. Following
Bethe and Von der Lage, we shall call the Q’s Kubic
Harmonics.® These Kubic Harmonics are orthonormal,
that is

fdQQ*(FiylyHli07¢)Q(Fhl,7“l’lw?¢)
=5I‘i,I‘j51, 1/6;‘1,“;:'. (4)

Bethe has reduced the spherical harmonics according
to the several irreducible representations of the cubic
group.® He finds that the spherical harmonics of order
! belong to the following irreducible representations
(Table I). (We have extended his table.) We have
appended the superscripts e for even and o for odd,
where even and odd retain their usual spectroscopic
significance. It follows that

VL(I‘) = Vﬁﬁ(r)Q(Fle;())O I 0; ¢)+ V40(T)Q(F1°7470 [ 87 §a)
+ VGO(T)Q(T12;6:Ol07 ¢)
+ Vs (nQT198,0[8,0)+---. (3)

The individual Viu(r)’s are determined by expanding
each term in the potential about the center of the
vacancy. Since the potential energy V.(r) is invariant
under the full cubic group, it is clear that every solution
of our equation must belong to an irreducible repre-
sentation of the cubic group. Thus we must have’

‘P(I‘ip I r) =§: Z R(Piz)al)#l [ T)Q(Fipal)“l I 0:¢)' (6)

1=0 1
In practice it is necessary to terminate the series for
¢(T.?|r) after one or two terms for the variational
treatment. The higher terms may be added later by

§H. A. Bethe and F. C. Von der Lage, Phys. Rev. 71, 612
(1947). 1t should be noted that our normalization differs from
theirs.

7 For all but the two one-dimensional representations I'; and
I';, two or three wave functions belong to the same representation.
In the interests of simplicity of notation, we have omitted the
index which differentiates the several wave functions belonging
to the same representation.
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TaBLE II. Theoretical ground state energies and parameter values for six alkali halides with the NaCl structure. All quantities are in
Hartree atomic units; i.e., the unit of energy is two Rydbergs, and the unit of length is the Bohr radius.

Interionic Type I Type I1 Type II1
distance
Substance a ¢ E(T1e) ¢ 7 E(T1¢) £ 7 E(T1°)

LiF 3.80 1.71 —0.267 2.38 3.50 —0.257 2.26 1.86 —0.297
NaF 4.37 1.81 —0.244 241 3.68 —0.244 2.30 2.06 —0.271
LiCl 4.86 1.87 —0.227 2.43 3.82 —0.232 2.34 2.27 —0.253
NaCl 5.31 1.92 —0.214 2.45 3.96 —0.221 2.36 2.38 —0.238
KCl 5.93 1.99 —0.198 247 4.11 —0.207 2.37 2.44 —0.219
RbBr 6.48 2.04 —0.186 2.49 4.26 —0.195 2.40 2.62 —0.205

perturbation theory methods, provided that they are II. R(I'1¢,0,0|7)=Ajo(Er/a) exp(—n), r<a
small. A _

Thus far our efforts have been directed chiefly towards =Ajo(§) exp(—nr/a), r>a (7)
the determination of R(T%0,0|r) and R(I'4%,1,0|7). where
These are the familiar s and p states of previous treat- —1— .
ments.!'? We have tried three types of wave functions K _ECOtE’
for the ground state, which has I';* symmetry ; and three I R(@:0,0[n)=Aju(&r/a)ke(n), 7<a
corresponding types of wave functions for the first =Aj0(&)ko(pr/a), r>a
state to which the electron may be excited by electric
dipole radiation, namely, a state with I';® symmetry.
The several trial functions and the corresponding ener- n=—¢cotf, and ko(x)=(1/x) exp(—x).
gies are listed below. Later we shall give heuristic
reasons for choosing these particular trial functions.

where

Here the £’s are variational parameters and the n’s are
determined by the condition that both the wave

Ground-State Wave Function function and its radial derivative have to be continuous
. at r=a. A is a normalizing constant, and j.(x) is the
Q(T1,0,0[6,¢)= (1/4m)%, spherical Bessel function of order 7.8
1. R(T140,0|7)=2(£/a)? exp(—ér/a); The corresponding energy functionals are®

I EpSi=8/2a— (1/a){au—exp(—2§) ' hi(—=1)=tutati(14p.8)(1/p,) exp[—2£(pi—1) ]} ;

2i> yi> xi>0

hi=@Bl/n)257%; pi= (xi+yi+25)4,

(8)

where #; is the number of times any given number occurs in the triplet (x:,y4,2:), and 0; is the number of times
that zero occurs in this triplet. ey =1.747558 is the Madelung constant for the NaCl lattice. The prime on the
summation sign means that the point (0,0,0) is omitted.

II. EpSE=(1/2a){8— (G(&)/n)[n*—3n—3+E(1—1/n4+377)]}
—1/a){au—3n3G(E) X' h(=1)=Hvtat(14p) (1/p) exp[—2n(p— 1)1}, (9)

52 3> %620
where
[G(&) I'= (1—(1/2¢) sin2¢) (sin&) =+ (1/n) (14+-1/n+377%).
I EeS=(1/2a) (140" — (1/@)Lay—208A+n) (4 Z7 hi(—1)=itvet=itt

X {(21p:)~" exp[—2n(pi— 1) ]+exp(2n) Ei(—2np,)} ]. (10)

The corresponding energies and parameters are tabulated in Table II. We have denoted the stationary value
of the EpSH functional for the ground state by E(T'1¢). About three to eight terms in the series for E7S¥ actually
contributed. It is clear that the type III wave function gives consistently lower energies for the ground state,
and it is therefore the better wave function.

8 See, for example, P. M. Morse, Vibration and Sound (McGraw-Hill Book Company, Inc., New York, 1948), second edition, p. 316.
¢ These expressions for EFSH are easily obtained if one evaluates the expectation value of V1, (r), as given in (1), expanding each
term in (1) about the center of the vacancy in a series of spherical harmonics.
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First Excited State Wave Functions
QT'4°,1,0|6,¢)= (3/4)? cosd,
I. RT41,0|7)=(2/V3)(£/a)’% exp(—&'r/a).
II. R(T41,0[7)=A4"7:1(Er/a) exp(—7'), r<a

=A"j1(¥)(r/a) exp(—n'r/a),
r>a (11)
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where
n'=3—E2(1—¢ cotf) L.
III. RTs,1,0|7)=A"j1(Er/a)k1(v'), r<a
=A"j1(E)ki(n'r/a), r>aq,

= fE)H{L/E) P2/},

JE)=3£%( coté'—1)7,
ki(x)= (1/x+1/5%) exp(—x).

where

The corresponding expressions for the energy functionals are

L Eer—ge- (faw—i T

2i> ¥i> xi> 0

hi(—1)=stuiteti(1/p;) exp(—2&'p:)

IL EpSH=(1/2a){£"—2G' (§)[(2n") (£ +n") ((20')*+4(20')*+12(27)*+24(21') +24)

—2(20")7*((2n")*+3 (20" +6(21)+6) I} — (1/a) {are— 30" ~°G' (¢)

[G' (&) T =1=jo(&) j2(§) 71 (E) T2+ 220" ) [ (20') *+4(2n)+12(27')*+-24(20") +-24].

II1.

E= (120~ G/ ({)r(1+1'/2) (241" ] (1/0) (arr—G (&)

XB+(9/2D)Epi+3(Ep)+ (£p)%]}.  (12)
Z’ hi(_ 1)3.’+w+z;+l
2> ¥i> x>0
X (1/p:) exp[—21'(p;i— 1) J[3+(9/2)n"0i4-3(n'0:)*+ (n'p:)*]}, (13)
Z/ hi(" 1)::£+u»‘+z.‘+1
X{exp(2n)[—Ei(=21'p) J—5(n'p:)*(n'pi— 1) exp[—27"(0;— 1) 1}}, (14)

(G’ ()T =n"[1+('/2) ]+ (A+1/0"P{[¥ 7o (£) THFA+ (28) 7 sin2¢)— (Go(£))7]}-

About five to sixteen terms in the series actually contri-
bute. The resulting energies and parameters are sum-
marized in Table ITI. Here type II seems to be a
slightly better wave function.

The reasons for choosing trial wave functions of these
three types are the following:

Type I. These are hydrogenic functions. They are
chosen in accordance with the conventional picture
that the potential of the negative ion vacancy is
qualitatively similar to a Coulomb potential.

Type II. These are composite functions. They are
chosen after an examination of V(7). This is the only
term in the potential energy capable of affecting a trial
function which is spherically symmetric. From Fig. 1,
it is clear that the potential is constant for r <a. For
r>a, it has a Coulomb-like behavior for a short stretch,
and then it breaks into a series of violent oscillations
as more and more terms in the sum undergo a series

reversal. In the region r <a, the solution of the wave
equation is therefore of the form j.(¢r/a). Outside this
region we approximate the wave function by a hydro-
genic wave function which would have been appropriate
if the potential were actually Coulomb-like for al
values of r>a. )

Type III. These are composite wave functions appro-
priate to a region where for » <a the potential has a
constant negative value while for r>a it has a large
constant positive value. Thus for r <a the appropriate
solution is j,(¢r/a) while for r>a the solution takes
the form k,(nr/a), where k,(x) is the modified spherical
Hankel function of order #. This choice makes sense if
we suspect that the actual energy levels we are com-
puting are so low that the oscillations of Voo(r) are of
little consequence. Thus this approximation is better
for the ground state than for the excited states.

Before we go on to discuss the several correction

TaBLE ITI. Theoretical energy and parameter values for the first excited state. All quantities are in Hartree atomic units.

Interionic Type I Type I1 Type III
distance
Substance a } 34 E(Te) F 4 7’ E(T'w) I3 7’ E(T'¢)

LiF 3.80 2.00 —0.138 3.03 2.67 —0.150 3.24 0.763 —0.147
NaF 4.37 2.20 —0.137 3.14 3.00 —0.152 3.29 1.02 —0.150
LiCl 4.86 2.30 —0.135 3.21 3.23 —0.152 3.33 1.22 —0.151
NaCl 5.31 2.40 —0.133 3.26 3.40 —0.150 3.36 1.38 —0.149
KCl 5.93 2.50 —0.129 3.32 3.63 —0.146 3.40 1.59 —0.145
RbBr 6.48 2.60 —0.126 3.37 3.84 —0.142 3.40 1.59 —0.141
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F1c. 1. Spherically symmetric part of the potential energy of
the F-center electron, Voo (r), as a function of the distance 7
from the center of the vacancy. r is in Bohr radii; Voe(r) is in
arbitrary units.

terms, which will be shown to be small, it will be
advisable to compare our results with the available
experimental data; namely, the peak of the F band at
T=0. In this comparison, we shall use the energy
obtained with a wave function of type III for the
ground state and of type II for the first excited state. We
shall also list the values of the oscillator strength for
the transition under consideration, computed with the
aid of the above wave functions. The results are listed
in Table IV and a comparison with experiment is made
in Fig. 2. We can thus interpolate graphically to find
the theoretical value of the F-band energy for those
intermediate values of @ which correspond to substances
measured at very low temperatures by Mollwo® and
by Russell and Klick.! The results of this interpolation
are seen to agree with the experimental values to within
159%. It is interesting to note that in this approximation
our theory states that the F-band energy is a function
of the interionic distance ¢ only. This is in substantial
agreement with Ivey’s empirical formulas.1

We have estimated the magnitude of R(I'1%,4,0|7) by
a variational method. While this estimate is not com-
pletely reliable, it would appear that the high angular
momentum wave function is so diffuse that its overlap
with R(TI:%0,0]7) is very small. Consequently, very
little g state would seem to be mixed into the ground

TaBLE IV. Theoretical F-band energies and oscillator strengths.
All quantities are in Hartree atomic units.

Interionic Theoretical Oscillator
Substance distance a E(T'o)—E(T1°) strength
LiF 3.80 0.147 . 0.997
NaF 4.37 0.119 0.988
LiCl 4.86 0.101 0.967
NaCl 5.31 0.088 0.968
KCl 5.93 0.073 0.985
RbBr 6.48 0.063 0.971

10 E. Mollwo, Z. Physik 85, 56 (1933).
1 C. A. Russell and C. C. Klick, Phys. Rev. 101, 1473 (1956).
12H. F. Ivey, Phys. Rev. 72, 341 (1947).
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state. It should be noted, however, that the question
of high angular momentum components is intimately
tied up with exchange and overlap effects. We shall
therefore postpone further discussion of this subject to
Sec. 6.

3. POLARIZATION ENERGY

The polarizing forces acting on the core electrons
near the F center can be divided into several classes.
First, there are the forces acting on the core electrons
of an ion placed on a lattice site in a perfect crystal.
These have the point symmetry of the lattice. Their
only appreciable contribution to the energy of the core
electrons is a spherically symmetric one: they raise or
lower the potential energy of the core electron by a/a.
Their polarizing effects involve the admixture of states

0.16
0.14 \
\

O.2f—— THEORETICALA
T
by \
< 0.0 =
W
>
© -~
& 0.08 \
= \*®
w
2 \ ]
& 0.06
@
w

0.04

0J Russell 8 Klick's results
extrapolated to 0°K
0.02|— @ Mollwo’s experimental results
extrapolated to 0°K

1 2 3 4 5 6 7
INTERIONIC DISTANCE (a)

F16. 2. F-band energies at 0°K for the alkali halides as a
function of the interionic distance. All quantities are in Hartree
atomic units.

of much higher angular momentum, and therefore
considerably higher energy. They are consequently
negligible.

The removal of a negative ion and its replacement
by an electron introduces some new forces. The elec-
tronic cloud of the ion and the F-center electron overlap
and exchange in a manner different from that in which
the overlap and exchange between the two ionic cores
took place. This phenomenon is appreciable only for
the nearest neighbor alkali ions, and it can hardly affect
their tightly bound core electrons. Its effects on the
F-center electron may be more appreciable, and they
will be discussed in Sec. 6.

The final and most important polarizing force is due
to the relatively diffuse nature of the F-center electron
cloud. Unlike the core electrons of a negative ion, an
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appreciable portion of the electronic charge may be
expected to be outside the sphere bounded by the
nearest neighbor positive ions, and some of the charge
will be even outside the larger sphere bounded by the
next nearest neighbor ions. Thus an electric field must
be acting at the center of every nearest and next nearest
neighbor ion, tending to polarize it. In some previous
treatments, this was taken into account by using the
dielectric constant technique in the framework of the
adiabatic approximation. This led to mathematical
difficulties in the computation of the polarization
throughout the crystal. The effect of the polarization
of the distant parts of the medium was, of course,
cancelled by the depolarizing influence of the F-center
electron cloud, but both of these terms had to be
computed in the course of the calculation. In a self-
consistent treatment, on the other hand, this mathe-
matical difficulty is avoided because only the net
polarization energy must be computed, provided that
one starts with appropriate initial wave functions.

We shall, therefore, compute the field at each of the
nearest and next nearest neighbors, and then use the
usual polarizability theory. This will give us the change
in the energy of the F-center electron due to polariza-
tion. If the energy change is large, we must recompute
the wave function. If it is small enough, we shall leave
well enough alone.

The change in V. (r) will evidence itself in two
different ways. First, there will be a change in V()
and also in the higher coefficients in the expansion of
the potential. Secondly, there may appear some new
terms in the potential, having a symmetry other than
I'ye. These new terms will belong to representations
occurring in the reduced form of I';?X I';? if the F-center
electron is in a state belonging to the I';? representation.
Thus, for the ground state

Plex Flez Fle (15)

and no new terms appear. For the first excited state,
on the other hand, we have

[yoXTyo=T1+ T3+ T+ T'5° (16)

and terms of different symmetry do appear. There is
good reason to believe, however, that their effects are
no more important than the effects of the changes in
Voo(r), and therefore we shall content ourselves with
showing that the changes in Voo(r) are small.

We shall estimate the polarization effects by first
computing the polarizing charge ¢, acting on the sth
ion, and then employing Gauss’ theorem. For the
ground state, the spherically symmetric part of the
polarizing charge density is

8(r)— (1/4m)[R('1,0,0[) T, (17)

where §(r) is the three-dimensional Dirac delta function,
centered at the center of the vacancy. For the first
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excited state, it is
3(r)— (1/4m)[R(Ts,1,0[r) I (18)

Thus the polarizing charge acting on the nearest
neighbor cations in the ground state is

L]

= f [R(T'1,0,0|7) Pridr (19)

and the charge acting on the next nearest neighbor
anions is

qg-= f [R(T'1%,0,0|r) Pridr. (20)
VZa

Analogous expressions hold for the excited state, with
R(11%,0,0|7) replaced by R(I's%1,0[r). In Table V
below, we have listed the values of ¢,, computed using
a type III function for the ground state and a type II
function for the first excited state.

The dipole induced on the sth ion is approximately

ast/”sz (2 1)

and it points away from the vacancy in a radial direc-
tion. 7, such dipoles situated symmetrically about the
vacancy produce a potential whose spherically sym-
metric component is

(22)

and zero otherwise. This leads to a change in the
potential energy which may be written in the form

—nsasQs/rst i <7,

(23)

This contribution to the potential energy is tabulated
in Table VI. e, is the contribution to the energy from
the six nearest neighbor cations, and e_ is the contri-
bution of the twelve next nearest neighbor anions.
Other ions produce only negligible effects because g,
drops off very rapidly. Clearly the polarization effects
are completely negligible for the ground state. For the
first excited state, they are of the order of 39 or less,
and they may be evaluated in first-order perturbation
theory as was done above. For those alkali halides
which have the more pronounced polarization effects,
it may pay to examine more closely the nonspherical
terms in the polarization energy of the first excited

€= — 10503/

TaBie V. The polarizing charge. These charges are expressed as
multiples of the electronic charge.

Ground state First excited state

Substance q+(T19) q-(T1°) g+(T40) g-(I's0)
LiF 0.209 0.045 0.493 0.165
NaF 0.181 0.033 0.416 0.110
LiCl 0.158 0.024 0.368 0.082
NaCl 0.147 0.020 0.335 0.065
KCl 0.141 0.019 0.296 0.048
RbBr 0.126 0.014 0.266 0.037
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TaBrLE VI. The contributions to the electronic polarization
energy of the six nearest neighbor cations e;, and of the next
nearest neighbor anions e_. Energies are in Hartree atomic units.

Ground state First excited state

Substance €4 € et €.
LiF —0.0003 —0.0002 —0.0014 —0.0025
NaF —0.0007 —0.0001 —0.0036 —0.0006
LiCl —0.0001 —0.0001 —0.0003  —0.0009
NaCl —0.0002 —0.0000 —0.0011  —0.0004
KCl —0.0006 —0.0000 —0.0025 —0.0001
RbBr —0.0006 —0.0000 —0.0025 —0.0001

state. It may then also be necessary to take account
of the interactions among the dipoles which tend to
decrease the polarization energy.

While the polarization energy is negligible for the
two states that we have considered, it is quite large if
the F-center electron is ionized to the conduction band,
because then its shielding effects are absent. Mott and
Littleton’® have computed this quantity for NaCl;
they call this energy %eV, and give its value as —0.11
atomic units. The energy of the lowest level in the
conduction band is given by Tibbs!* as —0.02 atomic
units for NaCl. Using our values for NaCl, we then
have for the ground state energy of the F-center
electron below the lowest conduction level the value
0.11 atomic units. For the first excited state, the value
is 0.02 atomic units.

4. LATTICE DISTORTION EFFECTS

In this section we shall examine the effects of a
lattice distortion in the vicinity of the F center on the
wave function and energy levels of the F center. This
is an effect which cannot be assumed to be negligible
a priori, and one which is often responsible for the
appearance of such physical phenomena as lumi-
nescence. In the present paper, we shall confine our-
selves to a partial treatment of the problem; that is,
we shall allow only the six ions closest to the vacancy
to move radially. Clearly this is an oversimplication of
a complex situation, and it can give us an approximate
result at best.

If the nearest six alkali ions move radially into the
vacancy by an amount (ca), where a is the interionic
distance, then the corresponding six terms in the
potential energy V. (r) change. The change in the
expectation value of the potential energy is

—(6/a)c(1— o)+ 247 f [R(T'12,0,0]7)

a(l—oa)

X[a ' (1—o) 1= (1/r) Jr?dr. (24)
This kind of distortion also produces changes in the
electrostatic interaction among the ions and in their

( “3 N) F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485
1938).
14S. R. Tibbs, Trans. Faraday Soc. 35, 1471 (1939).
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core repulsions. For our purpose, it will be sufficiently
accurate to represent the repulsive potential energy
acting between the ions « and 8 by the expression!®

br,.g“". (25)
Then the change in the repulsive energy becomes

(am/N)[(140)—1]
+ (4&1;1/)\&)[(1‘{‘0’2)_}‘/2— 1]. (26)

It remains to calculate the change in the electrostatic
interaction caused by the distortion. In this connection,
we must remember that if an ion in a perfect lattice is
displaced from its equilibrium position by an amount
oa, then the change in its energy is of order (ca)t.
This is a change too small to be of concern to us. In
our case, of course, the lattice is not perfect because
five other ions move. The resulting change in the
energy can be shown to be

60 12 1 2
RO
a(l—g) a WWV2(1—0) [14+({1—0)?]}

3 1 1
+«[~—— - J+~[6v7+%1. 27

al2(1—¢) 2—0l a
When computing this expression, one must remember
to count the interactions between each pair of moving
ions only once.

We can now expand the change in the energy as a
power series in o, retaining only terms of first and second
order in ¢. Thus,

AE=Co+$Do? (28)
and the total energy is ErSH4-AE.

Using a wave function of type I, we have
C=—(ax/a)+ (6/a)e *(14-2£428), (29)
D= (6/a) (3/V2+1)+ (asx/a) A—3)

+(12/a)e % (1+28+2824-289).  (30)
With a type IIT wave function, we obtain
=—au/a+(6/a)(n+1)7" sin’, (31)

D= (6/a) (3/V2+1)+ (ar/a) A\—3)+ (12/a) sin%t. (32)

Differentiating with respect to ¢ and equating the
derivative to zero, we obtain the following equations
for the equilibrium values of the displacement and the
energy change:

oo=—C/D, (33)

(AE)o= —1Doy. (34)

Table VII lists the values of ¢ and (AE), for several
alkali halides. Clearly both the displacement and (AE),

15 See, for example, F. Seitz, Modern Theory of Solids (McGraw-
Hill Book Company, Inc., New York, 1940). We later express
the coefficient  in terms of the other constants, using the usual
equilibrium conditions.
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are very small indeed. This result justifies our procedure
of first minimizing the major part of the energy as a
function of £ only, and then minimizing AE as a function
of o at constant &.

The sign of some of the o’s is at first surprising. One
at first tends to reason that in effect a core potential
has been removed, and consequently the surrounding
ions should move inward. It turns out, however, that
there is also another effect; namely, the electron prefers
to stay in a region of the lowest potential available.
Thus it prefers to remain inside the vacancy. Since it
does not like to increase its kinetic energy by concen-
trating its wave function in the vacancy, it tries
instead to enlarge the vacancy by pushing the ions
outward.

The effects of the distortion on the predicted trans-
ition energy can be estimated in the following manner.
The only term whose contribution depends on the
electronic state is the integral appearing in Eq. (24).
It is readily verified that with ¢o=0.03 or less, only the
term linear in ¢ need be retained in the expansion of
this integral. This term is

(6/a)q;o. (35)

Thus the correction term which must be added to the
predicted transition energy is

(6/a)[¢+(T's*)— ¢+ (T'1°) Jo. (36)

It is tabulated below in Table VIII, using a wave
function of type III for the ground state, and type II
for the excited state.

This correction improves appreciably the agreement
with the experimental data. It should be remembered,
however, that the distortion may depend appreciably
on exchange and overlap effects. We shall discuss this
further in Sec. 6.

5. HYPERFINE STRUCTURE IN ELECTRON SPIN
RESONANCE STUDIES OF THE F CENTER

The F-center electron spin is unpaired. A strong
magnetic field (~3000 gauss) will split the spin de-
generacy giving two energy levels whose difference
corresponds to a frequency in the microwave region.
An applied microwave field of the right frequency will
induce transitions between these two energy levels with
a consequent absorption of power from the applied field.

TasLE VII. Lattice distortion energies and parameters. Energies
are in Hartree atomic units; displacements oo are in lattice
distances.

Type 1 Type 111
Substance oo (AE)o X104 a0 (AE)o X104
LiF —0.0098 —34 0.019 —12
NaF —0.0017 —0.09 0.024 —18
LiCl 0.0027 —0.21 0.029 —24
NaC(Cl 0.0058 —0.94 0.030 —24
KCl 0.0097 —-2.5 0.029 —22
RbBr 0.0119 —3.6 0.031 —24
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TaBLE VIII. Correction to the theoretical F-band energy due to
lattice distortion. Energy is in Hartree atomic units.

Substance (6/a)[g+(T©) —q,(T'1¢)]o
LiF 0.0084
NaF 0.0076
LiCl 0.0076
NaCl 0.0064
KCl 0.0046
RbBr 0.0040

From such an electron spin resonance experiment,
one obtains the following two quantities: The electronic
g factor (which is usually slightly different from that
of a free electron); and the absorption line shape. The
observed broadening of the absorption line is thought
to be due to the interaction of the electronic magnetic
moment with the magnetic moments of the nuclei of
the surrounding ions (hyperfine interaction). In one
case (LiF), the hyperfine structure of the F-center
electron spin resonance line has actually been resolved.!¢

If the wave function for a crystal containing an F
center is known, one can evaluate the energy E, " of
the interaction between the unpaired electron magnetic
moment and the magnetic moment of nucleus «, using
first-order perturbation theory. However, the problem
should be treated by an n-electron formalism. The
correct expression for E,Pfs is

Eah“:fq)ﬁcah“@dr/f@dr,

n
Scahfsz Z gca, “hfs

p=1

(37
where
(38)

gives the interaction of the magnetic moment of nucleus
a with all » electrons, and & is the appropriate anti-
symmetrized #n-electron wave function.!” For systems

16 N. W. Lord and C. K. Jen, Bull. Am. Phys. Soc. Ser. II, 1,
12 (1956).

17 Some previous calculations of hyperfine structure in F centers
have used the quantity |, (0)|2as a measure of the hyperfine split-
ting. This is obtained from the expectation value of the hyperfine
interaction operator for one electron. It is shown in the text that
this procedure is entirely valid, provided that two conditions are
fulfilled. First, the F-center orbital must be orthogonal to the
orbitals of all the other electrons. Secondly, the orbitals of all the
other electrons must form pairs of orbitals differing only in the
spin, i.e., except for the F-electron the system consists of a closed
shell configuration. Unless the problem is treated as an n-electron
problem, it is difficult to fulfill these conditions. If the F-center
orbital is not orthogonal to the other orbitals, a careful evaluation
of the expectation value of the total hyperfine interaction operator
for all the electrons of the crystal would lead to a number of
overlap terms. If these overlap terms could be summed conveni-
ently, the result would be identical to the one obtained in the
text. In some previous work, nonorthogonal F-center orbitals
were unfortunately used, and the importance of overlap terms
was not realized.

The molecular orbital function used by Kip, Kittel, et al.
[Phys. Rev. 91, 1066 (1953)] is partially orthogonal to the core
orbitals on the alkali ions. This is so because the molecular
orbital is written in the LCAO approximation, and a valence
orbital centered on a given alkali atom is orthogonal to all the
core orbitals of the same atom, even though it may overlap the
core orbitals of some adjacent ions. To some extent, this explains
the agreement of their work with experiment. For reasons given
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with only one unpaired electron spin, a good approxi-
mation to ® is the single determinant

o= (nl) g (= )PP (1)al2) - -
X¥n_1(n— 1) (n).

Here, ¢, is the F-electron wave function and ¢; to ¥,
are wave functions for the ion-core electrons. Since the
results of Sec. 3 show that negligible ion core polari-
zation is produced by the F center, appropriate free-ion
wave functions may be used for ¢; to ¥,_1.

It can be shown that'®

(39)

2Buq /8
GCa, ths: a (IIH'Sua(rﬂ_r"‘)
« \3
38, (ru—1o) Lo (r,—12)
+
|1, —Te|®
_ Sl | Wl ) (40)
Iti—re|® [r—r.|?

where B is the Bohr magneton; u. is the magnetic
moment of nucleus «; I, is the spin of nucleus «; and
S, and 1, are, respectively, the spin and orbital mo-
mentum of the uth electron. The term involving 1,
represents the interaction of the nuclear dipole moment
with the magnetic field arising from the orbital motion
of the uth electron. All other terms arise from the
interaction between the spin moment of the uth electron
and the nucleus. In all subsequent calculations involving
3Ca,,fs, we shall neglect the term involving the orbital
momentum l,. The reason for this is that, in the

n—1

o= (wr % 0nlides) / [1~ jz:[nw]l(m—

where [#] 7] is the overlap integral of ¥, with ¢; and
(n]i) is the overlap integral of ¢, with ¢, The last
equality in (44) is the result of substituting for ¢;
using (41). T is the matrix A4. The expansion of 7,

below, however, the excellence of this agreement is somewhat
fortuitous. Kip, Kittel, et al. computed the hyperfine splitting
with two wave functions. One, the central field wave function,
gave results which were one or two orders of magnitude less than
the experimental results. The LCAO molecular orbital gave
correct results and provided a measure of the amount of s character
of the wave function. Unfortunately, these results were obtained
by neglecting overlap integrals between two atomic orbitals
centered on adjacent K+ ions. These integrals are negligible only
in the case that the s and p orbitals combine in such a way as to
push the electron away from the vacancy. Our results on the
central wave function indicate that this is not the case. In fact,
there is a clear indication that the electron spends most of its
time inside the vacancy. Thus, we must conclude that the s and
p orbitals combine so as to put the electron closer to the center
of the vacancy. In this case, however, the overlap integrals are
large: four of them are at least 0.3 to 0.6 each. The inclusion of
these overlap integrals in the calculation would have reduced
the predicted value of the hyperfine interaction by a factor of
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absence of an appreciable coupling between the orbital
momentum and the spin momentum of the unpaired
electron (the lack of which is attested to by the very
small observed g-factor shift), such orbital interactions
will merely shift all the magnetic energy levels of the
unpaired electron spin by equal amounts.

In evaluating (37), the problem of enumerating the
various overlap terms can be avoided by transforming
the ¢; to an orthonormal set ¢;. The counting problem
can be further simplified if the orthogonalization
process is carried out in such a way as to avoid disrupt-
ing the closed shell configuration of electron orbitals ¥
to ¥a_1. To do this we proceed as follows: First, we
orthogonalize orbitals ¥ to ¥»—; using a method due to
Lowdin.”® This method uses the transformation

n—1
Y= Z V.45, .7:17 2,--n—1.
=1
The simplest matrix A4 satisfying the requirement that
the ¢; be orthonormal is

(41)

A= (1S =1—3SHIS—F5S+ -+, (42)
where S is the overlap matrix
Sij=f¢/l-¢jdr—6i,-. (43)

Since the functions ¢; to ¥._1 form a closed-shell
configuration, any pair of orbitals differing only in their
spin function will be transformed in the same way by
(41). Therefore, the functions ¢; to ¢._; also describe
a closed-shell configuration. We now construct an
orthonormal function ¢,, corresponding to ¥, in such
a way as to leave this closed-shell configuration un-
changed. This can be done by the linear transformation

using (42), is

T=(14S)1=1—S+S—S4---.  (45)

The linear nonsingular transformation described by
(41) and (44) is readily shown to possess the inverse
transformation

V= ¥ Cisos (46)

If we substitute for each ¢; in the determinantal wave
function (39) and use the rule for determinant multipli-

three or more. This means that even if 1009, s character is as-

sumed, the computed hyperfine splitting falls short of the experi-

mental value. The order of magnitude, however, is still correct.
18 See, for example, H. A. Bethe in Handbuch der Physik (Verlag

Julius Springer, 1933), Vol. 24, Part I, p. 385. Also A. Abragam

and M. H. L. Pryce, Proc. Roy. Soc. (London) A205, 137 (1951).
19 Per-Olov Lowdin, J. Chem. Phys. 18, 365 (1950).
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cation, it can be shown that

n! :
b= (n!)"tdet|Ci;| > (—1)PzP,01(1)- - - on(n). (47)
z=1
Therefore, the Eq. (37) for E,Pfs is invariant under the
transformation from the ¢; to the ¢,. Using (47) for @,
the expansion of (37) follows immediately. The result is

Eahfs=i

i=1

ga‘-(l)SCa, ,'hfs(ai(l)dTl. (48)

Since the orbitals ¢; to ¢,_; form a closed shell of zero
total spin and angular momentum, the sum over these
orbitals vanishes, and we are left with

Eahfs=fwn(n):}ca.ﬂhfswn(n)d,rn=Eas_’_Eadipole’ (49)

where

167r ,Bﬂva
EO‘S:——- -——qu,Snzll ¢n(a) [21
3 I

a

(50)

Z,Bﬂa .
Eudip()le:"_lazlsnzl ¢n(n)

a

3 cos?0,n—1
X (w—) en(n)dr,. (51)

Tan

Here, ¢,.(a) is ¢ evaluated at nucleus a. The hyperfine
structure of the electron spin resonance line produced
by E.S will be isotropic in the sense that it will not
depend on the orientation of the crystal with respect
to the magnetic field. E,diP°le on the other hand, will
cause the hyperfine splitting to vary with the orienta-
tion of the applied field. In general, however, this
effect will be small because E,dirol® is considerably
smaller than E,S.

To evaluate (50), ¢, must be re-expanded in terms
of the known ;. Since overlap integrals between ion
core orbitals are very small (~0.01 for nearest neighbor
orbitals), we can neglect all overlap integrals not
involving ¢, without changing the result by more than
209%. With this approximation (44) becomes

pum (m— ¥ () i)xvi) / [1— b5 (nii)z]%. (52)

i=1

The above approximation is quite satisfactory when
one considers the accuracy of our present F-electron
wave function. Should the accuracy of ¥, be improved,
it would be necessary to check this approximation
more carefully. Equation (52) shows that ¢, has
admixed into it components of the orbital wave func-
tions of all the electrons of the system with the same
spin. This admixing arises because ¥, is not orthogonal
to the y¥;; the terms in (52) which involve orbitals other
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than ¢, are analogous to the overlap and exchange
energies which appear in the expressions for the binding
energy of most molecules. In fact, the overlap terms
involving at least one orbital other than ¥, provide the
major contribution to E,!®. This result follows from
the nature of the Hamiltonian 3C.M which is very
small everywhere except in the immediate vicinity of
nucleus «. Consequently the major contribution to
E. s will come from those orbitals in ¢, which are
centered on nucleus a.

The result obtained by considering hyperfine inter-
actions as due to the lone F electron described by the
wave function ¥, has the same form as (50); the only
difference is that the orthonormal function ¢, has been
replaced by ¢.. However, it is now clear that unless
the ¢, used was orthogonal to all the other orbitals,
such a replacement loses the only terms which give
appreciable contributions to EPfs.

To clarify the previous discussion and to show that
calculations based on (50) can give the correct order of
magnitude for the F-center hyperfine interaction ener-
gies, we consider a specific salt, namely, LiF. LiF was
chosen for three reasons. First, the F-center electron
spin resonance hyperfine structure has been resolved in
LiF.!'® Secondly, we need compute only £.* because
E.direle is negligible for Li nuclei and less than 109,
for F nuclei. Finally, LiF has the advantage that
relatively few free ion atomic orbitals need be con-
sidered and that the necessary data on these orbitals
is available.

Following the conventional procedure, we shall actu-
ally calculate | ¢.(a)|?, which is equivalent to calcu-
lating E.5. Furthermore, in calculating | ¢,(a)|? for a
given nucleus, it is necessary to include in ¢, only ¢y,
and those s state orbitals ¢; which are centered on a.
It is shown in the Appendix that when ; is an s func-
tion, the overlap integral (i|#) can be written in the
form

(i]n)=Bap[a(@)]. (33)

Combining (52) and (53) gives

[en(@]1= 1= X Bi@) (@) /

(1—"§<nri>2)=c,,t¢,.<a>|2, (54)

1=

where 7(a) symbolizes those orbitals centered on a. It
will be seen that G, is an amplifying factor which will
give | p.(a)|? the correct order of magnitude. | gn(e)|?
is approximately proportional to |, (e)|2. Any attempt
to calculate highly accurate values for the hyperfine
interaction energy in F centers will, therefore, require
a more accurate calculation of ¥, and an investigation
of the question of lattice distortion which could have a
marked effect on ¥, at a given nucleus.
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TaBLE IX. Theoretical and experimental hyperfine
structure results (Hartree atomic units).

Exp Theoretical
: Gourary and Adrian Dexter Krumhansl
Substance  Ion lol2 E2E lel? leol? el?
LiF Alkali  0.023 0.00112  0.064 0.073
Halide 0.0031 0.00012 0.042 o
NaF Alkali  0.087 0.00071 cee cee 0.213
NaCl Alkali  0.059 0.00037 0.100 o
KCl Alkali  0.104 0.00026 cee 0.140

Table IX gives the results for a Li nucleus nearest
the vacancy and for an F nucleus nearest the vacancy;
| @a(a)|? for all other nuclei is very much smaller. The
overlap integrals are calculated using Slater orbitals
for the ¢;; it turns out that if y; is a 1s function, then
Bai(a) is quite insensitive to the effective charge of
the orbital y;. The value of Yyr—2,(F) is obtained from
the Hartree orbital for the F~ jon.?* The experimental
results are those of Lord and Jen.!®

Results are also given for several other alkali halides.
Here also our |¢.(a)|? is used, but the amplifying
factors are obtained by the methods of Dexter?! and of
Krumhansl.?? The experimental values for NaF and
NaCl are due to Lord;? the values for KCI are taken
from the work of Kip et al.2

The agreement between the calculated and experi-
mental values is only fair. However, one can hardly
expect to get highly accurate results when evaluating
a rapidly varying Hamiltonian, such as 3C,Ms, and
using a wave function which is barely accurate enough
to give good results for the slowly varying energy
Hamiltonian. Moreover, our present ¥, is the result
of an approximate calculation which neglected exchange
insofar as the binding energy of the F-electron was
concerned. Nonetheless, these results show that inclu-
sion of the nonorthogonality terms results in a many-
fold amplification of the small term |¢.(a)|2 to give a
result which is of the correct order of magnitude.

6. SPECULATIONS ON THE EFFECTS OF
EXCHANGE AND OVERLAP

In a complete Hartree-Fock calculation, terms due to
exchange and overlap will appear. Some of these terms
involve many-body forces. Thus, for example, the
interaction of electrons 1 and 2 is modified by the
presence of electron 3. If we neglect the many-body
forces (this corresponds to representing the core elec-
trons by free ion wave functions), then it is possible to
set up the variational equations for the orthogonalized
wave function ¢,(r) directly, retaining exchange and
overlap terms. We have set up such a calculation for

2 D. R. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935).

2 D. L. Dexter, Phys. Rev. 93, 244 (1954).

2 J. A. Krumhansl, Phys. Rev. 93, 245 (1954).

2 N. W. Lord (private communication). Results for NaF will
appear shortly in The Physical Review.

% Kip, Kittel, Levy, and Portis, Phys. Rev. 91, 1066 (1953).
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F16. 3. (a) The energy functional ErS¥ for the ground state
(type ITI wave function) as a function of the variational parameter
£ (b) The energy change AE caused by the lattice distortion as
a function of the distortion parameter o.

LiF, and have estimated the effects of the orthogonal-
ization, the Hartree potential, and exchange. The sum
of these interactions with ion « is approximately
proportional to |¢¥a(a)|%. For the nearest neighbor
lithium ions, the interaction is repulsive. It tends,
therefore, to concentrate the wave function in the
vacancy. It is also likely that this effect would tend to
push the nearest neighbor cations outward slightly.
The transition energy is not likely to be affected greatly.

The above picture is borne out by the graphs of
Fig. 3, which give the variation of EpS¥ and of AE
with the variational parameters. These curves are
remarkably flat, and consequently the values of the
variational parameters may be changed somewhat by
the exchange and overlap interactions. It is comforting,
therefore, to know that this interaction is likely to
push the electron into the vacancy, not out of it. Thus
our assumption of zero polarization is not likely to be
upset. The predicted oscillator strengths and hyperfine
energies will probably decrease, leading to somewhat
better agreement with experiment.

7. DISCUSSION

The calculation of the wave functions and energy
levels reported in this paper differs from previous work
on this subject!®?® primarily in the following character-
istic features. First, we use the actual potential of a
point ion lattice, not a smoothed effective potential.

% J. H. Simpson, Proc. Roy. Soc. (London) A197, 269 (1949).
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Secondly, the electronic polarization energy is computed
by a self-consistent method, which takes advantage of
the screening effects of the F-center electron. Thirdly,
the lattice distortion is computed by permitting only
six nearest neighbor ions to displace, and then treating
their displacement in detail.

The first two features represent a definite improve-
ment. Thus, the group theoretical treatment of the
lattice potential not only gives a clearer picture of the
potential in the F center, but it is easily generalizable
to certain other color centers. It is, of course, simply a
generalization of Bethe’s theory of the crystalline
potential to the case where a power series expansion of
the potential about the center of the vacancy is inade-
quate because of the diffuse nature of the wave function,
and a more general expansion in spherical harmonics
must be used. The self-consistent estimate of the
polarization energy is easier to compute and it is readily
obtainable even for color centers of low symmetry.

The third feature is a mixed blessing. The presence
of the F center produces two effects. One is the displace-
ment of the nearest neighbor ions caused directly by
the combined effects of the missing core potential and
the strongly screened electric field of the F center. This
effect is well taken care of by our method. The other is
the resulting elastic dilatation. If our crystal were a
continuous, isotropic elastic medium, this latter radial
displacement would vary as r—2. Thus it would be
better to assume that the nearest neighbor ions move
radially a distance (oa), and that all other ions move a
distance Ca/p?, where p; is the distance from the ith
ion to the center of the vacancy and C is a parameter.
We have not done this because it seemed inconsistent
to tackle this aspect of the problem in such detail while
neglecting exchange and overlap effects.

The fact that the ions have been treated as point
charges and not as extended charge distributions turns
out to be of secondary importance. The reason for this
is that the F-center electron spends most of its time in
the region which is outside of the ionic cores (as defined
by the ionic radius). In fact, a simple geometrical
calculation shows that approximately § of the volume
of a sphere of radius @, centered at the center of the
vacancy, is “empty.” More accurate results for the
wave function and the energy can be obtained, of
course, by actually solving the variational equations
(with exchange and overlap) for the orthogonalized
trial function ¢,(r), but it is likely that the resulting
wave function will not differ substantially from the
¢.(r) which we have obtained in (52) by simply
orthogonalizing our approximate y,(r) to the core
orbitals. (Note added in proof.—Professor T. Nagamiya
informs us that T. Kojima is presently solving the
variational equations for ¢,(r) in LiF directly by a
method similar to the one outlined in the above para-
graph.)
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The method we have used for the calculation of the
hyperfine interaction differs from the approach of
Krumhansl?? and of Dexter,”® who have treated this
problem from the point of view of the band theory.
Our approach is based on a purely ionic model, of
course, and it does not depend on the validity of the
expansion of the F-center orbital in the form uo(r) f(r).2?
Numerically, however, the amplifying factors derived
from our theory are very close to those given by the
methods of Krumhansl and of Dexter, as can be seen
in Table IX.

Our method can be adapted to the treatment of
other electron-excess color centers, as well as to the
interstitial model of the F center. Its applicability to
centers possessing low symmetry, such as the M center,
is in fact one of its greatest assets.
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APPENDIX. EVALUATION OF OVERLAP INTEGRALS
INVOLVING THE F-ELECTRON ORBITAL

We shall develop formulas for the overlap integrals
(¢|n). Such integrals are needed for evaluating the
hyperfine interaction energy.

From the fact that the overlap charge distribution
Y. is appreciable only in the vicinity of the nucleus
a(7), one is led to expand the function ¥, about this
nucleus. This expansion is obtained by writing

71= (Far’+ 72— 27 a1va COSOar)}

Tal a1 2 'I
=r“|:1 - (—) C050u1+%(_) Sin"’@al-f— L
e e J

where 7, is the distance from the center of the vacancy
to the electron, 7,; is the distance from nucleus «a to
the electron, and 7, is the distance from the center of
the vacancy to nucleus a. One can now substitute the
above expression for r; in ¥, (r1), expand the various
functions in powers of (r,1/7.), and evaluate the
resulting series of one center integrals. This will lead
to an expansion for the overlap integral which is
asymptotic in the effective charge 6; of the wave
function ;. The first few terms in the series will
provide an adequate approximation, because 9, is large
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for the compact ion core orbitals. This procedure has
been carried out for the Type III ground-state wave
functions ¢, (I'1¢|r). The results are

201 (Hp4+-1)1 /27 \ }
(i|")=l//n(f‘1‘la)——~(i~)—( )

[P \&

gladaliom
‘ 1262 '

2 3 2
[H_n (p+3) (p+ )+...],
66°

when y; is the s function

22p52p+1

3
¢¢(1)=[ ]ral”"l exp(—67a1)

27 (2p)!
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and \
(31 =¥a(Ts#| )27 (p42) ![ ™ 155]
[n-l—l (*+8) (p+3) ]
— } SRR rasa
3 168
at1
[ +--- ], Ta>a
3ra

when ¢; is the p function
3(2)2p5er+t

2w (2p)!

If, when ¢; is an s function, one uses only the first term

in the asymptotic expansion for (¢|#), then
(i|n)=Bapu(a),

where B; is independent of ¢,.. This result was used in

Sec. 5.

3
¢e(1)=[ ] a1 €xp(— 87a1) COSBar.
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Photoconductivity in Lead Selenide : Theory of the Dependence of Sensitivity
on Film Thickness and Absorption Coefficients*
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Recently developed theoretical expressions for the responsivity
R, and noise of photoconductive films are examined. Assuming
that the time constant is independent of film thickness we express
R, and signal/noise (S/N) in terms of the absorption coefficient «
and thickness d. Using a curve of « »s A for lead selenide obtained
by Avery from crystal measurements, we calculate R, vs X for
films of different thicknesses. These curves indicate that the
photoconductive knee should lie near 5u for PbSe films of all
thicknesses. Experimentally, however, the position of the knee is
observed to be a function of film thickness, being near 3.3 in
thin films and Sg in thick films.

It is then shown from the theory that in very thin films the
responsivity is a direct measure of «. Accordingly the wavelength
dependence of « is calculated from responsivity data for thin
films; the magnitude is determined from the crystal absorption
data at Su. Curves of responsivity vs X for various film thicknesses
are computed, using the @ vs X curve derived from responsivity

INTRODUCTION

RECENT experimental study! of photoconductive
lead selenide films investigates the relationship of

* A portion of a dissertation submitted (by J.N.H.) to the
University of Maryland in partial fulfillment of the requirements
for the degree of Doctor of Philosophy. Part of this work was
reported at the 1955 Washington meeting of the American
Physical Society [ J. N. Humphrey, Phys. Rev. 99, 625(A) (1955) ].
(13515)N . Humphrey and W. W. Scanlon, Phys. Rev. 105, 469

data on thin films. These curves agree with the observed re-
sponsivity data; they show the shift of the knee from 3.3 to 5u
with increased film thickness, and show that no increase in re-
sponsivity can be obtained at any wavelength by increasing the
film thickness.

The dependence of signal/noise on X and d is calculated, using
the same a vs A curve, and found to be in qualitative agreement
with experiment. The curves show that for any given wavelength
the signal/noise is a maximum at a certain value of film thickness.
The maximum occurs at greater thicknesses for longer wave-
lengths. The dependence of S/N on d and « is given for any
material fitting the same general photoconductive model. The
same conclusion, that there is an optimum thickness for any
particular absorption coefficient, holds in this general case.

Finally, the derived « vs X curve is shown to be consistent with
recent theories of indirect optical transitions.

film thickness and method of sensitization to magnitude
and spectral dependence of sensitivity. Previous workers
had shown that at room temperature a knee in the
spectral sensitivity curve occurs near 3.3y in thin films,?
but near Su in thicker films.® The sensitivity of the

2 J. Starkiewicz, J. Opt. Soc. Am. 38, 481 (1948); T. S. Moss,
Proc. Phys. Soc. (London) B62, 741 (1949).

3 Gibson, Lawson, and Moss, Proc. Phys. Soc. (London) A64,
1054 (1951).



