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gives no indication of what secular changes may occur
in radiating matter. Suppose for example that a
Schwarzschild particle is disturbed from static spherical
symmetry by an internal agency, radiates for some
time, and finally is restored to static spherical sym-
metry. Is its total mass necessarily the same as before?
This and similar problems required investigation. Also
the sta, tus of the scalar invariants of the Riemann

tensor in the Einstein, Infeld, and Hoffmann approxi-
mation theory deserves clarification, and may be hoped
to assist in resolving the annoying ambiguities of inter-
pretation which beset that theory.

I am much indebted to H. Bondi for a remark which
stimulated this research, and for many discussions, and
to L. Bass for suggestiTlg a valuable improvement in
presentation.
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It is pointed out that the Lippmann-Schwinger integral equation, as it is usually written, does not neces-
sarily have a unique solution when applied to the motion of three or more bodies. It follows that a certain
amount of caution must be exercised in using the Lippmann-Schwinger equation as the basis for an approxi-
mation procedure.

ORMAL scattering theory' has been used exten-
sively in the recent literature to deal with re-

arrangement and inelastic collisions as well as elastic
scattering. Nevertheless it is not widely recognized that
in applying the formulas of formal scattering theory to
reactions involving more than two particles a certain
amount of caution must be exercised. This is a conse-
quence of the fact that the Lippmann-Schwinger (L-S)
integral equation for the wave function, as it is usually
written, does not necessarily have a unique solution
when three or more bodies interact while for the two-

body case the solution is unique.
In formal scattering theory one constructs from the

Schrodinger equation an integral equation for the wave
function. The solution of this integral equation, besides
being a solution of the original Schrodinger equation,
presumably satisfies the required asymptotic boundary
conditions. In view of the fact that certain forms of the
Lippmann-Schwinger integral equation do not have a
unique solution, evidently they fail to incorporate
these conditions fully.

The fact that the solution to the Lippmann-Schwinger
equation is not unique means that care must be used in

applying any scheme of successive approximations to
generate a solution to the L-S equation. One must
make sure that the solution generated is the particular
one desired.

The problem of formal scattering theory is to con-
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The solution obtained in this way is unique. However,
the Lippmann-Schwinger equation is more often written
in the following way.

V=C+lim('E —Hp+ip) 'V%'. (3)

While any solution obtained by the procedure of Eq.
(2) will satisfy Eq. (3), Eq. (3) has solutions which
cannot be obtained by the procedure of Eq. (2).

We can show that the solution of Eq. (3) is not unique
by showing the existence of a solution to its homogene-
ous counterpart,

+=lim(E —Hp+ip) 'V%.

Then, clea, rly, by adding an arbitrary multiple of a
solution of Eq. (4) to the solution of Eq. (3), we get a
second solution of Eq. (3).

The simplest case where this occurs is the problem of
the mutual scattering of two particles by a potential V
acting between them provided a bound state of the two
particles in the potential exists. For convenience, let us

struct the solution of a given Schrodinger equation

(E Hp V)4=0,— —

which satisfies certain asymptotic boundary conditions.
This problem is solved in a forma. l way by the Lippmann-
Schwinger integral equation.
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refer to the two particles as neutron and proton and
the bound state as a deuteron, although this particular
reference is quite unnecessary. In this case a plane wave
of deuterons of the correct total energy E is a rigorous
solution of Eq. (4) with Bp T=——the total kinetic
energy operator. This can be verified by direct sub-
stitution. Of course, the difhculty can be easily cir-
cumvented in this case if one specifies the total mo-
rnentum as well as the total energy of the solution, but
such considerations are inadequate for dealing with
more complicated problems.

As an example of a case in which the solution to
Eq. (3) cannot be made unique by fixing the total
momentum of the system, consider a system consisting
of three particles —X (a neutron), P (a proton), and C
(a carbon nucleus). Let V~p be the interaction potential
between E and P, and let V~p be the interaction be-
tween C and P. Assume no interaction between C and
Ã. Then the Schrodinger equation reads

(E—T V~c—V—Ix)+=o, (5)

where T is the total kinetic energy operator.
Suppose we want to describe the situation where we

have a beam of neutrons incident on bound C+P
systems. Then the wave function, 4&, is a solution of

@g——C+limGp& ~ ) V)v p%'g, (6)

where
(E T Vc) )C =0,——

Gp&') = (E—T—Vcp+i p)

(7)+p =x+»m ()o"Vcp+p,
e-+0

where

(E T V~~)x=0, ——
()p&'= (E—T V~p+ip) '—

Suppose now that our system is partly in state 0'& and
partly in state +2. Then the wave function would be
given by

+=a%,+b+, =lim@&'),
a~0 (8)+"=ip(E T Vcp —V)v—~+ip) —'(a++bx).

Equation (8) can be rewritten as follows:

aGo(~) —)@+b g (~)—&y = (G (~)—& V )y(~)

( g (e)—) V' )g(e)

and 4 is the wave function for the incident beam. If,
on the other hand, the incident beam consists of carbon
nuclei incident on deuterons, the Lipprnann-Schwinger
equation reads

Operating through by Gp') or go&') and taking the
limit ~—4 gives

or

4=bx+lim gp&') Vcp+&')
@~0

+a limip(E —T V~p—+ip) '4 (108)

The last terms on the right of Eqs. (10A) and (108)
vanish' and the %~'& which occurs in the second terms
on the right can be replaced by +.' Thus

4=aC+limG()&') Vp p+ (11A)

= b)(+lim() o&') Vc&'.
a~0

(118)

We see that if we set a= 1, then

4=4+limGp&') V~~% (12)

has infinitely many diRerent solutions corresponding to
all the possible choices for the constant b.

If one wishes to generate a particular eigenstate of
H= T+Vcp+VNp by some scheme of successive
approximations, the safest procedure would be based
on Eq. (8) whose solution is unique rather than on
Eq. (12) whose solution is not. Ultimately one would
take the limit ~—+O. However, in basing an approxima-
tion scheme on Eq. (8) one must be certain that this
scheme converges uniformly in e in a finite region con-
taining &=0 if one is to insure that the resultant ap-
proximate solution will yield a good approximation to
the particular solution desired. This is a consequence
of the fact that the undesired solution is an approximate
solution to the homogeneous equation to order e. Hence
if the convergence is not uniform, one may find a
residuum of the undesired solution in the limit e~O.

An approximation scheme which makes use of both
Eq. (11A) and Eq. (118) would appear to be safe from
the difhculties under discussion. However, although it
is certainly plausible that a simultaneous solution of
Eq. (11A) and Eq. (118) is unique, a rigorous proof to
this effect is lacking.
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