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In this paper, gravitational radiation is defined invariantly
within the framework of general relativity theory. The definition
is arrived at by assuming (a) that gravitational radiation is
characterized by the Riemann tensor, and (b) that it is propagated
with the fundamental velocity. Therefore a gravitational wave
front should appear as a discontinuity in the Riemann tensor
across a null 3-surface; the possible form of this discontinuity is
here calculated from Lichnerowicz’s continuity conditions.

The concept of an observer who follows the gravitational field is
defined in terms of the eigenbivectors of the Riemann tensor. It
is shown that the 4-velocity of this observer is timelike for one of
Petrov’s three canonical types of Riemann tensor, but null for
the other two types. The first type is identified with the absence
of radiation, the other two with its presence. This constitutes the

definition. It is shown that the difference between the no-radiation
type and one of the radiation types can be made to correspond to
the discontinuity possible across a null 3-surface; this demon-
strates the consistency of the wave front and following-the-field
concepts.

A covariant approximation to the canonical energy-momentum
pseudo-tensor is defined, using normal coordinates, which are
given a physical interpretation. It is shown that when gravita-
tional radiation is present, the approximate gravitational energy-
flux cannot be removed by a local Lorentz transformation, which
supports the definition of radiation.

It is proved that, as would be demanded of a sensible definition,
there can be no gravitational radiation present in a region of
empty space-time where the metric is static.

1. INTRODUCTION

HE investigation of gravitational radiation in
general relativity theory is hampered by the lack
of an invariant definition of that concept. The presence
of gravitational radiation must be distinguishable,
mathematically, from a peculiar choice of the coordinate
system, and physically, from a peculiar motion of the
observer. In a covariant, nonlinear theory, the definition
should not, if the concept of radiation has any real
validity, depend on the weakness of fields or on special
coordinate conditions. An invariant definition is pro-
posed in this paper.
This definition is given in terms of the Riemann
tensor. Just as it is the Riemann tensor which indicates
a genuine gravitational field in the first place, so

(4) Itisthe Riemann tensor which characterizes the
presence of radiation.

Physically, this is because the Riemann tensor
describes the variations in the gravitational field from
event to event in space-time. In accordance with the
principle of equivalence, only the variations in the field,
and not the field itself, can produce any real physical
effects. The question is: what sort of variations in the
field should be classified as gravitational radiation?

To answer this question, one must first of all decide
which attributes of radiation, a concept until now
familiar largely through electromagnetic theory, may
be assumed to apply also to the gravitational case. In
making the present definition, it will be assumed that
an essential attribute is:

(B) In empty space-time, gravitational radiation is
propagated with the fundamental velocity.

The two assumptions (4) and (B) serve to characterize
gravitational radiation completely. Two main argu-
ments are developed in the following sections to support

the definition ; these arguments depend respectively on
the following consequences of (4) and (B):

(C) A gravitational wave-front manifests itself as a
discontinuity in the Riemann tensor across a
null 3-surface.

(D) The motion of an observer following the gravi-
tational field is determined by the Riemann
tensor. In the presence of gravitational radi-
ation, such an observer would have to move
with the fundamental velocity in order to
keep up with the field.

These ideas will now be developed in more detail.
In connection with (4), one may investigate the vari-
ations in the gravitational field directly by writing
down the equation of geodesic deviation. This equation
gives the variation in the field between neighboring
space-time events in terms of the Riemann tensor.! The
physical effects so represented are set out in detail in
Sec. 2.

Assumption (B) is supported by very general con-
siderations, as well as some specific ones, like the result
of Lichnerowicz? that the characteristic surfaces of
Einstein’s equations are null 3-surfaces. Lichnerowicz
starts from continuity conditions which are sufficient
to ensure that the equations have physically unique
solutions in empty space-time.

In Sec. 2, Lichnerowicz’s conditions will be used to
determine what discontinuity in the Riemann tensor is
permissible across a null 3-surface. In accordance with
statement (C) above, one would expect to find such a
discontinuity whenever a source of gravitational radi-
ation was switched on or off.

The idea of an observer following the field, introduced

1F. A. E. Pirani, Helv. Phys. Acta (to be published) ; and Acta
Phys. Polon. (to be published).

2 A. Lichnerowicz, Théories relativistes de la gravitation et de
Vélectromagnétisme (Masson et Cie, Paris, 1955), p. 33.
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in statement (D), is one already well known in the
ordinary Maxwell-Lorentz electromagnetic theory, and
not difficult to generalize to gravitational field theory.
In the Maxwell-Lorentz theory, an observer is said to
be following the field if he moves so that in his rest-
frame the Poynting vector vanishes. He therefore ob-
serves no flux of field energy. If this idea is restated
covariantly (but still in the Maxwell-Lorentz theory)
in terms of the energy-tensor of the field, it is found
that an observer may always follow the field by ac-
quiring a suitable 4-velocity, unless it is a null field
(self-conjugate field), in which case it would be neces-
sary to acquire the fundamental velocity in order to
make the energy flux vanish. This is because in a null
field E and H are perpendicular and of equal magnitude
in every Lorentz frame. Plane waves and spherical
waves are common examples of null fields.® From the
point of view adopted here, only null fields will be
counted as radiation.

The idea of following the field, expressed in such
terms, does not admit an immediate covariant generali-
zation to the case of the gravitational field, for, because
of the principle of equivalence, there is no covariant
gravitational field energy-tensor. The generalization
will be achieved by considering the geometrical proper-
ties of the two fields. It will be found that in each case
certain eigenvectors of the field can be defined. In the
electromagnetic case it turns out that an observer fol-
lowing the field has the timelike eigenvector for 4-ve-
locity ; when the field is a null field this timelike vector
collapses onto the null cone,® and it is this which is
characteristic of the presence of radiation.

In the same way, a timelike eigenvector may in
general be defined, in terms of the Riemann tensor, for
the gravitational field in empty space-time. This vector
is interpreted as the 4-velocity of an observer following
the field, and in some fields this vector collapses onto
the null cone. As in the electromagnetic case, this
situation is identified with the presence of radiation.

These timelike eigenvectors can be given a further
physical significance in both gravitational and electro-
magnetic fields. For example, in a non-null electromag-
netic field, the 4-velocity which follows the field yields,
for a given field, an extreme magnitude for the Lorentz
force. Similarly, the (more complicated) physical effects
of the gravitational field also reach extreme values for
an observer having the 4-velocity which follows the
field. This will be discussed in detail in Sec. 4.

The eigenvectors of the gravitational field are defined
in Sec. 3, with the aid of Petrov’s classification? of
empty space-time Riemann tensors into canonical types.
The elegant geometrical-algebraic techniques developed

3For a detailed discussion of the geometrical and algebraic
properties of the electromagnetic field, see J. L. Synge, Relativity:
the Special Theory (North-Holland Publishing Company, Amster-
dam, 1956), Chap. IX.

4+ A. Z. Petrov, Sci. Not. Kazan State Univ. 114, 55 (1954).
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by Ruse® and others supply the basis for this classi-
fication, which yields two types with radiation present
and one with no radiation. It will be shown that the
difference between the no-radiation type and one of the
radiation types can be made, by a suitable alignment
of axes, to correspond exactly to the discontinuity in
the Riemann tensor across a wave front permitted by
Lichnerowicz’s conditions. This will demonstrate the
consistency of the idea (Sec. 2) of a gravitational wave
front with the idea (Sec. 3) that an observer following
the gravitational radiation field must have the funda-
mental velocity.

This geometrical approach is necessary because there
is no covariant gravitational energy-momentum tensor
in Einstein’s theory. This lack is to be expected, because
of the principle of equivalence. In Lorentz-invariant
field theories the energy-momentum tensor depends on
the field strengths, but these have locally no absolute
significance for the gravitational field. The canonical
energy-momentum pseudotensor® f,* is a quadratic
function of the field strengths (Christoffel symbols) and
satisfies a conservation law, but it is not covariant—it
can in fact be made to vanish entirely along an arbitrary
open curve in space-time. Nevertheless, ¢, has been
used in definitions of gravitational radiation by various
authors,” but always in weak field approximations and
under physically obscure coordinate conditions.

It might be possible to construct covariant, and
therefore physically significant, expressions out of /,*
over extended regions of space-time, into which only
the variations in the gravitational field, not the field
itself, could enter, but no one seems to have succeeded
in doing this, or even to have attempted it. The dif-
ficulties could be resolved if one could reformulate the
weak-field approximation method in a covariant way
valid in an extended region.

The alternative to this, which is adopted in Sec. 4,
is to develop a covariant local approximation method
valid in arbitrarily strong fields but only in small
regions of space-time. This is done by introducing
normal coordinates,® which are given a physical inter-
pretation. The energy-momentum pseudotensor {,”
vanishes at the origin of normal coordinates but not in
a finite neighborhood of the origin, and may be expanded
in a power series with tensor coefficients which are
functions of the Riemann tensor and its covariant
derivatives. By averaging over a small 2-region, one
may construct a covariant approximation f,” to the
mean energy-momentum pseudotensor in the region. It

5H. S. Ruse, Proc. Roy. Soc. (Edinburgh) 62, 64 (1944);
Quart. J. Math. (Oxford) 17, 1 (1946); Proc. London Math. Soc.
50, 75 (1948).

6 Range and summation conventions: lower case Greek indices
0, 1, 2, 3; lower case Latin indices 1, 2, 3.

7 E.g., L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company, Inc., Cambridge, 1951);
J. N. Goldberg, Phys. Rev. 99, 1873 (1955).

8 B. Riemann, Gottingen Abhandl. 13, 1 (1862) ; see O. Veblen,
Invariants of Quadratic Differential Forms (Cambridge University
Press, Cambridge, 1927), for a lucid exposition.
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is found that when no gravitational radiation is present,
there exist observers (with suitable 4-velocities) who
observe no gravitational energy flux, but that when
gravitational radiation is present, such observers cannot
be found. This corresponds exactly to the electromag-
netic field case, and supports the definition of gravita-
tional radiation.

Various examples are discussed in Sec. 5, and some
deficiencies of the present approach are mentioned in
Sec. 6.

2. NATURE OF A GRAVITATIONAL WAVE FRONT

The nature of a gravitational wave front will now be
investigated, by finding the discontinuity in the
Riemann tensor permissible across a null 3-surface. The
calculation is based on Lichnerowicz’s continuity con-
ditions,® which are conditions on the metric tensor and
its derivatives sufficient to ensure that Einstein’s
equations i vacuo,®

G‘“,=O’ (21)

are physically unique. These conditions are essentially
the same as those found by O’Brien and Synge' from
assumptions about the finiteness of certain quantities
in the boundary layer between two regions of a con-
tinuous medium.

Lichnerowicz postulates that space-time can be di-
vided up into overlapping regions, in each of which there
exists a coordinate system such that (i) the metric tensor
g 1s continuous, (ii) the first partial derivatives'® g,,,,
are continuous, (iii) the second and third partial deriva-
tives of g,, are piecewise continuous. Space-time is as-
sumed to be a Riemannian manifold with certain differ-
entiability properties which do not affect the present
argument.

Lichernerowicz’s analysis is developed by taking in
one of the regions a coordinate system such that, say,
the surface S: 2°=0 is a surface of discontinuity of the
gravitational field. Then according to the postulates,
the coordinate system can be chosen so that all the g,,,
all the g, ,, and all the g,,, ,- with the possible exception
of g, 00 are continuous across S. Now the covariant
components of the Riemann tensor are’®

Roouv=[0v,p] u—[ow,0] v +T "0, ov,m =T 70, Lou,m].
2.2)

If the first two terms of this are written out in full, it
may be seen that the only components of R,,,, which
admit discontinuities across S are those with just two

9 Reference 2, Chap. I.

10 The cosmological term is disregarded throughout this paper.
It could be restored to the work without any difficulty, but at
some cost in conciseness.

1S, O’Brien and J. L. Synge, Comm. Dublin Inst. A, No. 9
(1952).

12 A comma denotes partial differentiation: guy, ,=9g,/0x°.

13 [a'V;P]E%(gvp.ﬂ+gM,v_gvv, p) and Iy, =g""[ov,p] are Chris-
toffel symbols of the first and second kinds respectively.
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indices 0, one in each of the pairs po, uv. This is the
same as a result of O’Brien and Synge.!*

Results of this kind may be put into covariant form
by transforming to a local Minkowskian coordinate
system and then introducing a fetrad (orthonormal
frame, quadruped, Vierbein, 4-nuple) of orthogonal
unit vectors directed along the axes of the local
Minkowskian system. Tensor equations may then be
rewritten as scalar equations by contracting with
tetrad vectors, and the special coordinate system
discarded.

Physically, the timelike tetrad vector is identified as
the 4-velocity of an observer, making measurements at
the event in question, who uses space axes having the
directions of the three spacelike tetrad vectors. The
scalars formed by contracting any tensor with tetrad
vectors are just the physical components of the tensor,
measured by this observer.!®

For the present purpose, the 3-surface S is to be a
null 3-surface. It is not convenient to have any of the
x* as a null coordinate; therefore one writes, say, é=0
in place of =0 for the equation of .S. One may by a
linear transformation introduce at any point P of S
local Minkowskian coordinates such that ds?=1,,dx*dx",
where!$

nuvzdiag(la -1, -1, —1)1

and in a finite neighborhood of P, one may take
£=2"4(x"—2a?). If also {=2"%(x"+«') in this neighbor-
hood, then at P,

ds*=2dtd¢— (da?)?— (da®)2.

Then if A denotes amount of discontinuity across S,
Lichnerowicz’s conditions require that at P,

A(gu)=0,
A(gur, )= A(ag#V/aE) = A(agul'/ar) =0,
A(0%,,/ 980F) = A(9gus/ 08%) =0,
but
A(a2gnl'/a£2) = Quv,y

where a,, are any numbers. The possible discontinuities
in R,,,, are now easily found from (2.2). A straight-
forward calculation shows that the only @’s contributing
to the Riemann tensor in empty space-time are

(2.3)

—A9=A0a33=0 and (123=¢,

where ¢ and ¢ are arbitrary. These correspond exactly
to the two types of “transverse-transverse” waves found
in the linear approximation theory of gravitational
radiation.'?

All the terms in ¢ may be reduced to zero by a rota-
tion of axes through angle tan~(¢/0) in the 23-plane.

14 Reference 11, Eq. (5.12).

15 For details, see the second paper of reference 1.

16 Units are chosen, throughout, so that ¢=1.

17 A, S. Eddington, Mathematical Theory of Relativity (Cam-
bridge University Press, New York, 1924), second edition, p. 247.
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The resulting discontinuity in the Riemann tensor
will now be written in covariant form by introducing a
a tetrad of unit vectors!® \,#, which at P are directed
along the coordinate axes, so that at P, A#*=08.*. On
account of the orthonormality, it is true everywhere that

Zuh A" =1ag.
Now define
A= g,

so that A%*=x#, A= —\,*. Then it is not difficult to
prove that

naﬂkayxﬂv:)\a,u?\ay___gyv, )\“a)\avzanv’

and so forth. It is convenient to abbreviate
Aot =N0E=)\H,

This notation differs slightly from that of Eisenhart,
who uses indicators instead of 74s.

It is convenient to introduce a simple 6-dimensional
formalism for discussing the Riemann tensor and
other bivector-tensors. The 6-dimensional pseudo-
Euclidean space (the Klein space) is introduced whose
vectors are just the bivectors (skew tensors) in the local
tangent Minkowski space defined by the tetrad \,*.
The rule for going over to the 6-dimensional formalism
is the following:

If H.g are the physical components, with respect to
a given tetrad at a given space-time event P, of any
skew tensor H,,, then the corresponding 6-vector in
the 6-space at P is® H 4, got by relabeling the sufhxes
af} according to the scheme

af: 23 31 12 10 20 30,

4: 1 2 3 4 5 6. (2:4)

Accordingly, any bivector-tensor corresponds to a sym-
metric tensor in the 6-space. The physical components
R.s,5 of the Riemann tensor, for example, go over to
the components of a symmetric 6-tensor R 5, each of
the suffix pairs a8, vé being relabeled according to the
scheme (2.4).

In order that the raising and lowering of indices in
the 6-space should correspond to the raising and
lowering of index pairs in the 4-space of physical com-
ponents, the metric tensor of the 6-space must be
chosen to be

ﬂAB=dia«g(17 1; 1’ _1v _1y -1) (25)

which corresponds to the bivector-tensor naymss— nasngy-

18 Here u is a vector index and « a label distinguishing the four
vectors. The Greek letters «, B3, v, §, € and Latin letters a, b, c,
d, e will be used only for labels, but shall satisfy the same range
and summation conventions (Greek 0, 1, 2, 3; Latin 1, 2, 3) as
ordinary vector and tensor indices u, v, p, o, 7, -+ - and m, n, p,
r, ---. From now on, an index given a particular value will be
understood to be a label index, not a tensor index. This notation
obviates the necessity of bracketing indices.

1 1.. P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, 1949), Chap. 3.

2 Upper case letters 4, B, ¢ range and sum over 1, 2, -+, 6.
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The discontinuity in the Riemann tensor at any
event on the null 3-surface S in empty space-time may
be calculated straightforwardly from (2.2) and (2.3)
and written in terms of R,p. It turns out to be

- —¢ - —¢ o
aRp=| TH T Tt ag
—¢ ¢ - < ¢
o [} . [} —0a

Here ¢ and ¢ are arbitrary numbers, but the terms in ¢
may be eliminated by a rotation, as stated above. It
will be shown in Sec. 3 that the difference between the
no-radiation and one of the radiation canonical types
of Riemann tensor, referred to a suitably oriented
tetrad, is precisely the array of o’s in (2.6), which
supports the interpretation of (2.6) as the discon-
tinuity across a gravitational wave front.

The physical effects of the discontinuities (2.6) may
be studied in terms of the equation of geodesic devi-
ation?

&4 /87%4 R*,, A PN =0, (2.7)
which describes the relative acceleration of two neigh-
boring (spherically symmetric) test particles.! In Eq.
(2.7), M#=dx*/dr is the unit tangent vector to the
geodesic world-line € of one of the particles, 7 is proper
time along €, and #* is the orthogonal displacement
vector to the (neighboring) world-line of the other
particle. To reach this physical interpretation directly,
one has only to refer (2.7) to a tetrad comprising A*,
which is the 4-velocity of the particle with world-line @,
and three spacelike vectors A.# orthogonal to and
parallelly propagated along @. Then (2.7) becomes

@X°/dr+ Koy () X=0, (2.8)

where X¢=n#\,® are the physical components of the
displacement vector (X° vanishes) and
K% = Rey, (29)
are some of the physical components of the Riemann
tensor. In the Newtonian equation corresponding to
(2.8), X are the coordinates of the second particle
relative to the first, and K%=9%V/9x?dx® where V is
the ordinary Newtonian gravitational potential. Thus
—K%X? is to be identified as the relative acceleration
of two particles with relative coordinates X?, arising
from the difference in gravitational field between the
particles.
It follows that as the gravitational wave front
described by (2.6) passes the pair of test particles,

21 ], L. Synge and A. Schild, Tensor Calculus (University of
Toronto Press, Toronto, 1949), p. 93.
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there will be a discontinuity

AK%= {: (2.10)

~, ¢,J
¢ o
across the wave front. The tetrads to which (2.6) and
(2.8) are referred have been (and always may be)
chosen to coincide at the space-time event where the
wave front passes the particles. It can be seen that
the discontinuity in the relative acceleration depends
on the relative position of the particles, and in par-
ticular that there is no discontinuity if the two particles
are aligned in the direction of propagation of the wave
front, which is the 1-direction.

This result represents in an invariant manner the
transverse character of gravitational radiation. Two
particles lying in the 23-plane (which is perpendicular
to the direction of propagation) will suffer a discon-
tinuous change in relative acceleration. If, for example,
the 2-axis is chosen so that ¢=0, and the line joining
the particles makes an angle § with this axis, then
according to (2.10) the change in the relative accelera-
tion will take place in a direction making an angle —6
with the same axis.

3. CANONICAL FORMS FOR THE
RIEMANN TENSOR

In this section, the idea of following the gravitational
field is made precise. This is done by fairly straight-
forward generalization from the case of the electro-
magnetic field. In that case, eigenvectors for the field
are defined by the equations

TwE=M\E, (31)
where T,” is the electromagnetic energy tensor. It is
found?® that in a general field both timelike, spacelike,
and null eigenvectors exist; these lie in two orthogonal
2-spaces but are otherwise undetermined. In a null
field, on the other hand, there is no timelike eigen-
vector; all the eigenvectors are spacelike, except for
one which is null; and all lie in a 3-space tangent to the
null cone along the direction of the null eigenvector.

The sense in which an observer follows the electro-
magnetic field comes most easily out of consideration
of the Poynting vector. Rather than introduce a par-
ticular Lorentz frame, one may define a Poynting
4-vector in a covariant way, to be

P,= (§,*—v,0*) T 0", (3.2)
where v# is the 4-velocity of the observer measuring
the field. This is easily seen to reduce to the usual
definition when v* lies along the time axis in a local
Lorentz frame. Since

Pe=0, 3.3)
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P, must be spacelike. If %, is the 4-normal to any small
2-surface 2 carried along by the observer with velocity
v#, then the electromagnetic energy flux across ¥ is

Pae=T,,v"n". (3.4)
Now one says that such and such an observer is follow-
ing the electromagnetic field if he measures zero energy
flux across all 2-surfaces which he carried along, however
oriented. By (3.3) and (3.4), this can occur only if

P,=0, (3.5)

which implies that

T’ = (T uv*v")v,,

(3.6)

so that v, must be an eigenvector of T,. This establishes
the connection between the concept of following the
electromagnetic field and the eigenvectors of the elec-
tromagnetic energy tensor. As mentioned above, a null
field has 7o timelike eigenvector, so that the Poynting
vector will not vanish for any observer with a finite
velocity. The energy flow in a null field cannot be
abolished by a Lorentz transformation. A null field
has one null eigenvector, say £*, belonging to the eigen-
value zero, so that

T,_“,.EVZO- (37)

Thus an “observer” moving with the speed of light in
the direction of £ (which is essentially the propagation
vector) would observe no energy flux past him.

In the gravitational case, there is no energy-mo-
mentum tensor of the gravitational field itself (the
pseudotensor is discussed in Sec. 4), but in accord with
the arguments developed in Sec. 1, one may seek in the
geometrical structure of the Riemann tensor a definition
of “following the field” analogous to that developed
in the electromagnetic case. The definition is naturally
more complicated, because the Riemann tensor is a
more complicated object than the Maxwell energy
tensor. The definition is made in two stages. First of
all, eigenbivectors (skew tensors) are defined for the
Riemann tensor. By using Petrov’s canonical forms*
these eigenbivectors may be written down explicitly for
the three algebraically distinct types of Riemann
tensor in empty space-time. The eigenbivectors cor-
respond geometrically to 2-spaces, or pairs of 2-spaces,
in space-time. The intersections of these 2-spaces with
one another define a number of 4-vectors (assumed
normalized if they are not null), which will be referred
to as Riemann principal vectors.

An observer with a timelike Riemann principal vector
as 4-velocity is said to be following the gravita-
tional field.

It turns out that for two of the three types of
Riemann tensor, this timelike principal vector collapses
onto the null cone. The occurrence of these types of
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Riemann tensor is identified with the presence of gravi-
tational radiation.

The eigenbivectors P,, of the Riemann tensor are
defined by the equation

R;wpaqu=AP‘w, (38)

or
R4pPB=\P4

in the 6-dimensional formalism introduced in Sec. 2.

Now Petrov* has shown that by a suitable choice
of the reference tetrad at any event in empty space-
time, one may reduce the Riemann tensor to a canonical
form of one of the following three types:

Type II:
—2a
. a—e -
Rap= .23 a_f_o'
. i .
4 B
Type I1II: \
( —a G"
— - .
. g
v - (3.11)
e -
pu .

In Type I, the reference tetrad yielding the canonical
form is in general fully determined ; accidental equality
between different a’s or #’s may introduce some freedom.
in Types II and III, the reference tetrad is deter-
mined only up to a Lorentz rotation in the 10-plane
and a spatial rotation in the 23-plane. The a’s and B’s
are scalar invariants of the Riemann tensor, but the
value of ¢ depends on the choice of axes in the 10-plane.

These forms of R4p are determined, first, by the
limitation of transformations in the 6-space to those
generated by changes of tetrad (i.e., by real Lorentz
transformations, including rotations) in space-time, and
secondly, by the nonsymmetry of R4 (equivalently,
by the indefinite character of the metric n45). As a
result, the elementary divisors of R4# need not be
simple, and Types IT and III result when they are not.

The eigenbivectors of R,p, defined by (3.8), are
easily found from (3.9)-(3.11); they are either simple
bivectors, dual in pairs or of the form P4=S,4+105,,
where S4 is simple and %S4 is its dual.??

22 A simple bivector may be characterized by det(Su)=0; it
may always be written in the form S, =X,¥V,—X,V,, and defines
a 2-space in space-time. The dual of any bivector P, is

OPuy=%gﬂlpgwew”P‘rr (OPA=%8ABCBCPC)7

where e?°""=4+/(—g) is the alternating tensor, which will be
understood to take the negative sign when porr are in the order
0123. The dual of a simple behavior Sy, defines a 2-space orthog-
onal to that defined by Sy, itself.
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Type I:
a B1 :
Qs . B2 :
Rap= ﬁ.] 01‘3 —a 6_3 (3.9
- By - C o —a
- B o
3
> =0
k=1
3
2 =0
k=1
. B e
P 8 (3.10)
—(a—0) .
. —(a+0)

Thus each eigenbivector P4 of R4p defines a pair of
orthogonal 2-spaces. The P4 are readily found from
(3.9)-(3.11) to be (conveniently normalized) the fol-
lowing:

Type I: Six independent eigenbivectors:

If B1=0, PA=4,4 and PA=§4 (dual pair);

if B1720, PA=5,441544,
If B:=0, PA=5,* and P4=5s4 (dual pair);

If 52#0, PA:52A:Ei65A,
If B5=0, P1=§3* and P4=§¢4 (dual pair);

1f 63#0, PA=53A:1:1.56A.

Type I1: Four independent eigenbivectors:

If B=0, P4=44 and P4A=4,4 (dual pair), and
PA=5,4—8¢4 and PA=§344854 (dual pair).

If 6#0, PA:(SlA:i:‘I:(S,;A, and PA:52A—85‘4:E1.<53A+55‘4).
Type III: Two independent eigenbivectors:
PA=62A_56A,

and PA=53A+65A.

The different pairs of 2-spaces represented by these
simple bivectors are not orthogonal. Their intersections
yield the Riemann principal vectors 7, which are (con-
veniently normalized) as follows:

Type I: r*=8,%, 85, 63%, 6o*. The Riemann principal
vectors are just the vectors of the reference tetrad.
One is timelike, three spacelike.

Type I1: r*=4§,—8:%, 62%, 85%. The first is null, the
others spacelike. Because of the freedom of rotation in
the 23-plane, the last two may be replaced by any linear
combination of themselves.

Type III: r*=§0*—6,*. There is only one Riemann
principal vector, and it is a null vector.
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According to the criteria set out earlier, gravitational
radiation is now defined as follows:

At any event in empty space-time, gravitational
radiation is present if the Riemann tensor is of
Type II or Type III, but not if it is of Type I.

Now it will be noticed that the ¢’s in (3.10) appear
in the same positions and with the same signs as the ¢’s
in (2.6), which exhibits the discontinuities permissible
across a null 3-surface. This correspondence has of
course been achieved in part by orienting the two
reference tetrads so that the 1-direction is picked out
for asymmetrical treatment in each case. However, it
has also the physical significance that the discontinuities
possible across a gravitational wave front, according to
Lichnerowicz’s conditions, are just what are required
for the transition from a space-time region without
gravitational radiation to one with gravitational radi-
ation, according to the definition just proposed. This
is of course precisely what one would wish, to show the
compatibility of the two approaches to the problem.

It will be noticed also that the transition from Type
I to Type II reduces the number of independent «’s and
B’s from two each to one each. This implies some
additional symmetry in the radiation field, which may
at first sight be surprising. However, a physical inter-
pretation which at once suggests itself is that because
of the nonlinearity of the field (that is, because the
gravitational field effectively enters its own source-
function), gravitational waves without any kind of
symmetry would interfere with themselves to the
extent of destruction.?*

The physical effects of gravitational waves may be
investigated by using the equation of relative accelera-
tion (2.8), in exactly the same way as the effects of
discontinuities were investigated in Sec. 2. The dif-
ference between Type I and Type II space-times shows
up clearly if one examines the behavior of test particles
moving with velocities different from that specified by
the timelike tetrad vector. As an example, consider the
effect on K;* [defined by (2.9)] of the local Lorentz
transformation defined at an event by

A%, =\?, coshf+\!, sinhé,
A1, =)0, sinh@+\!, coshé,
5‘2»= >‘2m 5‘3;‘ = >‘3m

(3.12)

where the unbarred tetrad is that to which the canonical
forms (3.9) and (3.10) are referred. Then the com-
parative values of Ku (omitting K, which are unal-
tered) are

228 Note added in proof.—The remaining discussion, where it
refers to particular canonical types, is restricted to Types I and
II. The absence of scalar invariants in Type III suggests that
spacetimes of this type would represent radiation without sources,
but the interpretation of this type is not obvious, and further
consideration of it is left to a subsequent paper. The writer knows
of no example of a Type III spacetime; he would be grateful if
new examples of empty spacetime metrics of any type were sent
to him for study.
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Type I:

Kyp=—(a—q), Ks=—(a—o cosh20),

K13=0, K23=%(ﬁs—52) sinh26,

Ka=—(a+0), Kiz=— (ato cosh20).
Type I1:

Kyp=—(a—0), K22=—(a_0’e_29)s

K13=0, Ky=0,

K33=—(a+o0), Kg=— (atoe®).

Here the barred K’s are those referred to the tetrad
A%, and in Type I, a; and a3 have been replaced by
a=3(astas) and o=3(az—ay), for ready comparison
with Type II.

An essential difference between the types is repre-
sented by the fact that in Type I, the changes in K,
and K33 go as 6% for small 6, while in Type II, they go
as 6. The Type I changes are essentially a special-
relativistic effect, in the sense of “being of the same
kind as familiar effects such as the Lorentz contrac-
tion,”” but the Type II changes are characteristic of a
non-Lorentzian phenomenon. The first-order change in
K3, another instance of non-Lorentzian behavior,
suggests that the 8’s may be connected with the rota-
tional properties of the field.

For strong Lorentz transformations (large 6), the
Type I K’s become large in absolute value for both
signs of 6, but the Type II K’s approach finite limits
for large positive 6, so that in Type I the K’s have
extreme values for 6=0, while in Type II the extreme
values are approached only as #—oo, that is, as the
observer’s velocity approaches the fundamental velocity
in the direction of propagation of the radiation.

4. REDUCTION OF THE ENERGY-MOMENTUM
PSEUDOTENSOR

As is well known, one may convert the covariant
conservation equations?

Tw;»=0
into the form

{(=*Tw+(1/)4},,=0

by introducing the canonical energy-momentum pseudo-
tensor f,’. This fact, and the canonical origin of #,’,
lead one to identify it as the “energy-momentum pseudo-
tensor of the gravitational field.” The physical argu-
ment is, roughly, that the deviations of space-time
from flatness introduce additional terms into the con-
servation equations, and that these deviations are
consequencies of the existence of the gravitational field.
All would be well, were it not that ¢,” depends on idio-
syncrasies in the choice of coordinates as well as on
actual physical phenomena. The nonhomogeneous
transformation properties of ¢, make it impossible to

23 A semicolon denotes a covariant derivative.
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construct any scalar quantities out of it, at least in a
direct way, and so its physical interpretation must be
suspect, because of this essential dependence on the
coordinate system. It is hard to see how one can
attach any physical meaning to £,* unless one can first
attach a physical meaning to the coordinate system.
The same difficulty would arise with vectors and
tensors, except that one can construct scalars (e.g.,
physical components) out of them by contracting with
other vectors or tensors, and these scalars are of course
independent of the coordinate system.

The usual procedure in dealing with #,” is to make
weak-field approximations and to assume mathe-
matically convenient coordinate conditions. These
methods are controversial and their physical signi-
ficance obscure. Difficulties in dealing with #,” might
anyhow have been expected from consideration of the
principle of equivalence. Since the gravitational field
can be abolished at an event by a coordinate trans-
formation (in the sense that the I'?,, can be made to
vanish), the gravitational energy, momentum and
stress at an event can readily be understood to be as
ephemeral as the coordinate system. The energy of the
field resides not in its value at a single event, but in
its variation from one event to another. It is not sur-
prising that one cannot abolish #,* throughout any
finite 2-surface in a general space-time. However, a
mean value #,” may be defined over the 2-surface of a
small 3-volume, and by a suitable physical prescription
of the coordinate system, such a definition can be made
covariant.

The coordinates to be prescribed are well known to
mathematicians under the name normal coordinates,®
and have been used in general relativity theory
before,*2% but it is nevertheless desirable to give some
physical justification for this choice.

The choice of coordinate system depends on the
physical situation involved. For many purposes it is
enough to specify at an event a tetrad of unit vectors,
or the corresponding local Minkowskian coordinates
axes, representing the 4-velocity of an observer and
rectangular Cartesian axes in his local instantaneous
3-space. The essential thing is that it should be possible
in principle to identify the chosen system with one
which could be used by an observer in the given
physical situation. Recently,! the writer compared the
behavior of test particles in a gravitational field in the
general relativity theory and in the Newtonian theory
(see Sec. 2 above). In that case it was appropriate to
introduce local Cartesian coordinate systems in the
instantaneous 3-spaces along one of the particle
world-lines, and the coordinate systems at different
events were related by parallelly propagating along the
world-line the tetrad vectors representing the coordi-
nate axes. As might be expected, it was found that this

2 G. D. Birkhoff, Relativity and Modern Physics (Harvard

University Press, Cambridge, 1923).
25 T. Y. Thomas, Phil. Mag. 48, 1056 (1924).
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mode of propagation led to a description of gravita-
tional phenomena most closely resembling that obtained
in the Newtonian theory from the use of ordinary
Newtonian inertial frames. However the whole formal-
ism, being designed for a comparison with the New-
tonian theory, was essentially nonrelativistic.

The present case is rather different. The formalism
just described is appropriate to the discussion of dy-
namical effects, as in the discussion following Eq. (2.8)
above, but the whole idea of the energy-momentum
tensor is essentially a relativistic one, developed largely
within the framework of a relativistic theory—the
Maxwell theory—and it would be inappropriate to
develop the same idea in general relativity theory,
regarded now specifically as a field theory of gravita-
tion, except in a relativistic manner. Therefore what is
required is a convenient 4-dimensional analog of the
Minkowskian inertial systems of special relativity, but
one defined more completely than by a tetrad of unit
vectors. Some loss of general covariance is inevitable,
and the whole aim is anyhow a little artificial, the idea
being to relate the novel concept of gravitational radi-
ation developed here to a conventional idea of radiation
developed specifically for electromagnetic theory—
although it must be admitted that the discussion of the
Poynting vector at the beginning of Sec. 3 applies also
to flows of other sorts of energy.

Having, then, the aim of investigating the energy-
momentum pseudotensor by analogy with Lorentz-
invariant field theories, it is appropriate to choose a
coordinate system which approximates to a Minkow-
skian system. In the weak-field approximation method
this is done by considering a metric which deviates
slightly from the Minkowski metric at sufficiently large
distances from material particles. The conceptual dif-
ficulties which arise in the use of that method can be
ascribed to the lack of a covariant formulation of the
weak-field approximation. The alternative adopted here
is a local approximation method capable of invariant
formulation: the introduction, in the neighborhood of
any chosen space-time event, of a normal coordinate
system, which approximates to Minkowskian inertial
system in a mathematically and physically well-defined
way.

The physical interpretation of normal coordinates
comes out of their exact correspondence to Minkowskian
coordinates in one particular respect, namely the meas-
urement of interval. This is best explained by sum-
marizing the relevant properties of such a coordinate
system, which are the following:

Normal coordinates x* can always be chosen so that
at any chosen space-time event O,

(1 x#=0, (4.1)
(ii) Zur="us, (4.2)
(iii) Ty =gu,,=0, (4.3)
(iv) Zunpo=3 (Ropret+Rpuuo), (4.4)
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and
(v) at every point P in the neighborhood of O,
4.5)

xt=u PO“,
where

pot=dx*/du (4.6)

is a vector tangent at O to the geodesic OP, and
(a) if OP is timelike, # is the proper time 7 from O to
P;
(b) if OP is spacelike, « is the proper distance s from
O to P,
(c) if OP is null, # is a preferred parameter in terms
of which the equation of the null geodesic OP takes the
form

(this defines % up to a linear transformation on the
null geodesics through O. The origin of # is chosen to
be at O, and x* defined by (4.5) does not depend on the
scale of u).

(vi) the normal coordinate systems at O are connected
to one another by homogeneous Lorentz transforma-
tions at O.

It is clear from examination of these properties that
an observer who assigns coordinates in the neighbor-
hood of a given event O by theodolite measurements at
O and interval measurements from O as if space-time
were flat, will assign normal coordinates. Thus the
employment of normal coordinates exploits to the full
the locally Minkowskian properties of a Riemannian
space. In order to connect this to previous work, it is
convenient again to introduce a tetrad of unit vectors
directed along the coordinate axes.

It is property (iv) which supplies the key to a co-
variant expression for the energy-momentum pseudo-
tensor ¢,*. The latter is homogeneous quadratic in the
gu», s, and so if it is expanded in a power series about the
origin of normal coordinates, the first nonvanishing
term has an invariant coefficient, a function of R,,..
By taking an average over a small 2-sphere, an in-
variant average expression is obtained.?** The details of
the calculation are as follows: The energy-momentum
pseudotensor is defined by

oL
b= L8 — goo—, 4.7)
0gpow
where
L= (—g)g"[T T’ =TT, ] (4.8)

is the first-order Lagrangian for the field. A straight-
forward calculation yields for L this explicit expression

262 Note added in proof.—This is perhaps rather an unusual
definition of average, being in effect

fy$=lim (4ort) Sutes.

1097

in terms of the gy, ,:

=3 (=S e o ur, 4.9)
where
S’"‘“’P":S#V‘“’”P:g"’TU!“'PV-i-gP"UI-“’T"'
_gwpUuyra+gervaa’ (4‘10)

quptr =gypgw+gp.7grp_gpvg;w.

From (4.7), (4.8), and (4.9) one may write #,* explicitly

in terms of the g, ,:
ty?=%(08:20%—254°6:%) (— ©)AS™¥ " gy oump-  (4.11)

Differentiating (4.11) twice with respect to xf and
setting gu,,=0 in agreement with (4.3), one obtains

1,2=0, t,%:=0, (4.12)
t‘pd” e %(67‘)5¢¢— 25¢p51¢) (—g)%S‘lrxuv‘ra
X (8rx.otGun ont Erx.ongunst)-  (4.13)

Now making use of (4.4) and the field equations for
empty space-time (2.1), one finds aftera straightforward
calculation

1y? 0= 5 (6:P64%—265,%) (8¢"6,"+0,"3¢")
X (R —+R™)Rpun. (4.14)

It follows from (4.9) that the mean value of £,¢ over
the surface of a small sphere about O in the 3-space
t=0 will be

i.ﬂ"—‘ 0%, a5 (415)

Substituting from (4.14) into (4.15) and introducing
the unit vector A?=4¢? directed along the time axis,
one obtains

tyo=(1/27)(8:%6y%—264%6,%) (AN — g*)
X (R —+ R )Ry  (4.16)

This covariant expression is to be interpreted as the
approximate mean gravitational energy-momentum
tensor determined by an observer with 4-velocity A* by
measurements in his instantaneous 3-space. It will be
observed that fy,=g,s+fy% is a symmetric tensor.

A straightforward but lengthy calculation yields the
value of {y¢ for the Riemann tensor in canonical form.
It is of importance to compare the physical components
for Types I and II. One finds for Type I

3
tP=(1/27)[2{> 2 (8.9 204 6:P+ 304510141
k=1

3
436,506, F)} — 968 2], (4.17)
k=1

It will be noticed that all the off-diagonal terms vanish.
It follows that an observer measuring these physical
components in his rest frame observes no gravitational
energy flow. On the other hand, for Type II one finds

F.B= (1/27)[a2(— 426 54 168,28, 225 25,8
+226,58:8) + dac (8,265 — 5,3655)

+802(8.2+0.") (6F—6:5)].  (4.18)
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This is of the form
{.#=a diagonal part + (8/27)c¢.£P,

where {,=0,"1+6," is a null vector in the direction of
propagation of theradiation represented by Type IT. This
part of i,f is of exactly the same formas the energy tensor
of an electromagnetic null field, and so should be identi-
fied as that part arising purely from gravitational radia-
tion. The terms in o?, on the other hand, are to be as-
sociated with the nonradiative part of the field, and the
terms in ao with the interaction between the two parts
of the field. An observer measuring a Type II field
will, according to this definition of ¢,”, observe a gravita-
tional energy flow in the 1-direction.

These results lend plausibility to the definition of
gravitational radiation proposed in Sec. 3. If one
accepts the energy-momentum pseudotensor as a re-
spectable part of Einstein’s theory, then the calcula-
tions in this section show that when, according to the
proposed definition, gravitational radiation is present,
there must be an energy flux through a small 2-surface.

5. EXAMPLES

It would not be satisfactory if empty static space-
time regions could admit the presence of radiation;
that they cannot is shown by the following rather
clumsy proof.

A static space-time region, rigorously defined, is one
in which there is an everywhere-timelike group of
motions of the region into itself (apart from boundaries)
whose generators form a normal congruence.

It follows that if the timelike tetrad vector A* is
taken to be tangent to the generators, then

(5.1)

where yow=2As Ae*Np” are some of the Riccl rotation
coefficients. A standard formula®® then at once gives

R()abc:O- (52)

Then a rotation of the spacelike tetrad vectors will
diagonalize the symmetric 3-tensor Ro.os, and it follows
from the field equations (2.1) that R.p.q must be simul-
taneously diagonalized. Hence the Riemann tensor is
now in Type I canonical form, and so no gravitational
radiation is present. It follows from a result of Taub?®
that there can be no plane gravitational waves filling
all space-time.

The simplest empty space-time gravitational field is
the Schwarzschild field. Taking the metric in the form

2m 2m\ !
ds*= (1—-—)dt2—- (1—— dr?
r r

—72(d6*>+-sin0de?),
and labeling 78¢¢ in the order 1230, one finds, with

Yoar=0,

(5.3)

26 A. H. Taub, Ann. Math. 53, 472 (1951).
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tetrad vectors directed along the coordinate axes, a
Type I Riemann tensor already in canonical form with

The Riemann principal vectors are not fully deter-
mined, however, because of the symmetries of the
field, which show up in the equality of a, and as.
According to Birkhoff’s theorem,?” there can be no
spherical waves, since the Schwarzschild field is the
only spherically symmetric empty space-time solution
of Einstein’s Eq. (2.1).

The cylindrically symmetric metric introduced by
Rosen,? in discussing cylindrical waves.

ds*= 724 (dP— dp?) — e pldp* — €*Vd2,

| DV
— s =ar=az=m/1r3,

v=v(p,0), v=vp), (5.3)
is of Type II, with
Y W Wiy Yy
s=—+5——+F+———3——, (5.0)
dpdt 9dp 0t At dp  dp O

as may readily be found by taking tetrad vectors along
the coordinate axes. Radiation will be present unless
the above expression for o vanishes.

6. DISCUSSION

The definition proposed in this paper provides an
unambiguous local criterion of the presence of gravi-
tational radiation, but it suffers from several defects.
In the first place it counts as radiation only those
gravitational disturbances which are propagated with
the fundamental velocity. If it should turn out to be
desirable that phenomena propagated with lower veloc-
ities be classified as radiation, then they would not be
included under this definition. In particular, standing
waves are not included. However, the analysis points
to a new and powerful tool for the investigation of
gravitational fields in general, namely the scalar in-
variants a; and 8%

In the second place, the definition is a local geometric-
algebraic one, and does not reveal at all how the proper-
ties of the radiation may vary along the path of prop-
agation. This hiatus can be filled, at least formally, by
introducing Petrov’s canonical forms (3.9)-(3.11) into
the conservation law for the matter-free gravitational
field:

R¥ype;u=0, (6.1)

which may readily be deduced from the Bianchi iden-
tities and the field equations (2.1). The resulting equa-
tions, which bear a striking similarity to the ordinary
conservation laws for a medium with density and
pressures, will be discussed in a subsequent paper.

Another defect of the present discussion is that it

27 Reference 24, p. 253.

28 N. Rosen, Bull. Research Council Israel 3, 328 (1954).

2 That these might become significant had already been em-
phasized by several workers in the formal talks and the discussion

at the Berne Conference on Relativity Theory, July, 1955 (un-
published).
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gives no indication of what secular changes may occur
in radiating matter. Suppose for example that a
Schwarzschild particle is disturbed from static spherical
symmetry by an internal agency, radiates for some
time, and finally is restored to static spherical sym-
metry. Is its total mass necessarily the same as before?
This and similar problems required investigation. Also
the status of the scalar invariants of the Riemann
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tensor in the Einstein, Infeld, and Hoffmann approxi-
mation theory deserves clarification, and may be hoped
to assist in resolving the annoying ambiguities of inter-
pretation which beset that theory.

I am much indebted to H. Bondi for a remark which
stimulated this research, and for many discussions, and
to L. Bass for suggesting a valuable improvement in
presentation.
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Application of Formal Scattering Theory to Many-Body Problems*
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It is pointed out that the Lippmann-Schwinger integral equation, as it is usually written, does not neces-
sarily have a unique solution when applied to the motion of three or more bodies. It follows that a certain
amount of caution must be exercised in using the Lippmann-Schwinger equation as the basis for an approxi-

mation procedure.

ORMAL scattering theory' has been used exten-
sively in the recent literature to deal with re-
arrangement and inelastic collisions as well as elastic
scattering. Nevertheless it is not widely recognized that
in applying the formulas of formal scattering theory to
reactions involving more than two particles a certain
amount of caution must be exercised. This is a conse-
quence of the fact that the Lippmann-Schwinger (L-S)
integral equation for the wave function, as it is usually
written, does not necessarily have a unique solution
when three or more bodies interact while for the two-
body case the solution is unique.

In formal scattering theory one constructs from the
Schrodinger equation an integral equation for the wave
function. The solution of this integral equation, besides
being a solution of the original Schrédinger equation,
presumably satisfies the required asymptotic boundary
conditions. In view of the fact that certain forms of the
Lippmann-Schwinger integral equation do not have a
unique solution, evidently they fail to incorporate
these conditions fully.

The fact that the solution to the Lippmann-Schwinger
equation is not unique means that care must be used in
applying any scheme of successive approximations to
generate a solution to the L-S equation. One must
make sure that the solution generated is the particular
one desired.

The problem of formal scattering theory is to con-

* Supported in part by the U. S. Atomic Energy Commission.

t Now at the University of Birmingham, Birmingham, England.

1 C. Moller, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
23, No. 1 (1945); B. A. Lippmann and J. Schwinger, Phys. Rev.
79, 469 (1950); M. Gell-Mann and M. L. Goldberger, Phys. Rev.
91, 398 (1953); S. Sunakawa, Progr. Theoret. Phys. Japan 14,
175 (1955).

struct the solution of a given Schrédinger equation
(E—Ho—V)¥=0, (1)

which satisfies certain asymptotic boundary conditions.
This problem is solved in a formal way by the Lippmann-
Schwinger integral equation.

¥ =lim¥ (),
0
V(O =je(E—Ho—V-4ie) '@ @)

=&+ (E— Hotie) VIO,

The solution obtained in this way is unique. However,
the Lippmann-Schwinger equation is more often written
in the following way.

V=d-+lim(E—Hotie) VY. 3)

While any solution obtained by the procedure of Eq.
(2) will satisfy Eq. (3), Eq. (3) has solutions which
cannot be obtained by the procedure of Eq. (2).

We can show that the solution of Eq. (3) is not unique
by showing the existence of a solution to its homogene-
ous counterpart,

¥=lim(E—Ho+ie) VY. (4)

Then, clearly, by adding an arbitrary multiple of a
solution of Eq. (4) to the solution of Eq. (3), we get a
second solution of Eq. (3).

The simplest case where this occurs is the problem of
the mutual scattering of two particles by a potential V
acting between them provided a bound state of the two
particles in the potential exists. For convenience, let us



