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Pion Production in Pion-Nucleon Scattering*
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The cross section for the production of one additional pion in a pion-nucleon scattering is calculated using
the Chew-Low theory of P-wave pion-nucleon scattering. The transition matrix element for the scattering of
one meson into two mesons is defined in terms of exact eigenstates of the total Hamiltonian and an approxi-
mate expression is derived which expresses the one- to two-meson matrix element as a product of an elastic
scattering matrix element and a meson-emission matrix element. Experimental elastic scattering phase shifts
are used in calculating the two-meson cross section. The results of this calculation are used to estimate the
effect of two-meson states on elastic scattering. The contribution to the effective range for elastic pion-
nucleon scattering is small. Cross sections are also obtained for all possible two-meson charge states from
either a m-+ or a m= meson incident on a proton. Comparison is made with experiment and the recent theo-
retical work of Barshay.

I. INTRODUCTION

'HE problem of elastic scattering of pions by a
nucleon has been approached recently by a new

method' ' which involves the use of exact eigenstates of
the total meson-nucleon Hamiltonian taken in the static
limit (fixed nucleon). In this paper this method, in the
form introduced by Wick for one-meson states, is used
to investigate the two-meson eigenstates of the Hamil-
tonian and to calculate the transition matrix for scat-
tering from a one-meson state to a two-meson state.
Barshay' has made a recent calculation similar to this
one using Low's method, but the results are quite
difI'erent from those obtained here because of de'erent
approximations introduced by Barshay in evaluating
the T matrix. Barshay introduces sums over two com-
plete sets of eigenstates and then makes the approxima-
tion of limiting one sum to include states with up to one
real meson and the other to include only states with no
real mesons (physical nucleon). The approximation is
also made by Barshay of neglecting the energy of one of
the outgoing mesons in certain energy denominators. In
the present paper the procedure used corresponds to
summing exactly one of Barshay's complete sets and
including only the physical nucleon states in the other
while all energy denominators are treated exactly.

II. TWO MESON EIGENSTATES

In the static limit the pion-nucleon Hamiltonian has
the form'

H= Ho Eo+Hr,
where

energy of a single nucleon zero,

Hr=ZA &A(o)&A+&A") "&A',

and
VA() ——i(47r)&(f()/)))(r k7A()(k)/(2(o)&.

+R),Ro
+ = [((R)t((» +o+X + ']/~~, (5)

which represents a state with two plane-wave mesons
produced by the two creation operators acting on the
eigenstate, 0'0, corresponding to a physical nucleon and
an (outgoing/incoming)-wave scattered part, )((+'. If
this form of the two-meson eigenstate were used in
matrix elements, however, the two creation operators
appearing in the first term would lead to two energy
denominators requiring expansions in two complete sets
of states. For this reason, it is better for most calcula-
tions to use a two-meson eigenstate of the form

Here aj, t and aj, are, respectively, creation and annihila-
tion operators for single, bare mesons, &o= ()('+k')', f(o)

is the unrenormalized coupling constant, e is the nucleon

spin vector, 7~ is the kth component of the nucleon
isotopic spin operator and () (k) is a cutoff function which

approaches zero for large momenta. In the notation used
here the meson quantum numbers are all described by a
single symbol (k) which includes the three components
of momentum and the isotopic spin.

A two-meson eigenstate corresponding to one meson
of type p& and one meson of type p& can be found from
the assumed form

Ho= + A ()At~)~), (2) @„„(+)=
t ()„t@„(+)+x(+)]/~2 (6)

Eo is a constant energy subtracted to make the self-
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where 4'»(+) is a one-meson eigenstate. Equations (5)
and (6) will be shown to represent identical states, but
the eAect of using the latter is to sum exactly one of the
expansions required by the use of (5) and condense the
resulting equations. Because of this, (6) will lead to a
simpler and more accurate result than (5) for the same
level of approximation.

The normalization of the eigenstates has been chosen
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[H,apt j=o&papt+V „"'
follows, and then

o& ]&t(+& — V„(o&@„(+1

Using the inverse of (H —o&, —o&,) gives

(9)

so that'

(+plp2 &+tlt'2 ) s (8plt18p242+8plko8pskl) q (7)

and then, in any sum over p, and ps, the sum can go over
all p, and ps without regard for the fact that 4'prpo&+&

and 4'~2~~'+' are the same state.
The &t&+& appearing in (6) can be determined in a

manner analogous to that used by Chew and Low. The
+»»'+' are solutions of the Schrodinger equation with

energy (o&&+&os), so that

[H (o&r+—(os) j4p& ps&+& =0, (8)

and substitution of (6) into (8) results in

LH (ot oosjg'+' = —LH —
o&&

—o&o]aptt% ptps

From the explicit form of the Hamiltonian, the commu-
tation relation

which follows from the commutation relation (9). Thus
either of the forms (10) or (11) can be used for the two-
meson eigenstates and, for the reasons already given,
(10) will be used in the evaluation of matrix elements.
The reduction of (10) to (11) also shows that the
symmetry between the two mesons is preserved by the
use of (10) even though this symmetry is not as ap-
parent as in (11).

It is of interest to note that the method used here can
be generalized to describe an eigenstate for any number
of mesons in terms of the eigenstate for one less meson.
The general result is

+„'+ = (n!) 'a—
p %.—p, +'

Vp (o&4o — (+& (14)
H —E„Hie

where 4„'+& is a state of n mesons of types p, . p„and
4o —p;'+& is a state with (n, 1) mesons o—f types p&

.p„
excluding type p, . The form (11)can also be generalized
to any number of mesons, resulting in

n

@.&~&=(N!)—1 gap;t
i=1

v2

H coy cog&z6
VpP% p.&+& (10)

n n

Vp*"' ll a p " +o, (»)
H —E~~ze '=1

for the two-meson eigenstate, where the (W)ie is
inserted to produce outgoing/incoming waves in g'+&.

The g'+' in (5) can be determined in a similar manner,
with the result:

1 1
+~i~2'+) =—~~it~~2t+0-

W2 H co] M2% z6

and repeated application of (12) and (13) should reduce
(14) to the form (15).

III. MESON PRODUCTION EQUATIONS

(16)Tt(P&P.) = (Opt p" ', Vt-'"&+o),

The transition matrix element for the process of one
meson of type k scattering into two mesons of types pt
and p2 ]s

X (V»"&apst+ Vpo'"apt')+o . (11)
and an equation for this can be derived using the form
of I&pr»& ' given by (10). This lea, ds to

Now (10) can be reduced to (11) if the one-meson
eigenstate appearing in (10) is written as

Tg„.(prpo) =—(aprt@ ps' ', Vo'"'+o)
v2

+„&+)=a„%0- @ (o)@,
H co &%z6

and use is made of the identity

(12)
Vpr&"0'ps' ' V&(ol@o

(FI o&r +o&sz e )
and using the identity

g
H —

(uA, &ze H —cog —cu„Wz~

results in

a„%o
——— V„&'»+o

FI+o&„
(17)

X a„1+Vp~o&, (13)
H MA&zt

The proof of (7) follows the method used by Wick to show the
orthogonality of the one-meson states given by (12), although the
proof here is more complicated. It is also possible in this way to
show explicitly that the two-meson eigenstates as given by either
(10) or (11) are orthogonal to the one-meson states.

1 f
1

Tt-(prps)= ——
I
+»' ' Vo'"

v2 E II+o&t

Vp (o&

+~ +ps' ' Vpr"& V,&o&eo
I

. (1S)
H o&t ros zE)'
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(V (o)@„(—) @ (+)) (qr (+) Vg(o)pro)

T~(pipo) = ——Q
n Erf, C0 y C02 26

Expanding in a complete set of eigenstates of the
Hamiltonian gives

In order to evaluate the first term on the right in (20),
the quantity aI,%'+2& ) has to be determined. This can be
done by making use of a complete set of eigenstates of
the Hamiltonian:

(Vi(o) typo( —i @ (+)) (@ (+) Vpt(o) t@o)
(19)

qr (—i(a~t@ (—) +po(—))

which, by using (14), becomes

where the complete set could be either outgoing- or
incoming-wave solutions but the %'„'+) are used because
the matrix elements of the form (Vpr'"'0'po' 'P„' ') that
appear can be reJated to T matrix elements with two
mesons in the final state. Since co~ does not appear in the
denominators in (19), the dependence of Tt (pipo) on the
energy of the initial state is a trivial one as was the case
for the elastic scattering T matrix.

The "crossing symmetry" pointed out by Gell-Mann
and Goldberger' and applied to the elastic-scattering T
matrix by Chew and I.ow can be seen in (19). This
symmetry is a consequence of the fact that, for any
given Feynman diagram representing meson-nucleon
interaction, there must also exist diagrams obtained by
interchanging any two meson lines. Inspection of the
form of (19) shows that, on the energy shell (&o&=&or

+oo2), it possesses the crossing symmetry with respect
to the incident meson and one outgoing meson and this
is reflected in the occurrence of the energy of only one
of the final mesons in the denominator of the "crossed"
term. The other crossing symmetries are not apparent
from the form of (19) because the two outgoing mesons
have not been treated identically. The complete sym-
metry would be more evident if the T matrix were
constructed from a two-meson eigenstate of the form
(11),' but this would not be as readily related to the
elastic scattering phase shifts.

Before (19) can be used as an equation for the meson-
production T matrix, the matrix elements of the form
(Vpi"%po' 'P„&+') which appear in the sum on the
right-hand side must be investigated and related to the
T matrix. For the ~2=0 terms, these matrix elements
reduce to the elastic-scattering T matrix which is
known, either from theory or experimental phase shifts.
For the ~z= 1 terms, the matrix elements have the form
(Vpi&'Kp2& &Pi.'+') and this will be related to the
meson-production T matrix.

An equation for (Vpt'o'+p&' 'Pz'+') can be obtained
by using (12) to expand +&'+'. Then

(Vpt'"+po& &Pi &+') = (Vpi&'%p2& ',ai%o)

i
Vpt(o)+p&( —) Vi "&4'o i. (20)

H id' ze )
7M. Gell-Mann and M. L. Goldberger, in Proceedings of the

Fourth A nnual Rochester Conference on Hi gh-E'nergy Physi cs
(University of Rochester Press, Rochester, 1954).

Substitution of (11) into (16) leads to the form of the meson-
production T matrix given by Barahay LEq. (10) of reference 47.

a&%'»t '=P 4„& ' ([(v+1)!]Wl„+i& ', 4'p' t)

(+.+~' ',+po' ') =-&.
,
o~~—,»,

and then

a.+p2'-' =~~»+o+Z +.'-'

(21)

&02 CO& Ert 26

Finally, applying closure,

a„+p2 —=!!i»+o— Vi' 4p, —. (22)
H +Co t.—roe+ z e

Using this result in (20) gives

(p'p (o)@ (—) @ (+))

1
—Vpi»~po —

~

Va'"
E. H+roi C02 ze

p pr(o)@po(—)

H Chic 2C

V, tot@o
~, (23)

and introducing the complete set of eigenstates, 4„&+',

1—(Vpr(oi+po( —) @ (+))
V2

i i=—Vptt8apo ——P
v2 ~2 n

(V~io) t+p, (—) + (+i) (+ (+i Vpt(oit+o)
X

+~+tea

(Vp (o)@,(—) @ (+)) (gr (+) V„io&@ )-

E~ Mp zt

where 4„+I,& t is a state with (ted+1) mesons as defined

by (14). States with different numbers of real mesons
will be orthogonal, and the one-meson eigenstates form
an orthonormal set so that
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The Vii in (24) is now in terms of the renormalized
coupling constant, i.e. , Ui i=(+o, V» +o) = (f/f ) Ui i' .
Comparison of (24) with (19) shows that on the energy
shell (ioo=coi+ioo) the right-hand sides are identical,
so that for a description of a real process either
(4'iipot ', Unto@'o) or (1/v2)(Vpi" 4'» ',4'i&+t) could be
taken as the T matrix. The sums in (19) and (24) are
not limited to the energy shell, however, so that the
behavior of (Vi»to'4»& ',0'&'+') off the energy shell is
also important, and here the delta function in (24) leads
to singular contributions. The delta function corre-
sponds to meson production with no change in the
incident meson and should not be included in the T
matrix. A nonsingular T matrix can be defined by

IV. APPROXIMATE T MATRIX

Keeping only the first four terms of (26) results in

1
(PP ITI&)=—$

v2

Ti(P2) Vi it Tpi(po) V~

obtained. Starting from (25), the meson-production T
matrix could be evaluated by expanding the final meson
eigenstate, +p2& '. This would result in t.he meson
production being described in terms of elastic scattering
at the incident energy. It was felt that the resonance in
the elastic scattering was more likely to be important
for the outgoing mesons and this reasoning led to the
procedure used here.

1 1
(popi I

T
I &)=—(V~i"'+no' 'pi, "+')——Upit~~u2, (25)

V2 v2
VpitTi, (po+) VkTpi(P2+)

(27)

and then, separating out the zero-meson and one-meson
terms from the sum in (24), the equation for the meson-
production T matrix becomes

—1 Tpi(P2) Vi Tg(p2) Vpit
+(popi I

T
I &)=

W2

«Tui (p2+) V~it Ti(pi+)

My, M +21C

(p »I T
I v)T»(c-+)

(PP ITIv)T (v+)

COq MP

+terms with &z) 1. (26)

The To(po+) in (26) is defined by Tk(p2+)
= (0 i 2'+&, Vi&'&No) and is closely related to TI, (P;), the
only difference being that T,(p,+) depends on e "sin8
instead of e" sinb.

There are additional terms which have the appearance
of one-meson terms. These come from singular two-
meson terms corresponding to a state with two incident
mesons, only one of which interacts with the nucleon.
The contribution of these terms should be included with
the one-meson terms in (24) and then, if contributions
from states with more than one real meson are neglected
(except for these singular terms), (24) becomes an
integral equation for the meson-production T matrix.
This equation is rather complicated and no attempt has
been made to solve it, the numerical results of this paper
being obtained from the first four terms of (24) which
constitute the inhomogeneous part of the integral
equation.

The procedure used in this section is not the only one

by which an equation for meson production could be

as an approximation to the meson-production T matrix.
The symbol S» means that the expression to the right is
to be symmetrized with respect to 1 and 2 Li.e., $»f(1,2)
=-', Lf(1,2)+f(2,1)]].The approximate expression (27)
has to be symmetrized explicitly because neglecting
higher order terms in the sum over states destroys the
inherent symmetry between the two outgoing mesons.

Equation (27) can be interpreted as representing two
modes of meson production. One, corresponding to the
first term in (27), is the production of one outgoing
meson followed by the scattering, o8 the energy shell, of
the incident meson into the other final meson. The other
mode, corresponding to the third term in (27), has the
scattering occurring before the production. The second
and fourth terms in (27) are a consequence of the
crossing symmetry of the T matrix and result from

crossing one of the outgoing-meson lines with the
incident-meson line in the first and third terms, re-

spectively. The physical reasonableness of the terms in

(27) and the fact that a large part of the meson-

production T matrix has been treated exactly by
relating it to the elastic-scattering T matrix, suggest
that the approximation of neglecting nonsingular "real
meson" terms in (24) does not distort the picture too
greatly. The approximation used here corresponds to
treating the scattering of the incident meson exactly and
using the Born approximation for the production of the
other meson. All f' terms for meson production are

correctly included in (27).
Comparison of Eq. (27) with the recent calculation by

Barshay LEq. (15) or (20) of Barshay] shows that
Barshay's result, aside from a factor of 1/v2 resulting

from diferent normalizations, is exactly twice the first
term of (27) and Barshay does not obtain the other
terms of (27). The second term of (27) vanishes for the

pure 2 state of isotopic spin (ir+ on protons) which

Barshay considers, but the rest of the discrepancy he-
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tween Barshay's results and those of this paper is a
consequence of the diferent approximations used by
Barshay to identify certain parts of the meson-produc-
tion T matrix with the elastic-scattering T matrix. For
example Barshay reduces the quantity Lthe third term
of Eq. (10) of Barshay)

2S12 P
6 im

to

(@ V~(o)+ (+))

y(@ (6) Vvi(o)g (~))(+ (~) Vvo(o)t+o)

(&.+»+~2) (E +~2)
(28)

( Vi Vvi'
2S)2l

coy

(co Vi.("e (—))(4 ' ' Vpi")(eo) ) Vvot
(29)

(02M q+(Oi

2S»l' +o, V3"'
H+(oi+(o2

V„(o)) V (o) t@
H+o)2 )

by limiting the sum over nz to zero-meson states and the
sum over e to zero- and one-meson states and neglecting
the (o2 in the first factor of the denominator of (28). The
factor in parentheses in (29) is then recognized as the
one-meson approximation to the "crossed" term of the
Chew-Low scattering matrix [T),(p,)]. This reduction
can be done more exactly by using closure to sum the
series in (28) and then noticing that

7,—+V3o"q and b, „~3q p. (32)

The projection operators defined by (31) and (32) are
exact and their application is not limited to the particu-
lar approximation used in this paper.

The elastic scattering T matrix appearing in (24) can
be expressed in terms of phase shifts:

expanded in terms of eigenstates of the two-meson final
state. This can be done by using projection operators for
scattering from a one-meson eigenstate of isotopic spin
and total angular momentum to a two-meson eigenstate.
The isotopic spin projection operators for the process of
one meson of type k scattering into two mesons of types
p and q are

Ti, o(qp, k) = 3(1o„ro,

Ti, 1(qP,k) = (ror„bo,—)r2/3V2,

T3, 2 (qp, k) = (r,ov &+r„8,& ob, ~r—2)/ 1/10,

T3, 1(qp»)=Lro()uo rv&oo 3(rom "Oou)»]/')/2.

The first subscript on the projection operator is twice
the total isotopic spin and the second subscript is the
isotopic spin of the two outgoing mesons. The states
with even meson isotopic spin are symmetric with re-
spect to interchange of the isotopic variables of the two
outgoing mesons and the states with odd meson isotopic
spin are antisymmetric. The projection operators for
a~gular momentum, J~, o, Ji, y, J3 2, and J3 ~, have the
same general properties and can be obtained from the
isotopic spin projection operators by the identifications

=l +o, Vo(" y„,(o) t t/, (o) t

H+o)1+o)2 H+(o2

4)rV(p)V(k)
T (P) = —2 &-(P)P-(pk), (33)

(4&d v(o3) ~ a=11,13,31,33

vvi"" +o
l

+Vv2") t

H+o)1
= (eo, V).(o)()vi&voq'o)

= —S12
V„(o)&„@ (+)) (@ (+) V„(o)tg )

(30)

where the P (pk) are projection operators as given by
Chew and Low for the four eigenstates of total angular
momentum and isotopic spin of a system of one meson
and one nucleon. T2(p+) is also given by (33) except
that k *(p) appears instead of k (p). The k (p) are
related to the phase shifts o (p), by

ff the sum over 2)2 in (30) is now limited to zero-meson
states, the result is equivalent to (29), except that the
exact "crossed" term appears and the result in (30) is
one-half that of (29). Extending the sum over 2)3 in (30)
produces a singularity which leads to the third term of
(27). The rest of the discrepancy comes from combining
the second term of Eq. (10) of Barshay with the third
term of that equation to obtain the final result. Actually,
for a more exact identification with the elastic-scattering
T matrix, only one-half of this second term should be
combined with the third term, the other half combining
with the first term of Barshay (10) to lead to the second
and fourth terms of (27).

The T matrix for meson production is more readily
applicable to various initial and final states if it is

k. (p) = PL ~-(p)) L~-( )P7 /'P"( )P(34)
The phase shifts could be taken either from experimental
values or could be the solutions to the Low integral
equations obtained by making the "one-meson" ap-
proximation to the elastic-scattering T matrix. For the
calculations in this paper experimental values, as fitted
to the effective-range formula of Chew and Low by
Qrear, ' have been used. Since, experimentally, h», h»,
and h3~ are small compared to h33 and have no well
defined values, the approximation will be made that
only h33 does not equal zero.

Using (33) for the elastic-scattering T matrix and the
projection operators given by (31) and (32), the meson-

' J. Drear, Phys. Rev. 100, 288 (1955).
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production T matrix becomes

&pspll T
I k)

—(4-)-:(f/.) (k) (p) (P.)

(48ppsppllps)

h»(ps) h»(ps)
XSls A (pspl)k) &(p—spl)k)

hss*(P2) hss*(P2)—C(p,pl, k) +D(p p„k), (35)

where

A = (1/36) [8Tl, p
—4v2Tl, l+ (10)'Ts, 2 Sv2 Ts, l]—

XI 8J, p
—4v2J, ,+(10)V3 2

—5v2J3 l])
8= (2Tl, p

—V2Tl l)(2Jt, p
—&2Jl, l),

C= -'4L(10) *Ts, 2
—V2T3, l]L(10)Vs, 2

—v2 Js, l],
D= (1/9) (6Tl, p+&2Tl, l+2&2T3, l)

X (6Jl, p+v2Jl, 2+2&2Js l).

(36)

der(kl plips) Plp~l~s
I &P2Pl I

T
I k) I',

dlpldQldQ2 (22r)sv l

(lpl ——cp*—cp ); (37)

where v„& is the relative velocity between the incident
meson and the nucleon and, in the static limit, v„~
= k/lpga. No attempt has been made to correct either v„,l
or the phase space factors for nucleon recoil because this
would not be consistent with the no-recoil approxima-
tion used in evaluating the T matrix. The energy co*

which is the incident-meson total energy plus the nucleon
kinetic energy I

lp*=cpz+(k2+M2)' —M] in the bary-
centric system, has been used in the energy conservation
in (37) rather than lpga because it would seem to more
nearly represent the amount of energy available to the
two outgoing mesons. In substituting for (PlP2I T

I
k) in

(37), the approximate result given by (35) will be used.

1. Total Cross Sections for Incident Eigenstates of
Total Isotopic Spin and Angular Momentum

For the extension of the Low equations to include two-
meson states, the total meson-production cross sections
for the "j.i," "13," "31," and "33"eigenstates of total
isotopic spin and total angular momentum are needed.
These are obtained by taking the absolute square of the
T matrix as given by (35) and summing (or integrating)
over all pl and ps, making use of the properties of the
projection operators, and keeping separate all those
terms corresponding to the same initial eigenstate. The

V. CROSS SECTIONS

The diGerential cross section for the scattering of a
meson of type k into meson of types Pl and P2 is

result is

F =Ih.(P)l'/ ',

F2 h33 (p2)h33(pl)/lpllp2y

Fs= Ih»(P2) I2/~*2,

F4 h33 (p2)hss(pl)/lp*',

F3= Ih»(ps) I'/~l~*,

Fs h33 (p2)hss(pl)/lpllp*,

F2 Re[hss'(P2——)]/lp, ',

Fs= ReI hss (p2)]/lp*',

F2 = ReI hss(p2) h»(pl)]/~*',
Flp ——Re[h„'(p, )]/lp, lp*,

Fll= ReLhss(P2) hss(p, )]/lp, lp*.

(40)

The (1,3) and (3,1) cross sections are equal and so the
three cross sections 0-1=(711 0-g 0-13 %31 and 0-3 033
have been used in (38). The energy dependence of hs,
has been obtained by using the effective-range ap-
proximation of Chew and I,ow,

cotbss (k) c(p8 0=5 3 . 84)p—/ ,.ks (41)

which Qrear has used to At the experimental phase
shifts up to at least 300 Mev (about lp*=2.5y, in the
barycentric system). The energies at which h33 is needed
are those of one of the outgoing mesons and this will
usually be within the range of validity of (41).This fact
coupled with the dominance, in the integrations, of the
resonance in h» makes it sensible to use (39) at all
energies. Equation (39) corresponds to f'=0.093 and
this value has been used in calculations. i%one of tke
integrations is critically dependent on the cutoff since
they all have Anite upper limits and the cutoG function
has been set equal to unity throughout.

The integrations have been done numerically and the
results for the total meson-production cross sections for
the various initial eigenstates are plotted in Fig. i.
Limiting the sum in (18) to include only those states

0'l (PP ) 64 4360
0 2 (lp*) = (1/243)4 360 I,+ —80 I,+ 304.

. o 3(lp")- . .954. . 424, 64.
1480 i

—2592 —288
+ —272 I4+ 0 Is+ 0 Is

64. —72. —72.
0 —i800 ~ —3528

'

+ 0 I2+ 0 Is+ 0 I2

, —450. , 0 . , 0
800' 1568

+ —400 Ilp+ 560 Ill, (38)
200. , 200'

where

I-=kv'(k) (f/I )' " v'(pl)v'(p )plspssd~lF. ,

(lp2
——cp*—cpl) (39)
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with no real mesons, has destroyed the unitarity of the
meson-production S matrix and therefore the total
cross sections are not limited by the geometrical cross
section (vrV) in this approximation. This is not too
serious a defect because the energies at which the total
cross sections approach m 0 are above those at which the
static approximation should be expected to have validity
anyway. However, to investigate the contribution of
two-meson states to the elastic scattering equations the
total cross sections are required at all energies; what has
been done here is to use the cross sections plotted in

Fig. 1 up to energies at which they approach xP' and
then to use ~V beyond that energy. This procedure
probably overestimates the contribution of the two-
meson states since the actual cross sections must turn
over smoothly and always remain below the geometrical
cross section.

ra
1 p" der* 3

,L~-(~*)+ 2 ~-s~~(~*)j, (42)
4vr9, ~ „kv'(k) su* u=&

where 0 (a&*) is the total cross section for the state n and

energy co* and

—4' 1 —8 16

,' (f/Iv, )' —1-, A = (1/9) —2 7 4, (43)
2. 4 4 1.

as given by Chew and Low. The contribution, r ', of
the two-meson states to the effective range has been
calculated using the meson-production cross sections in

Fig. 1 and these results are compared in Table I to the
effective range, r ', calculated from the elastic scat-
tering cross sections obtained by using (41) with the
approximation that only 833 is not zero.

3. Partial Cross Sections for p+vv+ and p+vv

The projection operators in (35) can be used to give
partial cross sections for various charge states. The
procedure is as follows: The initial state of a nucleon
and a meson of type k is described by V& (k)Xi „where
V~, is a spherical harmonic in isotopic space and
X;, is a nucleon isotopic spin function; ns and s are the
projections on the s axis in isotopic space; vvv= +1,0, —1

corresponds to vr+, vro, vr, respectively and s= (&)vv to a
(proton/neutron). This initial pion-nucleon state is then
expressed in terms of the total isotopic spin —,

' and —,
'

states by using Clebsch-Gordan coefficients. The pro-

2. Contribution of Two-Meson States to the
"Effective Range" for Elastic Scattering

The effect of two-meson states on Low's equations for
elastic scattering will be investigated by looking at their
contribution to the effective range defined by Chew and
Low. The effective-range approximation results from
expanding X k' cotL6 (~*)]/co* in po~wers of the incident

energy, co*. The coe%cient of the linear term in the ex-

pansion is the effective range, r, and is given by

E

O

o4—
LLI
CA

CA
EA 3—
O
o
2—

2
CU /p

Fro. 1. Total meson production cross sections for incident
eigenstates of total angular momentum and isotopic spin. The
dashed curve represents the geometrical cross section (7t.h,') which
is an upper limit for meson production.

jection operators defined by (31) project out eigenstates
of total isotopic spin and a given meson isotopic spin
and these states are expanded in charge states for each
outgoing particle using the appropriate Clebsch-Gordan
coefficients. This procedure gives the T matrix for the
production of any particular charge state from any
given initial charge state and the cross section for each
process will depend on

~

T ~'. The angular integrations
are easily done when one makes use of the properties of
the angular momentum projection operators.

The procedure outlined above has been applied to the
case of a x+ or m meson incident on a proton, and the
cross sections for the various possible reactions are

~+~++~'
vr+~++ vr+

a ((u*) vr=+vr +vr'
vr ~vro+vr'

i, vr ~ +vr+.
396 48 144
360 208 0

= (1/81)~ 268 Iv+ 752/9 Iv+ 208 I3
136 16/9 288

.(. 136. (.
—21—,

' . .656)
—48 I —48 —48

0 0 0
+ —69-', I4+ —218-', Ir,+ 58-,' I6

96 —128 —85-,'
165-', ) —2453) .—533.

—180 0
—120 0

+ —73-', Iv+ 106-', Is
—663 —160

40 . .—3463.
0 320
0 0

+ —149-', Iv+ 1664/9
—224 2133
.—410-', , .2752/9. ,
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TABLE I. Contributions to the effective range. ' TABLE II. Partial cross sections for meson production.

State

11
13 or 31

33

—0.293—0.293
0.366

a The effective ranges are in units of 1/p.

—0.00470—0.0123
0.00778

21I I ]1.&2 / v&c

16'
2.1 /o

Center-of-mass energy (co~)
I.aboratory kinetic energy

Process

p+ + p+ + '
p+7r+~n+7r++7r+
p+7r ~p+7r +7r0
p+7r ~n+7r0 +7r0
p+7! +n+7r +7r

0.037
0.041
0.029
0.007
0.016

1.04
0.97
0.66
0.30
0.39

6.54
9.25
4.20
2.47
2.94

2.5p, 3p 4p
2AO Mev 3AO Mev 570 Mev

Cross section (mb)

where the I are given by (39) and (40). The cross
sections given by (44) at several energies are listed in
Table II. By charge independence the cross sections for
sr+ on protons also apply to ~ on neutrons.

VI. DISCUSSION

The contribution of two-meson states to the effective
range for elastic scattering is small in the approximation
used in this paper as can be seen from Table I. The
smallness of the ratio r'~/r" seems to be another instance
of the dominance of the "33" elastic scattering reso-
nance in integrals involving meson-nucleon cross sec-
tions; including two-meson states in a solution of the
cutoff-model elastic-scattering equations will not be
worth while if they contribute as little to the effective
range as indicated in Table I.

The only experimental information in the range of
energies at which the partial cross sections in Table II
apply comes from an investigation by Blau and
Caulton" of meson production by 500 Mev (co*=3.7p)

mesons on emulsion nuclei. On the basis of their
findings, they make a rough estimate of 3.5—10 mb for
the cross section for the production of charged mesons

by free nucleons. This cross section corresponds to the
average (assuming equal numbers of neutrons and
protons in the emulsion) of the cross sections for the
processes p+7r=+e+n=+m+ and e+~=+p+7r +~,

"M. Blau and Martin Caulton, Phys. Rev. 96, 150 (1954).

for which the theoretical prediction from Table II is
about 4.5 mb.

The p+vr+ cross sections found in this paper are
generally smaller than those of Barshay for the reasons
given earlier. Also, the large percentage of ~' production
which Barshay found does not hold for the cross
sections found here because of the added terms in the T
matrix.

A strong limitation of the approach used here or by
Barshay is the neglect of nucleon recoil which, among
other things, restricts the treatment to p-wave mesons.
To include nucleon recoil in the theory, the most
promising possibility at present would seem to be a
relativistic "dispersion" relation of the type which has
been found for elastic scattering" and photoproduc-
tion. "Experience so far has shown that for every Low-
Wick type equation in the cutoff model there is a
corresponding dispersion relation. Thus one should ex-
pect to find a relativistic equation of the same general
form as Kq. (24).

I wish to express my sincere appreciation to Professor
Geoffrey F. Chew for suggesting this problem and for his
continued assistance. This work would not have been
possible without his guidance and encouragement.

» M. L. Goldberger, Phys. Rev. 99, 979 (1955)."F. E. Low, Sixth Annlal Rochester Conference on JI'igh-I-'ner gy
XNclear Physics I'Interscience Publishers, Inc. , Xe~v York, 1956).


