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A calculation using the Chew theory indicates that nucleon-nucleon and pion-nucleon final-state inter-
actions both play a role in contributing to the pion production cross sections in nucleon-nucleon collisions
at energies near threshold. In particular, it is found that the cross section will be enhanced if (1) tensor
forces lead to a D-v ave nucleon-nucleon final state interaction or if (2) the pion and one of the nucleons is in
a state of isotopic spin 3/2 and angular momentum 3/2. Both of these effects are present if the isotopic spin
of the initial two nucleons is unity and the isotopic spin of the final nucleons is zero. In the case of deuteron
formation, it is found that the two effects are of the same order of magnitude, but depend differently on
energy.

I. INTRODUCTION

''N a previous work' we made a calculation of the
i. differential cross section for the reaction p+~
s++d at energies just above threshold. Vsing the Low-
Wick formulation of field theory, ' we derived an expres-
sion for the matrix element for this reaction in terms of
the wave functions of a physical deuteron and diproton
and an interaction given by the Chew theory. ' We were
able to evaluate this matrix element by making several
approximations, including the replacement. of the
physical two-nucleon wave functions by bare wave
functions. Starting with an expression similar to the
one we derived, an independent calculation was carried
out by Germen. ' Closest agreement with experiment was
obtained in these calculations when two conditions were
satisfied: first, nuclear potentials with repulsive cores
were used to obtain the two-nucleon wave functions;
and second, the contribution from the D-state part of
the deuteron wave function was not neglected.

In Sec. II of this paper we apply the method of A to
the general case

N+ iV~+ N+ N,

where E can be either a proton or a neutron. We dis-
cuss qualitative features of the various cross sections
near threshold and compare our results with the
phenomenological model of Brueckner and Watson' as
discussed by Rosenfeld. ' In Sec. III we treat the ques-
tion of final-state scattering of the emit. ted pion by the
two nucleons and discuss how this scattering modifies
our previous results. A number of authors have con-
sidered the role of pion-nucleon final-state scat. tering,
especially Aitken et al. ' However, in these previous
treatments an approximation was used which makes
the cross section proportional to the square of the final
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two-nucleon wave function at a particular distance
from the origin. The magnitude of t.he wave funct. ion
is very sensitive to the choice of this "characteristic
distance for pion production, " especially if the nucleon-
nucleon potential has a repulsive core. XVe do not make
an approximation of this type and are thereby able to
estimate how pion-nucleon scattering affects the energy
dependence as well as the magnitude of the pion-
production cross section.

II. QUALITATIVE FEATURES OF THRESHOLD
PRODUCTION

The transition ma, trix T for the reaction of Eq. (1)
can be written'

P—(|P,(—) V' s1l, (+))

where P„'+& is the (outgoing) wave function of the
initial two nucleons with rela, tive momentum p, and
lp~ & ~ is the (incoming) wave function of the final two
nucleons with relative momentum p'. The interaction
V, is given by

Vs= Vis+ Vse,

where V;, (i= 1, 2) expresses the interaction of a pion
with the ith nucleon as given by the Chew theory. If
we restrict ourselves to consideration of the problem
at threshold, V, does not depend on the positions of
the nucleons.

Because of charge independence, the matrix elements
for all the reactions given by Eq. (1) can be written in
terms of three isotopic spin matrix elements' T», TIo,
and Tol where the first subscript refers to the isotopic
spin of the initial two nucleons and the second to t.hat
of the final two nucleons. It is convenient to classify
these matrix elements further, according to whether the
initial nucleons are in a triplet 'T or singlet 'T spin
state. There is no interference between these two cases.

The isotopic spin variables can be eliminated from
the matrix elements immediately. If this is done, the
interaction appearing in any single transition matrix
will be either symmetric or antisymmetric in the nucleon

In A, we actually derived the expression for the transition
matrix of the inverse reaction.

Van Hove, Marshak, and Pais, Phys. Rev. 88, 1211 (1952).
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Tt()= (&j' x &Vs &n x )~

'T»=(~ x' V ( x')
'&»= (~u x', Vs t ~ x ),
'&ot=(v "x,V q 'x')
'2'»= (~~"x' V; ~~ x*)

(4)

where the superscripts s and a refer to symmetric and
antisymmetric respectively. The matrix element 'T» is
seen to be zero just from the spin matrix multiplication.
In all cases given by Eq. (4), the pion is emitted in a
p-state with respect to the two-nucleon system. We
have not considered the emission of s-wave pions.

Since the interaction V, does not depend on nucleon
spatial variables, we see from Eq. (4) that the magni-
tudes of the various cross sections are essentially deter-
mined by the spatial integrals J'(e„*y„dr.If we expand
p„and p„in partial waves, we can carry out the angular
integration. We are then left with radial integrals of
the form

F) = u)„u)„dr,

where I)„/ris a radial two-nucleon wave function corre-
sponding to momentum p and orbital a,ngular mo-

mentum I,. We have suppressed an index referring to the
total angular momentum of the two nucleons.

The magnitudes of the integrals F~ will of course
depend strongly on the explicit form assumed for the
two-nucleon initial and final wave functions. The more
N~„and N~~ di6er from regular spherical Bessel func-
tions (plane wave), the larger F) will be in general.
Since the final nucleons have low energy, the N&~ will

diBer from a plane wave only in the states of low angular
momentum. We would expect the contributions from
the S-, I'-, and D-state overlap integrals to decrease in
that order. This is not necessarily the case. In the first
place, Fp is depressed because the repulsive core in the
nuclear potential reduces the l =0 wave functions near
the origin —a region from which an important con-
tribution to Fp is expected to come. States of higher
angular momentum are not affected so much by the
core. In the second place, if the final nucleons are in a

spin operators and will be of the form (with h=c=1)

V.= (2 / .)'(f/ )( a~ a),

where f is a, coupling constant determined from pion-
nucleon scattering, co, is the energy of a pion of mo-
mentum q, p is the pion mass, and e is the usual Pauli
spin operator. It is convenient to write the two-nucleon
wave functions as a product of space and spin functions

))l'„=(e„(space)x (spin),

where it is understood that if p is symmetric, p~ con-
tains spin operators. With the assumptions we have
made, only the following matrix elements contribute to
the cross sections:

triplet spin state, the tensor force will couple the D-
state wave function to the S-state function. This has
the efIect of enhancing F2. In A, using wave functions
obtained from Gartenhaus potentials" and a deuteron
final state, we found that the contribution to Fp from
the region within the range of the nuclear potential
(reduced by the repulsive core) was very nearly can-
celed by the contribution from the outside region. This
had the eGect of making Fp negligibly small when com-
pared to F2.

The enhancement of F2, due to tensor forces, occurs
only if the final two-nucleon wave function is sym-
metric both in space and spin. From Eq. (4) we see
that enhancement occurs only in the case of 'Typ.

According to the model of Brueckner and Watson, the
matrix element Typ is also the largest. However, the
contribution from F2 is neglected, and the enhancement
is attributed to a strong pion-nucleon final state inter-
action in the state of isotopic spin 3/2 and angular
momentum 3/2 f(3-3) state). In the next section, we

shall see that both these effects are present.
Of the matrix elements given by Eq. (4), 'Ttt is the

smallest. This can be seen by noting that the initial
and final two-nucleon states have the same spin and
isotopic spin. Therefore, the space wave functions q„
and p„areeigenfunctions of the same potential be-
longing to different energies. Thus, only to the extent
that the nuclear potential is velocity-dependent will the
overlap integrals F~ differ from zero. The nuclear po-
tential is not known in sufhcient detail at the present
time to enable us to get a good estimate of the size of
'T». We can only say that it is small. It is observed
experimentally that the reaction p+~'+ p+ p,
which arises only from T», has the smallest cross sec-
tion. According to the Brueckner-Watson model, this
reaction is enhanced by the strong pion-nucleon (3-3)
state interaction. However, the Pauli principle forbids
the final nucleons from being emitted in an S state if

the pion is in a p state, a fact which reduces the cross
section.

III. PION FINAL STATE SCATTERING

In obtaining the matrix element of Eq. (2), we have
made the approximation of replacing the complete
two-nucleon wave functions by their zero meson parts.
In so doing, the effect of scattering of the emitted pion

by the two nucleons is neglected. In the following, we

shall not try to obtain an expression for the complete
two-nucleon wave functions but shall instead modify

the interaction. As in A, it proves convenient to write

the matrix element for the inverse reaction. We write

2' —(p (—) Q ~$2(+)p, (+))+g, (—) /jr 'y (+)p, (+)) ({j)

where

H, '=Z„(V;)a„+V;,*a).,*), s=1, 2

's S. Gartenhaus, Phys. Rev. 100, 900 (1955).
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is the interaction of the pion with the ith nucleon, aA,.

and a~* are annihilation and creation operators, and

P, (j&i) is the wave function of the pion modified by
by scattering from the jth nucleon. If the pion can be
described by a plane wave, the matrix element of Eq.
(6) reduces to that of Eq. (2) (with initial and final

states reversed). The justification for writing Eq. (6)
is that it seems reasonable to describe the pion by a
wave function more nearly resembling its actual wave
function than a plane wave. This treatment neglects
multiple scattering of the pion. An approximation of
this type, in which a pion emitted by one nucleon is
allowed to be scattered by the other, was suggested
by Gammel. "

The wave function which describes the scattering of
a pion by the jth nucleon can be written

In Eq. (8), we shall call the term in T containing V, the
direct production term and the rema, inder of T the
scattered term.

We shall again restrict ourselves for simplicity to
deuteron formation (the reaction p+~7r++d). Then
the only contribution due to the scattered term in the
matrix element will come from the D-state part of the
initial diproton wave function. This is true because the
pion cannot be in a (3-3) state with respect to one of
the final nucleons if the total angular momentum of
the system is zero (initial S state). Other angular mo-
mentum states are forbidden by the requirement that
the pion be emitted in a p state. As in the direct pro-
duction term, there will be a contribution from the

(klT, lq)
P,'+'=5(q —k)+ exp( ik —r,),

coo coo+zE
(7)

where (klT;lq) is the oR-the-energy-shell transition
matrix describing the scattering and r; is the position
of the jth nucleon. We have neglected the pion-nucleon
center of mass motion and have made our usual restric-
tion q«u so that exp(iq. r, ) 1. Substituting Eq. (7)
in Eq. (6), we obtain

T=(P ' &, (V,+2k(~, ool,+io)—'[Vgo(kl Tolq)e' '
+V (kIT I

)qe-'"'])P„'+'), (8)

where r= r~ —r2. If we neglect scattering in states other
than the (3-3) state, the pion-nucleon scattering matrix
becomes

.I5

.10

.05-

& =.2O/rr

(kI z;Iq)=P»o»„ (9)

where P»&" is a projection operator for the (3-3) state
and tj„depends only on the magnitude of k and q.
The operator P»"' is given by

P "'= (4orkq)
—'L2k q io,"(k—)&q)].

I

~ 8

FIG. 2. The behavior of the direct production term in the
matrix element F~ and the scattered production term F as a
function of the momentum q of the emitted pion. The units are
the same as in Fig. 1.

0.2-

H
O.i-

Fz(. 1. The integral I(p,k) plotted as a function of k for
p=2.6 p. The abscissa is in units of the pion mass p and the ordi-
nate in units of p, &.

"J.Gammel, Phys. Rev. 95, 209 (1954).

deuteron S-state and D-state wave functions. However
we can neglect the D-state contribution because of the
small D-state probability of the deuteron. The peculiar
cancellation which depresses the S-state integral Fo is
not important here because of the additional r de-
pendence in the scattered term of the factor exp(&ik r).

If we now use Eq. (9) in Eq. (8) and carry out the
angular part of the integration, square, and sum and
average over spin states, we obtain

~
I
Tl'= (4 )'(f/c)'(q/p)'~. '

X (Foo+2Fo Re(Fo/v2+F) cos(6o —8o) (3 cos'8 —1)

+ IFo, 'V2+F I'(3 cos'-0+1)), (10)

where 8 is the angle between the incident proton and
emitted pion, 80 and 82 are the diproton S and D phase
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shifts, Z indicates the appropriate spin summation, and
Re means the real part. This expression differs from
that obtained in A by the additional factor F, which
arises from the scattered term, and is given by

ro, & ( k'tssI(p, k)F= dk
q Ij ((d&

—Ms+ze)tosl
where

f
I(p,k) = drsts„(r)tssd(r) js(kr).

).0

y) 0.5'

Here I« is the deuteron radial 5-wave function and j2
is a spherical Bessel function of order 2. The diproton
function Ns„is normalized to us„~sin(pr —~+89).

It is apparent from Eq. (10) that Fs/V2 and F appear
symmetrically so far as their contribution to the angular
distribution is concerned. However, there is no reason
to expect F2 and F to depend in the same way on
energy. In order to get an estimate of the magnitude
and energy dependence of F, we need to specify tI„.
For simplicity, we choose a form for t&, suggested by
Aitken et a/. ' These authors assume

1/rd v for to,)(oskq

(rosros) & 1/ces for co (top,

with 6 a constant. However, we do not take d to be
constant, but choose it so that t~, is normalized on the
energy shell; that is, we choose 6 so as to satisfy the
equation

tgs~tsv= —(xqrev) te's sinb,

where 8 is the (3-3) state scattering phase shift. For
q &@, 8 can be approximated quite closely by

0.1

.05'

I I l 1

.8 l 0 I2~

Fro. .'3. The calculated cross section for the reaction p+p~
s.++d (solid line) and the experimental points as a function of the
pion momentum q. The dashed line indicates the calculated cross
section when one uses the 6 of Eq. (12b).

A plot of F as a function of q is given in Fig. 2. For
comparison, F2 is also shown. The principal reason that
F& decreases with increasing energy is that N2„oscillates
more rapidly with increasing p, causing the integrand
to average more nearly to zero.

We now consider the cross section. Since Fo is
negligibly small, the additional term F does not affect
the angular distribution, which remains 3 cos 8+1.
Using Eq. (10) and setting Fs——0, we get for the total
cross section o- ..

e*' sin8 8=0.24(q/p)s. ~=16 M(f/p)'(q/p)s(Fs/v2+F)', (13)

We then obtain
6=0.24ros/(7rps) . (12a)

If we had followed Aitken et a/. , we would have

6=0.24/(s-p'). (12b)

The choice of 6 has an increasing effect on the magni-
tude of the cross section as the energy increases. How-
ever, our calculation has its greatest reliability near
threshold, where the difference is unimportant.

The double integral for F must be performed nu-
merically. If Gartenhaus wave functions are used, the
integral I(p,k) is given by Fig. 1. This integral was
computed only at threshold, but is not very sensitive
to small changes in the momentum p of the initial
diproton wave function. For higher momentum, the
maximum value of I(p,k) will be smaller and shifted
to the right. The important feature of I(p,k) is that it
is very small for high values of k, and therefore makes
the integral F insensitive to the behavior of tl„near
the cut-off momentum k,=6 p. The imaginary part of
F is negligible in the energy range we are considering.

where M is the nucleon mass. In Fig. 3 this cross sec-
tion is plotted against q for f'=0.08. The experimental
points (from Fig. 3, reference 6) are also shown. If we
had used the value of 6 given by Aitken et a/. instead of
6 as given by Eq. (12a), the calculated cross section
would be reduced in the region q p, and would be
closer to the experimental points. It should be pointed
out that we have not normalized the theoretical curve
to the experimental points. The magnitude of the cross
section is determined by our choice of f'=0.08, a value
determined by pion-nucleon scattering data. However,
the actual curve given in Fig. 3 should not be taken too
seriously in view of the approximations made in
evaluating the matrix element. In addition a two-
nucleon phase-shift calculation by Gammel and Thaler"
indicates that the Gartenhaus potentials are not valid
at high energy.

Nevertheless, there are several features of the calcu-
lation that have a somewhat more general validity. Of
particular interest is the fact that the contribution from

"J.Gammel and R. Thaler, Phys. Rev. 103, 1874 (1956).
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tensor forces and the contribution from pion nucleon
final state interactions are of the same order of magni-
tude. Previous calculations have neglected one or the
other of these eRects. In our particular calculation,
neither of these eRects is large enough to account for
the experimental results by itself.

According to Eq. (10), three important contributions
to the cross section come from the terms Fo, F2, and F.
The Fo term arises from a transition from an initial
two-nucleon S state to a final two-nucleon S state.
This term is expected to be rather small, but the fact
that it is negligibly small is an accident of the (&arten-
haus wave functions. The principal eRect of Fo is to
alter the angular distribution. If the diproton S phase
shift bo is negative (at 300-Mev proton laboratory
energy), Po will be positive and will make the angular
distribution more anisotropic than 3 cos'8+1 and more
in agreement with experiment. The F2 term arises
from a D- to D-state transition. The magnitude of F~ is
sensitive to the details of the D-state functions, but
the fact that F2 decreases with increasing energy is
rather insensitive to the particular choice of wave
functions. If the D-wave phase shift 62 is large and
negative, however, F~ may not decrease with increasing
energy. The scattered term F arises from a D- to S-state
transition. The magnitude of F depends on the two-
nucleon wave functions and on the oR-the-energy-shell
behavior of tI„-,. However, for several diR'erent choices of
t&, suggested by meson theory, F will increase as the
energy increases. "

A rather good fit to the experimental data on pion
production with deuteron formation has been obtained
with the semiempirical formula

(14)

where the first term is supposed to arise from s-wave
pions and the second from p-wave pions. Here a and b

are constant parameters determined from experiment.

"For example, this statement is true for the (3-3) state transi-
tion matrix found by Gammel, reference 11.

However, we have seen that the production of p-wave
pions arises from several terms, none of which is ex-
pected to remain constant as q increases. Furthermore,
a fa,ctor p

' appears in the expression of Eq. (13) for
the cross section. One factor of p

' arises simply from
the fact that the relative velocity of the incoming
protons appears in the denominator of the formula for
the cross section. The factor p ' appears because we
have taken a factor p ' out of the ma, trix element by
normalizing the proton wave functions to sin(pr —-', lir

+8&). This factor becomes squared in the expression
for the cross section. The factor p ' has the eKect of
making the p-wave production rise less rapidly than q
and thus to seem like a mixture of s- and p-waves if
analyzed according to Eq. (14). If a phenomenological
analysis of the energy dependence of the cross section
is wanted, it seems more reasonable to use instead of
Eq. (14) the formula

= (~'V+bV) (po/p)', (15)

where po is the relative proton momentum at threshold
and a' and b' are new constants. However it should be
re-emphasized that there is no theoretical reason for a'
and b' to be constant; in fact our calculation indicates
that b' at first slightly decreases and then increases
with energy.

If the constants a and b of Eq. (14) are fitted by
experiment, it turns out that a/b=0. 14. If Eq. (15) is
used, a rough estimate indicates that a'/b'~0 03. The.
data are not su%ciently accurate to determine this
ratio precisely. The important question of how much of
the cross section is due to s-wave pions needs to be
answered by (increasingly difFicult) experiments at
energies very close to threshold.
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