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It is shown that under very general conditions there is a rigorous identity between the group velocity and
the velocity of energy transport in nonhomogeneous media with or without anomalous dispersion. The
medium is assumed nondissipative and the parameters such as density, rigidity, dielectric constant, etc. ,
vary from point to point but are independent of the Cartesian coordinate lying in the direction of the mode
propagation. This covers propagation in any type of wave guide, surface waves, propagation in stratified
media, etc. The identity is established for fluids, for isotropic and anisotropic solids with or without pre-
stress, and for electromagnetic waves. Anomalous dispersion is assumed to result from hidden coordinates
such as electron oscillators. A new variational formulation of field theory is introduced. An interesting appli-
cation is to wave propagation in an electron gas and it is shown that such wave propagation obeys the
relativistic Schrodinger equation for a mass particle.

1. INTRODUCTION

'HE purpose of the present analysis is to show that
there is a rigorous identity under very general

conditions between the group velocity as defined kine-
matically and the velocity of transport of energy. The
kinematic definition of group velocity uses the concept
of stationary phase, and the velocity of energy pro-
pagation is defined as the energy Qux divided by the
energy density. The general conditions under which the
identity of the two definitions is shown to be true are
of two types.

One condition is of a geometrical nature. We assume
that the parameters defining the heterogeneous system
are functions of only two Cartesian coordinates and
independent of the third, and we shall consider propaga-
tion modes along this third coordinate. Such systems
generally act as wave guides and as specific examples
we may cite the propagation of acoustic waves in a rod
or tube composed of concentric layers of fluid and solid,
seismic waves in a solid with continuous distribution
of density and rigidity depending on depth, all sorts of
surface waves, and analogous systems for electromag-
netic waves with layered dielectric or perfectly con-
ducting materials.

The other conditions are of a physical nature. We
assume that there is no change in entropy, i.e., no
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dissipation or scattering. We include the case of
anomalous dispersion, i.e., those for which the pa-
rameters such as the elastic or dielectric constant are
functions of the frequency, provided the macroscopic
eGect may be represented by the dynamical behavior
of certain hidden degrees of freedom such as the motion
of undamped electron oscillators continuously dis-
tributed. The radiation and Coulomb interaction of the
electrons are taken into account but their distance
compared to the wavelength is assumed small enough
so that scattering is negligible.

Under those conditions we will show that the identity
of the group velocity and the velocity of propagation
of energy is quite rigorous and general for heterogeneous
media with frequency-dependent parameters, i.e., for
cases where the dispersion of the propagation modes is
both geometrical and anomalous in origin.

The general procedure to establish this identity is
outlined in Sec. 2. It is shown in Sec. 3 how it can be
applied to modes of propagation in a fluid. The purpose
of treating first such a simple example is to clarify the
procedure. The theorem is then extended in Sec. 4 to
elastic waves in heterogeneous solids, including the most
general case of anisotropy. Wave propagation in an
elastic continuum which is in an initial state of pre-
stress is considered in Sec. 5. The state of pre-stress may
be heterogeneous under the same conditions as the
physical parameters, i.e., it must be independent of the
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coordinate lying along the propagating mode. A par-
ticular example of this is that of a gas such as the
atmosphere. This also applies to surface gravity waves
in an incompressible Quid where the identity of group
velocity and energy transport is well known. ' The
theorem is extended in Sec. 6 to the case of anomalous
dispersion of elastic waves and the proof is illustrated
on the simple model of a string under tension coupled
elastically to another lying alongside without tension.
It is found that such a model exhibits all the features of
anomalous dispersion in the most general cases, in-

cluding that of electromagnetic waves. Although the
example is formulated for only one resonant frequency,
the proof is clearly valid for any number of such fre-
quencies. It is pointed out that for the theorem to
apply to the case of anomalous dispersion it is essen-
tial to include the energy of all the hidden degrees
of freedom in the definition of the energy density.
Finally, it is shown in Sec. 7 how the theorem ex-
tends to electromagnetic waves in heterogeneous sys-
tems with or without anomalous dispersion. The
variation of dielectric constant with frequency is as-
sumed to result from the motion of electric charges
as harmonic oscillators. Coulomb interaction and radia-
tion due to the motion of the charges are taken into
account. An interesting application is the particular
case of waves propagating in an electron gas or plasma.
These plane waves are found to satisfy the relativistic
Schrodinger equation and to behave as de Broglie
waves for mass particles. The frequency of the plasma
oscillations corresponds to the frequency of the rest
mass of the particle. The variational formulation of the
field problem which we have introduced is diferent
from the current one in field theory and appears to be
of physical significance beyond the mere formalism.

The relation between the transport of energy and the
group velocity was pointed out simultaneously by
Reynolds' and Lord Rayleigh. ' In the case of propaga-
tion of electromagnetic waves in a homogeneous
medium this relation was the object of a detailed in-
vestigation by Brillouin, ' ' who showed that the iden-
tity between group velocity and the velocity of transport
of energy holds for media with anomalous dispersion in
the frequency range where dissipation is negligible.
More recently, Broer' has shown the identity to be
valid for waves in one-dimensional conservative sys-
tems obeying a certain type of propagation equation.

A. Sommerfeld, Mechanics of Deformable Bodies (Academic
Press, Inc. , New York, 1950), p. 189.

2 O. Reynolds, Papers on Mathematical and Physical Subj ects
(Cambridge University Press, Cambridge, 1901),Vol. 1, p. 198.

Lord Rayleigh, Scientific Papers (Cambridge University Press,
Cambridge, 1901), Vol. 1, p. 322.

4 L. Brillouin, Propagation des Ondes Electromagnetiques dans les
Milieux Materials (Congres International d'Electricite, Paris,
1932), Vol. II, Ser. 1, pp. 739—788.

~ L. Brillouin, 5'ave Propagation in Periodic Structures (Dover
Publications, New York, 1946).

L. Brillouin and M. Parodi, Propagation des Ondes dans les
Milieux Periodiques (Masson and Dunod, Paris, 1956).

7 L. J. F. Broer, Appl. Sci. Research A2, 329 (1951).

The treatment however does not apply to inhomogene-
ous or discontinuous media. With respect to anomalous
dispersion it is restricted by the type of propagation
equation which is assumed. The present analysis
generalizes Brillouin's and Broer's results to nonhomo-
geneous media of the general class defined above for
both elastic and electromagnetic waves. It furthermore
establishes that for any type of anomalous dispersion
due to hidden coordinates the identity is rigorous
provided there is no dissipation.

An important application of the identity of group
velocity and the velocity of propagation of energy has
been suggested by Tolstoy'' with reference to the
numerical calculation of the group velocity. He points
out that if the amplitude of a mode of propagation is
known the energy Aux and energy density may be easily
calculated, thereby giving directly the value of the
group velocity and avoiding the usual rather inaccurate
process of calculating derivatives of the phase velocity
plotted against frequency. The present theorems es-
tablish the validity of the procedure in a wide varity
of cases.

For harmonic motion of angular frequency co Lagrange's
equations are written

8 V/Bq, = cu'8 T/Bq;, (2.2)

where T is the function T in which j; is replaced by q;.
These equations are mathematically identical with the
extremum condition

(2.3)

for all possible variations 6q; under the constraint

T= const. (2.4)

If we multiply Eq. (2.2) by q, and then add them to-
gether, we find that for any characteristic solution of
(2.2) we have

cu„'= V„/T, (2 ~)

where V„, T„and co„are values corresponding to a
characteristic solution. If we now vary the coordinates

q„, maintaining T constant but at the same time varying
also the coeKcients a... we may write

Ru„'= (6 V +5,V ,)/T, .

I. Tolstoy, J. Acoust. Soc. 27, 897 (1955).'I. Tolstoy, J. Acoust. Soc. 28, 1182 (1956).

(2.())

2. OUTLINE OF THE GENERAL METHOD

Let us reformulate a general and well-known principle
of eigenvalue perturbations. Consider a dynamical sys-
tem defined by two positive definite forms V and T'
defining the potential and kinetic energies, respectively,
in terms of general coordinates q. We write

2V=Q a,,q;q, ,
(2.1)

2T'=P m;, q, q, .
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(2.7)
The average time integral of the product is

4)„'=6,V„/T„.

where 8 and 8, indicate variations due to a,; and q;, tion of time are'
respectively. However, because of (2.3) the variation
6,V„vanishes, we derive (2.14)

The variation of the eigenvalue depends only on that
of the coefFicients a;;. This is the fundamental property
which will be used hereafter in evaluating the group
velocity. If the coe%cients a;, depend on a single pa-
rameter k, we may write (2.7) as

p27l /Q)

sgs2d& =
4, (ZgZ2*+Z, Z,*)

P = ,' Re(Z(Z—2").

(2.15)

(2.16)

1 dV

dk 2(u„T„dk

From (2.5) we may also write

E=cu 'T„+V„=2~ 'T

This represents the total energy stored in the oscilla-
tion. Hence (2.8) becomes

des„m„d V„

dk E dk
(2.10)

This is the basic formula we shall apply in the analysis
below. We shall consider a certain mode of wave pro-
pagation as giving rise to a standing wave pattern de-

pending on the wave number k as a parameter. We
shall omit the subscript e. The group velocity associated
with the particular mode is

d~ co dV

dk E dk
(2.11)

Y,g G/E, ——(2.12)

where G is the energy Aux across a fixed plane per unit
time. As we can see by comparison with (2.11), we

shall have to prove that the energy Aux is equal to

We propose to show in the following section that the

group velocity is equal to the energy Aux G divided by
an energy density E of the wave. We shall identify E
with the energy density per unit distance and give a
proof that in all cases considered the group velocity
is given by

We shall apply this expression repeatedly in evaluating
the energy flux.

u&=u&'(y, s) sinkx,

u2= u2 (y,s) coskx,

u&= u3'(y, s) coskx.

(3.1)

These are all real quantities. The problem is thus re-
duced to that of a vibrating slab of Quid lying between
rigid plane boundaries parallel to the yz plane and inter-
secting the x axis at x=0, x=~/k. The restraint that
the mode is sinusoidal along x reduces the originally
three-dimensional problem to a two-dimensional one in
the yz plane. The boundary conditions in this plane are
of course determined by the original problem. These
may be on finite boundaries or at infinity.

The hydrostatic stress (negative pressure) is

(3.2)
with

au3 (e= + + =
I

ku&'+ + I
coskx.

ax ay as E ay az )
The elastic energy density is

3. GROUP VELOCITY IN A COMPRESSIBLE FLUID

We shall first consider the case of a compressible
fluid. The bulk modulus X(y,s) and mass density p(y, s)
are assumed independent of x. Wave modes of ampli-
tudes proportional to exp[+ikx+uA] are propagated
in this system with a dispersive phase velocity a= co/k.
Two trains of waves propagating in opposite directions
produce a standing wave pattern. Omitting the time
factor, exp(icvt), the displacement components in the
x, y, z directions are

G= cod V/dk. (2.13) lV = —', o-e= —,'P e'. (3 3)

Also, we shall have to verify that T is independent of

k; otherwise expression (2.8) would not be valid.
In the evaluation of the energy Aux we shall also

need a well-known expression for the average value of
the product of two quantities varying sinusoidally in

time with the same frequency and represented by two

complex vectors. If the two representative vectors are

g~ and Z2, the corresponding real quantities g,s a func-

Its average value along x is

k ~'"'" / au2' aug'
l
'

W.=— Wdx=-', Zj' ku, '+ +
~

. (3.C)
2~ „E ay as)

The average total elastic energy of the slab per unit

' Throughout the paper the symbol * indicates the complex
conjugate and Re "the real part of."
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thickness is

V = ~ W.

dydee. Introducing the stress a =Xe and forming V from
(3.5), we obtain

(3.5)
dV f' flan

(u—&a* u&*—o)dyCh.
dk

(3.15)We see that U is effectively a function of k. We also
verify that T which corresponds to the kinetic energy
is independent of k. Hy averaging the kinetic energy
along x, we find a value of T per unit length:

1
T= I ~& (—u++ u&"+uP)

dydee.

4a J

The integrand is the product of two complex quan-
tities. If we refer to expression (2.15), we see that it
represents the time average of the product of the stress

(3 6)
o. by the fluid velocity i~u&, in the x direction. In other
words, the quantity

G =cod V/dk (3.16)
The problem of determining the modes of propagation
is an eigenvalue problem expressed by the condition
that V is stationary, i.e.,

6V=O (3.7)

for T=const. We may therefore proceed exactly as
outlined in the previous section. The parameter k

appears in the coe%cients of U. Following the general
outline in Sec. 2, we must evaluate

with

dV p )dW.

dlV, ( Bug' Bu3')
=~Aug

i kuy+ +
dk 4 By Bs )

(3.8)

(3.9)

In order to relate this expression to the energy flux,
it is convenient to express it in a di6erent form as
follows.

Instead of real displacements as given by (3.1), we
introduce the complex amplitude fields corresponding to
the wave propagation in the negative and positive x
direction. They are respectively:

u, = U;(y, s) exp(ikx),

u,*=U,*(y,s) exp( ikx)— (3.10)

e= ikUg+
aU2 aU, -

+ exp (ikx) (3.11)

and

Multiplying these expressions by the time factor
exp(idiot) shows that they represent waves moving in

opposite directions. The standing wave pattern of
(3.1) is there represented by -,'(u, +u;*). From (3.2)
and (3.3), we may write

in (3.15) represents the energy flowing per unit time
across a plane perpendicular to the x axis. Hence we
have established that for the present case the group
velocity is given by relation (2.12).

With reference to the sign of the group velocity as
calculated from des(dk, it should be noted that it is
ambiguous, since only co2 is determined as a function of
k'

~ However, once the sign of the group velocity is
chosen, that of the phase velocity, which can be posi-
tive or negative, is determined, unless the group
velocity is zero. This latter case corresponds to standing
waves which must be excited through local disturbances
since energy input cannot occur through propagation.

with

1 (Bu; Bu, )+
2 Egx;

(4.1)

(4.2)

4. GROUP VELOCITY IN THE ELASTIC SOLID

Next consider an elastic solid with mass density
p(y, s) and elastic moduli 'A(y, s) and u(y, s), both inde-
pendent of x. The compressible fluid is a particular case
of the present one since it corresponds to an isotropic
medium with vanishing shear modulus. Any combined
fluid solid system such as a fluid in a pipe or a layer of
fluid on an elastic medium, etc. , fall in the present case.
It is convenient to denote the coordinates xyz by xIx2x3,
respectively.

The displacement field of the solid, as in the case of
the fluid, is represented by the complex vector u, given
in (3.10). This vector and its complex conjugate repre-
sent waves propagating in opposite directions. The cor-
responding complex strain components and stresses are

W = —,'X (e+e*)'.

The average along x is

(3.12) e;,.

The elastic potential energy density when u, is real is

~2n/k

W, =— —,
' X (e+e~)'dx = ~Ace*,

2n~p
(3.13)

W=-', Q o,;e„;=@Q e,P+-,'Xe'—(4 3)

and we derive
dW

,'Xi$u, e* u—,*e5-
dk

(3.14) W=-,'p P(e,,+e,,*)'1—',X(e+e*)'-. (4.4)

When u; is complex, the energy density of the standing
wave pattern must be written
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~2'/Ie

W, =—
) Wdxi ———2't«P e„e;,*+«Xee*.

We derive for the average value along x~. The elastic moduli and the mass density are assumed to
be functions of the two coordinates x2, x3, only. A wave
propagating in the medium is thus described again by
the complex vector u;. In this case the elastic energy
density of the standing wave pattern is

The invariant U is then obtained by the surface integral
(3.5), where W, is expressed by (4.5). The value of T is
the same as for the fluid, i.e., is given by (3.6) and is
independent of k. We must now evaluate dW, /dk.

We note that e is given by (3.11) and that

8
W=-', C,;"" (u„+u„*) (u;+u;*)

~xv ~xj

We have in this case

(4.14)

eii ——ik Ui

exp�(ikxi),

eiz 2 (ikU2+BU1/zlxz) exp(ikxl),

e12 ——', (ik—U2+BU1/Bxz) exp(ikxi).

k
I

"" Bu„Bu,*

(4.6) W„=—
~

Wdxi = —,'C
27K p Bxv Bxj

+complex conjugate. (4.15)

We note that, from (3.10),

Bu;/itxi ikU, exp(ik——xi) =iku;,

Bu;/ilxz iI U;——/Bxz exp (ikxi),

Bu;/Bxz BU——,/Bxz exp (ikxi) .

(4.7)ellell +2e12e12 +2e13e12 (4.16)
Hence

These are the only components of e;, which contain k
as a coeflicient. That part of P,,e,,e,,* which contains
k is therefore

dW, /dk = zt«i (uieii*-ui*e»)+—2t«i (uze»* uz*e12)—

+ zt«i (uze,-z* uz*eiz—)+«Xi(uie* ui*e) —(4.8).

From (4.2) we see that this may be written

dW. /dk= ,'i Q, (u-, ai, * u, *o—i,) . (4.9)

Hence,

d W, ( Bu,* Bz«„
1«i( C-;,&'u„—C, i&" u,* [. (4.17)

dk & Bx; zlx„

The stress component o-»- is acting in the jth direction
on an element of surface perpendicular to the direction
of propagation xi. The product «i«o(u, a»* u, *a—»)
represents the average product of the stress 0-» by the
velocity muj, and hence the power input of this
component.

Therefore, we may write the total energy Aux across
the ys plane, as

C &'Bu*/Bx =C *&Bu*/B'x, =a„,*,

C;1""Bu„/Bx„=o, i.

We finally write

dIV, /dk = ,'i (u„o„i* u;*o—;1). — .

(4.18)

(4.19)

Denoting by o-,, the stress field associated with the dis-
placement u, , we derive from (4.11)

dV
G=«o =-«uo P( ,u, ,a—u; a) yde.

dk

This proves the formula (2.12) for the group velocity
in the isotropic solid.

These conclusions are easily extended to the aniso-
tropic solid.

In order to show this we must introduce a more com-
pact mathematical language. With the usual summation
convention, the stress is related to the strain by

S. WAVES IN AN ELASTIC CONTINUUM
UNDER PRE-STRESS

A state of pre-stress modifies the wave propagation. "
A general theory of elasticity for a body under
initial stress was developed by Biot." " The state of
initial stress is denoted by S,, A perturbation produces
an incremental stress defined by the symmetric tensor
t;, . This is not a stress in the usual sense since it refers
to areas as measured immediately before incremental
deformation. It is related to the incremental strain by
the same relation (4.11) as above:

(4.11)a;j=C,j Bug/zlx . p

In this expression u, is the displacement field. There are
twenty-one distinct elastic moduli satisfying the sym-
metry relations

Again it is seen that &odW, /dk is the power input of the

(4 10) stress acting on the plane xi=const. Hence relation
(2.13) is verified and therefore also expression (2.12)
for the group velocity.

The strain energy density is

ij pv ~ (4.12) t,,=C,,""zlu„/Bxy)

with the same properties (4.12) for C;,&".

(5.1)

BQ~ BQ,
W =-'C;,I"" (4.13)

"M. A. Biot, J. Appl. Phys. 2, 522 (1940)."M. A. Biot, Phil. Mag. 27, 468 (1939).
"M. A. Biot, Z. angew. Math. Mech, 20, 89 (1940).
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1 (zlu~ Bup)
co "=—

2 &ax„ax„)
'

1 (zlu~ Bu„)
+

2 E zlx„Bx„)

(5.3)

It was shown" "that the theory of elasticity under pre-
stress may be treated by variational methods provided
the energy density be replaced by

BQ„BQ,
W= —,'C;,"" +2zS„„(co„'e„,+(u„'e„;+', co„'c-o,') (5..4)

This may also be written

Bu~ lou~ ( clu; rlu~ elu~ rlu„

Bx„Bx~ E 8x" 0x" Bx, Bx;

BQ„BQ; BQ, Bu„)
(5.5)

ax, ax„ax„ax;&

We consider a medium with elastic moduli C;,&" and
initial stress S„„,both functions only of the coordinates
xz, xz, and a wave mode of the type (3.10) propagating
in this medium. Expressions (5.4) and (5.5) for the
energy densities are valid for real displacements u, . In
order to express the energy of the standing wave pat-
tern in terms of the complex propagation field, we must
replace u; by —', (u;+u, *).In averaging the energy along
the coordinate xi, only those terms remain which con-
tain complex conjugate quantities. Hence

p2~tt Ie Buy 8
W.=— WCx, =-,'C;,'"

2~~0 Bxv Bxj

Bu; Bu; BQ„BQ„

~xv ~xi ~xi

Buy But', l3uy, Bug

Bxg Bxv BXq t9xv

The incremental force acting at a boundary per unit
initial area was found to be

AF„=(t;„+S,~,"+', S,-.e„, ,'—S„—.e„ja;, (5.2)

where a, is the unit normal to the initial boundary and

By referring to relation (5.2) for the case a;= (1,0,0),
i.e., for a boundary parallel to the x&x3 plane, we may
write

dlV, /dk= ',i[a-„AF„* u„—*hF„j. (5.8)

The quantity codW, /dk is the power input per unit
area in the initial x2x3 plane of the incremental force
DF„acting on this plane. Hence again we have demon-
strated the formula (2.12) for the group velocity.

This applies, of course, not only to elastic solids but
to waves in a gas under initial distributed pressure such
as waves propagating in a horizontal direction in the
atmosphere, and also to the limiting case where the
waves are due to the initial stress alone such as surface
waves in the ocean.

6. ANOMALOUS DISPERSION

Fd uy/dx r (uz uz)+M pyuy= 0,

r (u, —u.)+co'p, u, =0,
(6.1)

where r is an elastic coupling coefficient between the
strings. Eliminating u2, we find

d'uz pz f 1
F + 1

(
(uzpguz ——0,

dx pz (1 M /Mo )
(6.2)

with ceo'-——r/pz. This shows that the string behaves as
if its mass p& varied with the frequency as the bracketed
factor in the equation. Consider standing waves of
amplitude distribution

We have not introduced any dependence of the
material constants A, p, p on the frequency. Such a de-

pendence introduces what is known as anomalous dis-

persion. The previous treatment may be extended to
this case when the anomalous dispersion is a conse-

quence of the existence of hidden degrees of freedom
without dissipation. This is best illustrated by a simple
example.

Consider a string under tension F and of mass density

p& per unit length along its coordinate x. It is coupled
elastically to another parallel string without tension,
of mass density p& per unit length. The deAections u&

and u& of the strings for harmonic motion satisfy the
equations

+complex conjugate. (5.6)

We must also evaluate the derivative of this expression
with respect to k. We find

QI = uy slnkx,

Substitution in (6.2) gives

ug ——ug' sinkx. (6.3)

dl~, /dk = ', zu„t„,*—
BQ,

+z6z 3Sz„u,
Xv

pz f1'
Fk'= 1,'

~ ~
cg'pz

pz E1 co /co
(6.4)

(8 „uB ]u) rlu~
S„„zz„( + —

)
—S„zu„"(ax, ax„)

"
ax, There is a cutoff for a range of frequencies in the vi-

cinity of ~0 for which the bracket is negative. The phase
+complex conjugate. (5.7) velocity is co/k and the group velocity v, is found by
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calculating da&/dk from the above relation. We find'4 coordinates. With a vector potential A defined by

8M
'Vg =

dk (uL pi+ p2/(1 —(u'/(oo')']
(6.5)

E= —(ia)/c) A,

H= curlA,
(7.2)

We may, however, proceed as we have done in the
previous sections. The value of V is found by averaging
the value of the elastic energy per unit length. It is
given by

Xfaxwell's Eqs. (7.1) reduce to

curl curlA —K(~2/c2)A=O.

We introduce the two invariants

(7.3)

k t'" t'dui)'
I +r(» —»)' d'

( dx)
= -', [Fk2ui'2+r (u, —u2)2].

(6.6)

1
V =— ' (curlA)'dr,

8~J J J

1 p p pE
T=— —A'd .8JJJg2

(7.4)

(7.5)

2T= 2(piui +p2u2 ). (6.7)

The value of T is found by averaging the total kinetic
energy per unit length. We find These quantities correspond to the magnetic and elec-

tric energies. It is easily verified that Eq. (7.3) is
equivalent to the extremum principle,

Proceeding as before, we evaluate
8 V —co'6T =0, (7.6)

dV/dk= 'Fkui"- (6.8)

It is easily seen that —', coFku&" is the power input G
into the string, since Fku&' is the normal component of
the string tension and eau&' the normal velocity. Hence

cudV/dk=G.

Applying (2.11), we finally get

rg G/(2(u2T) = G——/E

(6.9)

(6.10)

The group velocity is again the power input divided by
the energy density E. It is important to point out that
the energy density in this case must include the energy
of both strings, i.e., if we consider the string under
tension as the observed system the energy must also
include that of the "hidden" degree of freedom repre-
sented by the coupled string. It easily verified that
expression (6.10) for the group velocity gives the same
value as (6.5) derived from the kinematic definition.

The procedure illustrated here on a simple example
is obviously quite a general one and may be used to
prove the identity of the kinematic and energy defini-

tion of the group velocity whenever the anomalous
dispersion is caused by nondissipative hidden degrees
of freedom in any number.

curl E= —(i&a/c) H,

curlH=i (Kco/c) E
(7.1)

We assume first that the dielectric constant K is inde-

pendent of the frequency and a function only of the

'4 Note that the group velocity is zero at the lower cut-off fre-
quency coo while it does not vanish at the upper cuto6.

'7. GROUP VELOCITY OF ELECTROMAGNETIC WAVES

In the absence of charge and current, Maxwell's

equations for periodic phenomena proportional to the
factor exp(iu&t) are

for all arbitrary variations 8A which vanish at the
boundary. This is also equivalent to the bound
extremum

(7.7)

This constitutes a variational formulation of the eigen-
value problem for any standing waves. We may, there-
fore, apply the general considerations of Sec. 1 to this
case.

We now consider a dielectric system such that K is
function only of x2 and x3. The standing waves are
represented by a vector potential —,'(A+A*), where

A= a(x2x2) exp(ikxi) (7.8)

represents a mode of propagation in the negative direc-
tion of x&. In analogy with the mechanical problem, we

average the energy density in the xj direction. We may
write a relation such as (3.5) with

II
(2 x //. . ) 1

IV,=— —Lcurl (A+ A*)]2dx, .
2~~0 8~

This may be written

(7.9)

TV = curlA curlA*.
i6x

(7.10)

curliA=
I I

exp(ikxi),
(ax2 ax,,i

(Bai
curl, A =

(

—ika, [ exp (ikx, ),
(ax,

( claiq
curl, A=

~
ika, —

~
exp(ikx, ).

ax, i

(7.11)

Components of a are denoted by a; and those of A by
3;.The components of curlA are:
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As before, we must evaluate dW, /dk. This gives

d8'
=—LA 2 curl~A* —A 3 curl~A*j

dk 8~
+complex conjugate.

This can also be written

system, assumed to behave as a continuum, for the
general case where the two constants p and coo are
functions of two coordinates x2, x3. The propagation is
considered along x&. The first and third equations are

(7 ]2) satisfied by introducing a vector potential following
Eqs. (7.2). This leads to the two equations

dW /dk = —(c/4~) Re-,'[E&(H*]~. (7.13)

The subscript 1 denotes the x~ component of the
Poynting vector.

This represents the average value of the energy Aux
in the negative x~ direction. "Hence

p p—curl curlA+ A —-pu =0,
4m 4~c' c

P
nm(p'-+co(p) u+-pA =0.

c

(7.16)

Eliminating u, we find
dV p ldll'

dydee= G
dk

(7.14) p Q7

curl curl A+—1+ A =0.
c p +Quip

(7.17)

represents the energy Row across a plane perpendicular
to the axis. This establishes relation (2.12) for the
group velocity.

Note that we have assumed the dielectric constant E
to be a function of two coordinates so that the above
consideration applies to any layered material. They
may be concentric layers or plane layers of any arbi-
trary distribution. It is also easily seen that the theorem
is applicable if some of the layers are perfect conductors.

Let us now extend this to the case where the di-
electric constant is not only a function of the coordinates
but also of the frequency, i.e., to the case of anomalous
dispersion. We shall, however, assume as above that the
anomalous dispersion arises from nondissipative hidden
coordinates. Such is the case, for instance, if the wave
propagates in a medium where electrons are continu-
ously distributed as harmonic oscillators. It is assumed
that they are attached to fixed positive charges of equal
magnitude and that the charges of opposite sign coincide
in the undisturbed state. The displacement of the elec-
trons from their equilibrium is elastically restrained
and the application of an electric field produces a
dipole. The natural frequency of an isolated electron
oscillator of mass m is denoted by coo. If n is the number
of electrons per unit volume in the undisturbed state,
then p= —ne is the electrical charge density in this
initial state. We denote the electron displacement field

by u. Because of the appearance of first-order time
derivatives, it is convenient to use the time differential
operator p=8/Bt or far Equation. s for the coupled

The constant ~„' is

(o„'=4~me'/m, (7.18)

v here ~~ represents the "plasma" frequency of an elec-
tron gas of charge density p.""Note that Eq. (7.17)
does not represent a simple eigenvalue problem since
we are dealing with a nonhomogeneous medium, i.e. ,

the equivalent dielectric constant is at the same time a
function of the frequency and of the two coordinates
x2, x3. The interaction of matter and radiation in equa-
tions (7.16) is represented by the antisymmetric coup-
ling terms —(p/c)pu and (p/c)pA of the gyrostatic
type. However, we may represent the equations by
another equivalent system using another vector g as
auxiliary variable. We write

p ~n
curl curlA+ —A+ (A —g) = 0,

c' c'
(7.19)

p ~u
(A —g) =0.

C2 coo~ C2

By eliminating g between these equations, we obtain
Eq. (7.17). The eigenvalues are, therefore, the same as
for the original Eqs. (7.16). The value of g is related to
u and, by comparing the second equations of each sys-
tem, we find

u= p(e/mccoo2) g. (7.20)

mechanical and electromagnetic fields are The system (7.19) contains only p' and represents
standing waves of real amplitude A and g, all in phase.

curlE = —(p/c) H, Relation (7.20) shows that u is 90' out of phase with g

curlH = (p/c) E+ (4~/c) ppu, as it should be. There obviously is a group of linear

divH= 0, transformations of A and u which yields the same eigen-
value of ~. The particular combination A, ( is chosen

'Bts(p +Mp )u= pE. because it suits our purpose here. Note that the trans-
~ ~

We shall consider the modes of propagation in such a

'~ J. A. Stratton, E/ectromagnetic Theory (McGraw-Hill Book
Company, New York, 1939), p. 137.

' I. Langmuir, Phys. Rev. 33, 954 (1929).
'7 L. Spitzer, Physics of Fully ionized Gases (Interscience Pub-

lishers, Inc. , New York, 1956).
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It is readily seen that the variational form of Eqs.
(7.19) is obtained as in the previous problems by putting

1 CO@

V =—' ' (curlA)'+ (A —g)' dr&

(7.21)

T=—
~

"—
(

A'+
1

t
t 1t'

82r ~ ~ c'0 4pp2 )

Then, proceeding exactly as for (7.14), it is shown that
4pd V/dk is the energy fiux. However, in the present case
we must also show that 2''T is the energy density.
From the general properties outlined in Sec. 2, we write
@AT= V; hence

curl curlA+ (1/c2) (p +4p )A=0. (7.25)

The vector A may be separated into a solenoidal part
and a gradient. The first represents wave propagation
and the second the plasma oscillations.

Consideration of a plane wave with A parallel to one
axis and proportional to exp(ikx+i4pt) leads to the
relation:

persion by adding additional features such as lateral
elastic restraint.

Another interesting point is brought out by consider-
ing the particular case of wave propagation in an elec-
tron gas. This case is obtained by canceling the elastic
restraint of the electrons, i.e., putting (a)p=0. Equation
(7.19) for the propagation then becomes

24p2T= V+p&2T. (7.22) c2k2+~2 ~ 2
u ' (7.26)

Now if we consider only absolute amplitudes, we may
write (7.18) as

g= (mc4pp2/e(p) u. (7.23)

Substituting this value into V and T in Eq. (7.21) and
using (7.19), we find

1 t'
I f CO

V+&u'T= '—(curlA)'+ —A' dr8J&3 C2

1+- Nm( +4p2p'4) pu'dr (7.24).
2

The first line is the energy of the electromagnetic field
and the second line the mechanical energy stored in
the oscillators. Expression (2.12) for the group velocity
is thereby established.

It is of considerable interest to compare Eqs. (7.17)
and (7.19) with Eqs. (6.1) and (6.2) for the propagation
of waves in the string with dispersion. In fact, for
propagation in a homogeneous medium they become
identical. This indicates that the propagation in the
string constitutes a model for a very general class of
dispersive phenomena. In fact, the analogy may be
extended easily much further to include propagation in
a medium with boundaries, i.e., with geometric dis-

For infinite wavelength, k=0, the frequency becomes
equal to the plasma frequency co~. The propagation is
dispersive. Differentiating (7.26), we find that the
phase and group velocities v~ and v, satisfy the relation

&y&g=C .2 (7.27)

This is the same relation as that satisfied in a perfect
wave guide for modes of propagation of reQected waves.
It is also the same as for de Broglie waves of the free
mass particle. As in the latter case, Eq. (7.27) is also
a direct consequence of the Lorentz transformation.
This points to an analogy between plane waves in an
electron gas and the wave mechanical behavior of mass
particles. Putting p2= —p&2= —42r m2c4/k2 and
= 4&r2mp2c4/h2, Eq. (7.25) becomes the Schrodinger
equation for a particle of relativistic mass m and rest
mass mp. The plasma frequency ~~ is nothing but the
characteristic frequency associated with the rest mass
mp. The analogy may be carried out much further and
may very possibly have deeper implications, but we
shall not elaborate on it beyond these few remarks,
since it reaches beyond the scope of the present article.
It is also of interest to point out that the mechanical
model of the string under tension with lateral elastic
restraint analyzed in Sec. 6 is a model for the relativistic
Schrodinger equation of the mass particle.


