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that in a superconducting rod carrying a current in a
longitudinal magnetic field, a solenoidal current
configuration is set up when the metal is in the inter-
mediate state. The collapse of this solenoid when the
metal goes normal is thought to be the cause of a sharp
paramagnetic peak observed in the magnetic moment.
A visual examination of the field changes at the end of
such a rod when the rod is driven normal could provide
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some useful data. In particular, the results should have
a bearing on the question of whether the paramagnetic
effect is indeed a fundamental property of the super-
conducting state or due to a peculiar current con-
figuration dependent on geometry.

Another application not involving superconductivity
might be found in studies of ferromagnetic domains and
the motion of the domain walls in alternating fields.
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A method for studying the band structure of “complex” crystals (i.e., crystals having more than one
atom per unit cell) is developed. This method is a generalization of one proposed independently and arrived
at by different approaches by Korringa and Kohn and Rostoker for the study of the band structure of
“simple” crystals. The general approach leads to a promising method when the crystalline potential can
reasonably be approximated by a potential which is spherically symmetric within nonoverlapping spheres
about the lattice sites and is constant elsewhere. Important virtues of the method are its expected accuracy
and the fact that the largest part of the labor involved is in the computation of certain ‘“‘structure con-
stants” which are applicable to all crystals with the same crystallographic structure.

I. INTRODUCTION

F basic importance to the theoretical study of the
solid state is the knowledge of the nature of the
electronic energy bands in a perfect crystal. Conse-
quently, a great deal of effort has been put into devising
various techniques for solving the Schrodinger equa-
tion with a periodic potential, and in applying these
techniques to particular crystals. The problem of deter-
mining the band structure of “complex’ crystals has
presented a particularly formidable computational
roblem.

This note will be concerned with the problem of de-
termining the band structure of “complex” crystals. In
view of the rather great amount of work encountered
in carrying out a calculation for these crystals, it is
highly desirable to establish a method that is at once
accurate and that does not involve an excessive amount
of computational labor. A means of accomplishing the
latter aim would be a method in which a large part of
the computation is independent of the potential and
hence is applicable to all crystals with the same struc-
ture. In this way the labor involved in studying the
band structure of each individual crystal, or of a par-
ticular crystal with each of a number of assumed po-
tentials, is considerably reduced.

For the case of a “simple” lattice, such a method has
been developed independently by Korringa? and Kohn

1In the following, we shall use the term “complex’ crystal (or
structure) to mean a crystal with more than one atom per unit
cell. Similarly, the adjective “simple” will imply one atom per

unit cell.
2 J, Korringa, Physica 13, 392 (1947).

and Rostoker.>* Korringa approached the problem by
considering the scattering of the electron wave by all
the atoms in the crystal using an analysis analogous to
that employed by Ewald in his study of the diffraction
of x-rays by crystals. Kohn and Rostoker, on the other
hand, proceeded by establishing a variational principle
based on the integral equation for the electron wave
function. Both approaches lead to practical results
when the crystalline potential can be approximated by a
potential which is spherically symmetric within nonover-
lapping spheres (henceforth called “atomic” spheres)
centered at the lattice sites and constant elsewhere.

The virtues of the method make it apparent that it
would be highly desirable to have a method of the type
described for the study of “complex” lattices. It is felt
that there are many such crystals, particularly those
having two atoms per unit cell, for which the above-
mentioned approximating potential would be appro-
priate. The difference between the actual crystalline
potential and a judiciously chosen approximating po-
tential could then be handled by perturbation theory.
With this in mind, we have generalized both the
Korringa and Kohn-Rostoker approaches so that the
schemes would encompass the more general class of
crystals which contain an arbitrary finite number of
atoms per unit cell.

The general approach has several important virtues.
It has the advantage of the cellular method in that the
approximate solutions one works with are solutions of

3 W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
*P. M. Morse, Proc. Natl. Acad. Sci. U. S. 42, 276 (1956).
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the Schrodinger equation. On the other hand, it obvi-
ates the difficulties involved in that method associated
with satisfying boundary conditions. In the present
method the boundary conditions are incorporated in
the general formulation of the problem. Because of the
satisfactory manner in which the boundary conditions
are handled and the fact that the solutions within the
“atomic” sphere are accurate, the method promises to
be rapidly convergent. Finally, there is the important
advantage mentioned previously. The greater part of
the computations involved is in the evaluation of
certain “structure constants” which are the same for
all crystals forming with the same structure. The
evaluation of these constants can readily be performed
on currently available digital computers.

In Sec. IT we develop the method for “complex”
crystals in a manner paralleling that used by Kohn and
Rostoker. This approach has some mathematical ad-
vantages over the scattering approach. For one thing,
we see that the error in the energy is of the second
order in the error in the wave function. The new struc-
ture constants appearing as a result of there being more
than one atom per unit cell are studied in Appendix A
where explicit expressions for their evaluation are
given. In Appendix B, we give a derivation along the
lines of Korringa’s work.

II. GENERAL FORMULATION OF THE METHOD

In this section we shall follow closely the approach of
Kohn and Rostoker, but shall reduce the discussion of
points in common with their treatment as much as we
feel coherency permits. For the elaboration of some of
these points the reader is referred to their paper.

To define our “complex” crystal we use the lattice
translation vectors, r,, given by

In=mritnavetnges, (0:=0,£1,4+2,--+), (1)

where =3, 72, and =3 are the primitive translational
vectors of the lattice, and the basis vectors aj, ag, * * -, am
which locate the centers of the s atoms in the unit cell.

We are seeking solutions of the Schrédinger equation

[—A+V (@) () =Ed(x), 2
with the periodic potential
V(r+r,)=V(r), 3
which satisfy the Block condition, that is,
Yr(rtrs) = e by (1). 4)

Equation (2) with condition (4) on the wave function
can be formulated as the integral equation

Y(n)= f G(r,r)V (x ) (r)dr’, ©®)
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where the integral extends over a unit cell with volume
7. The Green’s function, G(r,r’), satisfies

(A+E)G(r,x)=8(r—1') (6)
and has the property that
G(r+r,, )= mG(1,r’). )

The Green’s function can be constructed from the
plane wave solutions of the homogeneous equation
corresponding to (6). The explicit expression found in

thi .
* wayGls N 1 exp{i(K.+k)- (r—71')}
(1’,1’)——"‘;% (Kn+k)2—E ) (8)

where the K, are the lattice vectors in reciprocal space,

i.e., are defined by

K. z;=2rn, n=aninteger (:1=1,2,3). (9)

Expressions equivalent to (9) are

exp{ik|r—1'—r,|}

1
G(r,t)=——73 ¢tk

(10)
4rr e |r—1'—r,|
1 ~ cosfix|r—r'—r,|}
=——7" gtk 11)
4 [r—1"—r,]|
with
k=+/E for E>0

=in/(—E) for E<O.
The function G has the usual Hermiticity préperty,
G(rr)=G*(r',), (12)

as is evident from (11).
The variational principle set up by Kohn and
Rostoker which is equivalent to (5) is

SA=0,
with

A=f¢*(r)V(r‘)dr
x[wm— f G(r,r'>V(r'>¢<r'>]dr'. (13)

This variational principle, particularly with the use of
the Rayleigh-Ritz technique, is a very powerful tool.
Unfortunately, however, the integrals involved are, in
general, very difficult to evaluate. But as mentioned in
Sec. I, practical results are obtained if the potential
V () is taken to be

V@(lr—r,—a;|) for
V)=
Vo=constant

I r—r,— ail <R;
(14

where R; is the radius of the “atomic” sphere about the
ith atom in the unit cell and where the various V@ (r)

elsewhere,
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can be different within the nonoverlapping ‘“‘atomic”
spheres. By choosing the zero of the energy scale so
that V=0, the nonvanishing contributions to A are
restricted to regions within the “atomic’ spheres.

Because of the spherical symmetry of the potential
within the “atomic” spheres, the wave function can
be expanded in terms of (normalized) spherical har-
monics as

yO=% ilczm“’mz‘f)(ir—ajI)Yzm(r-a;),

=0 m=—
I r— ai‘ SRJ"

(15)

where ¥,(x) represents a spherical harmonic of the
spherical polar angles of x and ®;‘?(7) is the solution of

1d d I(0+1)
it

r2dr dr 72

+V<f>(r)—E]cm<f>(r)=0, (16)

which is finite at the origin. While the infinite sum (15)
represents an exact solution, it cannot, of course, be
used as a trial function in a practical application.
However, it suggests that the finite sum

lmax

> X CmPD(|r—a,])Vipn(r—ay),

=0 m=—1

lr—a,| <R;, (17)
which is also a solution to the Schrédinger equation, be
used as the trial function.

With this wave function it is possible to further
simplify the expression for A. By utilizing the fact
that (17) is a solution to (2) to eliminate the potential,
and Green’s theorem to convert the volume integrals
to surface integrals, A can be shown to equal

A= lingAe,
ad ad
A.={ [ ds[¢*<r>———¢*(r>]
S1(R1—2¢) on on
O alTh+ a1},
So(R2—¢) S (Bm —2€)

d a3
x{ [ ds'[c<r,r'>—¢<r'>~¢<r')—c(r,r')]
S1(R1—¢) n’ on’

+ ds'T J+---+

S2(R2—c¢)

a1}, a9

Sm(Bm —€)

where 8/dn represents the derivative normal to the
surface and where the ¢’s are introduced so as to avoid
difficulties arising from the singularity in the Green’s
function. The notation S;(R;— ¢) signifies the spherical
surface of radius R;— e about the ith atom in the unit
cell.
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The terms in (18) arising from products of integrals
over surfaces centered about the same nucleus can be
handled exactly as was done by Kohn and Rostoker.
That is, the Green’s function is expanded in spherical
harmonics for » <7’ <R; as

G(rr)=2 X

Tom 1 m?
XL A tm; 1rme @D J1(kr) Fur (k9") F-010:0mme 1 (k7)) 103 (k") ]

X Ylm(r) Yl’m'(r,)) (19)

where j;(x) and #;(x) are the spherical Bessel and
Neumann functions,® respectively. Then by carrying out
the surface integrals with the use of the orthonormality
of ¥ m, the contribution of a typical term ‘“diagonal”
in the centers is found to be

Y Y Con*Crom D[ Ry — iR, D"
Im Ul m'
XA i v D[y Ry @' — 1 Ry ]

F k818 [0 Rr D — 10" Ry DT} | r=Rjp (20)
in which

(21)

d d
QD' =—®R,D(r), j/=—fi(xr), etc.
dr dr

The terms involving products of surface integrals
over different spheres (terms to be called “off diagonal”
in the centers) are slightly more troublesome because
the natural coordinate systems for r and 1’ have their
origins at different points. It is clear, however, that
if the Green’s function were to be expanded about the
appropriate centers for r and r’, the integrals could be
readily evaluated. For convenience we define r; to be
the position vector with respect to the jth nucleus in

the unit cell, i.e.,
(22)

We also define the Green’s function G@")(r;r;") by
@ (15,1") =G (1) =G(r;— 1/~ (ay—a;)). (23)

Because of the assumption that the spheres do not
touch, the Green’s function is never singular for r in
one sphere and t’ in another. For these values of the
arguments, G@7)(r;,r;’) must then satisfy the homo-
geneous equation related to (6) in both r; and r;’, and
since it must be finite about both origins, it must be
expansible in the series

G (15,13 ) =2 X Ammgrrm @ fikry) i (krs”)
lom Um’
XY in (1) Vim*(x;")  (24)
(i) <|aj—ail.

The contribution to A of the term with r centered about
the jth nucleus and r’ centered about the 7th nucleus

r;=r—aj.

for

4 See, for example, L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1949), first edition, p. 77.
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can then be shown to be
55 At G C i D*C gy @
Lom Um?
X[ R — 50, D] r=Rj
X[jl’(Rl’(i')l_].l”(nl’(j,)]Ir=le' (25)

The quantity A, which is the sum of all the “diagonal”
terms (20), and all the “off-diagonal” terms (25) is

2 X X Ca™Crm

73 Um 1!
X{Am vm GO 1D — iR D], _p.
X[y @ @' =i Ry ]|, g,

F 1818 mm B[ 1! RiD — 1Ry D]
X[y Ry @D’ —np’ Ry ]| ,=RJ-} . (206)

By taking the variation of A with respect to the varia-
tional coefficients and setting it equal to zero, we obtain
the equations for the variational coefficients:

2 Admrw OOl R =G0 Rp ]| g,
ll'ml"‘I

F 18118 mmed 55 [ Ry D' —mp Ry ]| r=R;}

XCpm @=0. (27)

In order that the solutions of (27) be nontrivial, the
determinant of the coefficients must be equal to zero. If
we divide each column by [ 7y Ry @' — Ry @5, ]|

r=Rj"
we obtain for the secular equation !
. %z,—nle(i)
det{A Im; U'm’ a '7,)+Kall’5mm’5jj’ [___] } = 07
=L 1|r=r;
(28)

where L; is the logarithmic derivative of ®;(r) at
r=R; which is defined by

d
L= [;(Rl(i) (,)]/ RD (7).

Since the structure coefficients are functions of k and
the energy (or «), Eq. (28) determines the functional
relationship between E and k. It is to be noted that
(28) is very similar in form to the corresponding result
of Kohn and Rostoker although it applies to imore
general lattices.

The structure constants Ay, rm @?, which are
‘“/diagonal” in the centers, are identical to the Kohn-
Rostoker Ay, vm for a “simple” crystal with the same
translational symmetry. On the other hand, the struc-
ture constants ““off diagonal” in the centers, A ym; 17ms @77
(4'5£4), are different. These quantities will be dis-
cussed in Appendix A where we shall derive explicit

(29)
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expressions for their evaluation and shall obtain cer-
tain useful relationships satisfied by them and related
quantities.

The secular equation (28), while being valid for all
k vectors including those with special symmetry (those
k vectors invariant under some of the operations of the
group of symmetry operations), can be considerably
simplified at the symmetry points. For this purpose,
instead of expanding the wave function in terms of
spherical harmonics, it is most advantageous to ex-
pand in terms of functions forming a basis for an
irreducible representation of the group of the wave
vector.> A wave function belonging to sth irreducible
representation could 'then be expanded about the jth
center as

Imax
Y= 3 C“(i)sml(i)(rj)Lha(rj), (30)
Ly
where .
lea(r)=Zm0!lm:v(7)8Ylm(r) (31)

and will contain, in general, fewer terms than (17). It
should be noted here that if the wave function ex-
panded about the jth nucleus belongs to the irreducible
representation .S, the wave function expanded about
the j'th nucleus will belong to the irreducible repre-
sentation S’ which is closely related but not necessarily
identical to the irreducible representation .S. The
secular equation that obtains from the use of expansion
(30) is

. n —n LD
det{ By, pryr @7 T R =0,
J =5l | r=R;
(32)
where the new structure constants are given by
Buy.prr G
= Zm, m'®lm; y N4 Im; U'm’ (j'i’)al'm'; w2, (33)

The corresponding equations for the wave functions at
a symmetry point are

Z {Blw Uy (J',:")Dl,(})”,(J")’_jl'(gl,(i’)] l r=R;

v

+x811:8,,0;5 [m(Rl @' — nz'(ﬁz(")] l r =Rj}

XCpy =0, (34)

III. DISCUSSION

The secular equations, (28) and (32), and the related
equations for the wave functions, (27) and (34), bear
a close resemblance to those of Kohn and Rostoker.
Much of their discussion of the method is, of course,
applicable here. Thus, because of the particular varia-
tional procedure, we expect the method to lead to
accurate results. As in other variational procedures, the
method ensures that the error in E(k) will be of the

5F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947); D. G. Bell, Revs. Modern Phys. 26, 311 (1954).
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second order of the error in the trial function; but it
also has the advantage of being based on the integral
equation for y. Such variational procedures tend to
result in greater accuracy than those based on the
differential equation. Also, the present method has the
advantage over certain other methods (e.g., the or-
thogonalized plane-wave method) that difficulties asso-
ciated with the lack of orthogonality of the trial
functions to the true core states® do not arise. Finally,
since the trial function is needed inside the “atomic”
spheres only and not in the whole unit cell, relatively
few terms in the spherical harmonic decomposition of
¥ should be sufficient to obtain accurate energies and
wave functions. '

The present equations differ from the corresponding
ones for a “simple” structure in that they comprise a
larger system of equations because of the lower sym-
metry of the “complex” structure. For example, let us
assume that the secular equation for the “simple’” case
is the determinant of an N XN matrix for a general
point in the Brillouin zone. Then, assuming that the
same Imax is used in all expansions, the secular equation
for the “complex” case will be the determinant of an
mN XmN matrix, where m is the number of atoms in
the unit cell. In addition, the present equations contain
the new structure constants A pm, v @7 (5'#7), which
are “off diagonal” in the centers. The significance of
these is most easily understood when the problem is
thought of in terms of the scattering picture as is done
in Appendix B. From this point of view, the constants
A vm @D relate the wave “incident” on one of the
atoms of the sublattice r,7a; to the sum of the waves
scattered from all other atoms of the same sublattice.
The constants A i, 1rm 972 (5’5 7), on the other hand,
relate the contribution to the “incident” wave from
the sum of the waves scattered from all atoms of the
sublattice r,+a;. The separation of the two sublattices
is aj—a; which, of course, is not a translation vector,
I, of the lattice. We might then expect that for each
momentum component of the electron wave there will be
an additional phase factor of exp{i(K,+k)- (a;—a;)}
in the “off-diagonal” terms. In the detailed analysis of
Appendix A we show, in fact, that except for a term
arising from the singular part of the Green’s function,
the phase factors are the only differences between the
“off-diagonal” and the “diagonal” structure constants.

Of central importance to the applicability of the
method is the question of the appropriateness of the
approximating potential, (14), to particular crystals.
If a potential satisfying the condition (14) represents a
reasonable zero-order approximation, the method ap-
pears to be very satisfactory. In examining the question
of applicability, we must remember that at the present
stage of our knowledge we are more or less forced to
resort to the use of atomic potentials in order to con-
struct a crystalline potential. Atomic potentials are,

6 J. Callaway, Phys. Rev. 97, 933 (1955).
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of course, spherically symmetric, but in a crystalline
array of these potentials there will be some overlap of
atomic potentials about neighboring sites which de-
stroys strict spherical symmetry at the outer regions of
the “atomic” spheres. However, owing to the sym-
metrical arrangement of the neighbors about any
lattice point, these deviations will to a fair degree be
canceled. For example, if we expand the nonspherically
symmetric part of the potential in spherical harmonics,
we find that the first nonvanishing term is the /=4
term for the rock salt and diamond structures and the
l=3 term for the zinc blende structure. It would thus
seem that the deviations from spherical symmetry
inside the “atomic” spheres will be small. In the regions
exterior to the “atomic” spheres, where the approxi-
mating potential is taken to be constant, there may be
points where the relative deviation of the actual po-
tential from the constant potential (i.e., the difference
divided by the actual potential) is not small. However,
at these points the potential and its deviation from the
approximating potential (which equals the potential
as the zero of the energy scale is chosen so that V,=0)
are small. One can then see on the basis of perturbation
theory that, in general, only relatively small errors in
the energy and in the wave function should arise from
the use of (14). It thus appears likely that the approxi-
mating potential could be used satisfactorily in many
cases. The deviations from a judiciously chosen ap-
proximating potential can then be taken into account
by perturbation theory. For a more quantitative and
definitive investigation of the effect of deviations from
the assumed potential, it will be necessary to await the
completion of the detailed band structure calculations
now in progress.

The feasibility of using this method is determined
largely by the feasibility of the computation of the
structure constants. From the expressions for the “off-
diagonal” structure constants (Appendix A), it can be
seen that they are only slightly more difficult to com-
pute than the structure constants for “simple” lattices.
Thus, from the experience with the computation of the
structure constants for the “simple” body-centered
cubic structures,” it appears that the computations
for the “complex” cases should present no serious
difficulties.

A program for the study of a few types of structures
with two atoms per unit cell by the present method has
been initiated. The first crystals we hope to investigate
are those having the zinc blende structure (e.g., Ge,
ZnS, InSb). We then intend to study a few crystals
which form with the rock salt structure (e.g., NaCl).

The author wishes to thank Professor Walter Kohn
for discussions.

APPENDIX A

As indicated in Sec. II, the “diagonal” structure con-
stants are identical with those for a “simple” lattice

7F. S. Ham and J. Snyder (private communication).
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with the same translational symmetry; thus, it is only
necessary for us to discuss the “off-diagonal” structure
constants, Aumvm @i, One important property of
these coefficients results from the Hermiticity, (12), of
the Green’s function. From the definition of G, (23),
we find that
GO (1j,1;") = G4 D* (13, 15), (A-1)
and from a subsequent expansion of both sides of
(A-1) by (24) we can verify that
A v T = A prr; 1@ D*, (A-2)
An explicit expression for the Green’s function G
is easily obtained from (8) and (22), and is

—1
U (1,1 ) =— 2
7T Kn
xexp[i(Kn“i-k) - (a;—ay)] exp[i(Ko+k) - (r;—1;") ]

K.+k)*—E
(K. +k) (A3)

To arrive at an expansion of the form (24), the two plane
wave functions of each term of the sum are expanded
according to the well-known formula

etk r=4a 31 it 1 (k) Vim (1) Vi* (K). (A-4)
Upon comparison with (24), the equation defining the
structure constants, we find that

..,
A Im; U'm? 7,7

—@mput _ expli(Ka+k)- (a,—a;) ]

= > (A-5)
mi1(krj)ju(kr;") Kn (Kot+k)?*—E
X j1(| Kotk 7)) ju (| Kotk 7;)

X Ylm*(Kn+k) I/vl’m’ (Kn+k).

In analogy with the corresponding work of Kohn
and Rostoker, we can obtain a more useful means of
evaluating the 4’s by noting that the Green’s function
has as its argument the single vector Rjy=r;,—r;/. A
new set of coefficients, Dz @, is then defined by the
expansion of §¢77(R;;) in the single series of spherical
harmonics

G (Ryj) =2 1, uDrar 7§ (R ) ¥ e (Ryy0).

The relationship between the D@#")’s and 4@i"Vs is
the same as one relating the corresponding ‘“diagonal”
quantities which can be shown by the arguments used
for the “simple” lattices.® The relationship is

(A-6)

..
At 17 )
Ty . - i
=4+t Zlﬁ Lclm;l'm'bm mDLm—m'(i’] )7

(A-7)
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where

Cm; v ™M= fYLM(r) Yi* (1) Yy (1)dQ2,.  (A-8)

Except when Ima.x is very small, the number of D’s
required in a calculation is considerably smaller than
the number of 4’s. The C’s are, of course, quite general
coefficients and have been tabulated.®

The structure constants D¢ can be determined
readily by employing (A-4) in (A-3) and comparing
with (A-6); and we find that

3 4 2F exp{i(K.+k)- (a;—a;)}
Dy = ——
7 jr(kR;yr) Xn (Ko+k)*—E

Xjr(| Katk|R;) ¥ rar*(Ko+k).

(A-9)

Another representation for the structure constants
can be obtained by starting with the Green’s function
expressed as the sum over the real lattice. We write

g (R;)
exp{ix| Rjy — (r.—a;+a;) |}
|Rjjr— (rn—aj+a;)|

1
=——73 exp(ik-r.)

4—71' n

1
= s exp[ik- (a;—a;)] 2 exp(ik-s;j;z)

T Sji’in

exp{ix| Rjjr—Ssj;.n|}

,  (A-10)
l Rjjr—sjjr;n |

where the lattice sum extends over the whole of the
lattice defined by
sjinn="1r,— (a;—a;)(j and §/ fixed). (A-11)

To put (A-10) in the form (A-6), use is made of the
Neumann expansion®
1 exp(ix| R—s]) ) )
—— =« 2. f1(kR)[mi(xs) —ija(ks)]
4 |[R—s]| 1m

XYV (R)Vin*(s) for R<s. (A-12)

In this manner we obtain

Dpy@id=kexplik- (a;—a;)] > exp(ik-sjj,,)
Sjj’in
X[#L(ksii7;n) =15 1(kSji7;m) JV £.0s* (8557 n).

It is of interest to compare (A-9) and (A-13) with
the corresponding expressions for the ‘“‘simple” lattices

(A-13)

8 Closely related coefficients are discussed in E. V. Condon and
G. H. Shortley, The Theory of Atomic Spectra (Cambridge Uni-
versity Press, Cambridge, 1951), p. 175 ff. Also, an extensive
tabulation of the coefficients (A-8) has been carried out by F. S.
Ham (unpublished).

9 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(MICSC;TW-HHI Book Company, Inc., New York, 1953), Part II,
p- .
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as given by Kohn and Rostoker.® In both the lattice
sum and the reciprocal lattice sum representations, the
“diagonal” structure constants contain a term which
arises from the singular part of the Green’s function.
Because of the assumption of nonoverlapping spheres,
this term does not appear in our expressions. The only
other difference between the two in the reciprocal-
space representation is the appearance of the phase
factors exp[:(K,+Kk)- (aj—a;)], the origin of which
has been discussed in Sec. III. In the lattice sum
representation, the summands have exactly the same
form for both cases, but in the case of the “off-diagonal”
structure constants the sum extends over a sublattice
displaced from the lattice r, by the vector (a,—ay).
This also can be readily understood in terms of the
discussion in Sec. III.

The property (A-2) of the A um;m @7 suggests that
there must be a corresponding relation for the Dy @37,
Using

YVin* (%)= (—1)"Y 1_m(%),

one can readily verify from an explicit representation
of the D’s such as (A-9), that they have the property
that

Dy @i=(—=1)IHMDy 4 @ D%, (A-14)

APPENDIX B

In this section we will consider the band structure
problem from Korringa’s point of view,? that is, in
terms of the scattering of the electron wave by the
crystalline array of atomic spheres. We note that the
wave function can be expressed as

V(=2 exp(—ik-1)2 ¢ (r—1,—a;)

=3 exp(ik-a;) 2 exp(—ik-1,5) 0@ (r—r,7), (B-1)
7

Tnj’

where r,y=r,+a; and the functions ¢ are, in
general, different.

In the regions of constant potential the solution of
the Schrédinger equation can be expressed in terms of
71(x) and 5 (x), the spherical Bessel function and the
spherical Hankel function of the first kind, respectively.
Thus, in the region outside the “atomic sphere” cen-
tered at r=a; the wave function can be taken to be

¥k (r) =8“““le {bin@fa(k[1—a;])

+aimPh® (x| r—a;)} YV in*(r—a;). (B-2)

The second term of (B-2) behaves asymptotically as
1P| r—a;| ! exp(ix|r—a;|)

and is singular at a;, and thus is identified as the wave
scattered by the atom at a;. The first term, which is
regular at aj, is, of course, the incident wave.

We are now in a position to interpret our problem in
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terms of a scattering picture. Our principle of approach
is to consider the wave incident upon a particular atom
to be built up of the waves scattered from all the other
atoms of the lattice. This establishes a relationship
between the scattering amplitudes, a:,(?, and the coeffi-
cients of the incident wave, b;,?. The waves incident
on and scattered from a particular atom are related
by the phase shift of ordinary scattering theory. These
conditions are sufficient to determine all the amplitudes
and the dispersion relationship, which yields the energy
as a function of k.

The problem can be defined mathematically by re-
writing (B-1) as

Yx(®) =0 (r—a,)

+ X (e,
V'rnj*, §’

(B-1a)

where the prime over the summation indicates that
the term specified by r,=0 and j’=7 is to be omitted.
In the regions exterior to the spheres ¢! (r—r,;) is
taken to be the purely outgoing scattered wave emanat-
ing from the atom at r,;. The problem is then to show
that the second term of (B-1a) corresponds to the first
term of (B-2), and to derive the equations satisfied by
the scattering amplitudes.

To proceed with the details, we first consider the
sum of the waves scattered on the atom centered at
r=a; by the remaining atoms of the sublattice r,;.
This is

exp(ik-a;) 2. exp(—ik-r,)> am®
lm

Ipj#0
XI® (k| 1= 10; ) Yiu*(r—125).  (B-3)
Now, it can be shown that!?
I (k) Y i (1) = Y1 (V)o@ (kr),  (B-4)
where
204+1 (I—m) 17t
(yl,m(Vr) =[ ]
dr  (I4+m)!

3
XQ’"(a (k) 3 (iky)

O imi (2,y) = (x=£1y) ™,
@™l (z) = (dI™ /dz™1) P(2),

o (a(jkz))’

(B-5)

and P;(z) is the conventional Legendre polynomial.
(B-3) can then be written

explik-a) ¥ exp(—ik-1n) T (—1)*i¥apm®
i m'

T'njz%0
X Yv—m (Vra)o® (k| t—125])  (B-6)
where the derivatives act on the coordinates r,;.

1 N, Kasterin, Proc. Acad. Sci. Amsterdam 6, 460 (1897/98);
J. Korringa, reference 2.
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We now wish to relate (B-6), which corresponds to
the sum of the waves scattered from the atoms of the
sublattice r,;(4a;), to the wave incident on the atom
centered at a;, Mathematically, this means that we
want to expand (B-6) in terms of Bessel functions
[ji(x)] of the argument |r—a;|. For this purpose we
make use of the expansion

ho® (x| r—1'|)

=t [ () ¥ Jjule) Vi (6), - (BT)

when 7'>7.9 Then
o® (| 1= 10| ) =he® (x| (r—2a;) —1a])
> [ Y im (V)o@ (kr2) ]
" XtV r-a), (B-9)

and by a simple transformation of the derivative
operators in (B-6), we obtain for (B-6) the following:

¢ 3 3 T 1 Oy @

lom Um’
Xji(k|t—a;]) Vin*(r—a;), (B-9)
where
D G = i (— 10 3 ion
I #0
X Yim(Vrn) Yrm (Vra)o® (xr,).  (B-10)

The above corresponds to the coefficients derived by
Korringa. It can be rewritten in the form used by
Korringa:

le; i’m' G =4q ( — l)m'il'—l—l
X[‘ylm(Vr)‘yl’—m'(Vr)S(l')]] =0, (B-ll)

with .
S@= % explkry 2T )

Tn0 [r—1.]

(The slight differences between Korringa’s expressions
and the above expression result from different choices
of the phases of the various functions employed.)

The contribution to the wave incident on a; from
centers of another sublattice, for example, the one
defined by r,;, can be calculated in a manner similar
to the one used above. Here it is, of course, necessary
to take into account the scatterings from all “atomic”
spheres of the sublattice. Also, we note that the point
a; is separated from the sublattice r,;; by the vectors
sjj.n, defined by (A-11), so that in this case we require
the expansion of

Fo® (k| 1= Tnjr | )= ho® (k| (r—a;)— 8jj7;x])

in terms of j;(x|r—a;|). We then find that the con-
tribution of the waves scattered from the atoms of the
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sublattice 1, on to the atom located at r=a; is

€8 S 3 T s T3 0
Im U m'
Xji(k|t—a;|) Vin*(r—a;), (B-13)
where

Ptin; U ') = 47r(— l)m'il'l'e““ (aj'—aj)

X 2 exp(ik-8j7;) Yin(Vsis;n)

8jj'in
X(yl’—m’(Vsjj';n)ho(l)(’fsﬁ';n)- (B'14)

The incident wave is the sum of (B-9) and all the
terms (B-13) with j'# 7, and we find from (B-2) that

bin®@= 3 3 Timytom Gy @, (B-15)

m g

The wave incident on and the wave scattered from a
particular “atomic” sphere are also related by the con-
dition that the wave function and its derivative be
continuous at the surface of the sphere. In terms of the
phase shift, ,?, this requires that

bim P = =101 csom @ exp[—; D], (B-16)

The system of equations determining the scattering
amplitudes a;,,? is then

Z Z{le; v @4 +26100mmr0;50
ll ,ml ]'I

Xesen @ exp[—im@ JYarm @0 =0. (B-17)

The secular equation associated with this linear homo-
geneous system of equations determines the dispersion
relation for the electron waves; and it is

det{I‘lm;l,m,(i.i’)

418118 mm0j5» cscn D exp[ —am D]} =0. (B-18)

Equations (B-17) and (B-18) are the desired generaliza-
tions of Korringa’s equations.
Kohn and Rostoker noted that by using

n' —mly

2 cscmein=1+1 (B-19)

Jl=ili|r=r
Korringa’s results could be recast into the same form
as their equations. This also holds true for the ‘“com-

plex” lattices. We can rewrite (B-18) as

. nl’—mLz"')
det] Fom; rme G37 F-k8108mm 050 —-—————-—J ]=0,
J =L@ J|r=r;
(B-20)
where
F,m; rmt G = —-’iKl:Flm Um! <i’j,)+51115mm16,j1:|. (B*Zl)
Furthermore, it is possible to prove that
A vrmr TT¥ = F o s 377 (B-22)

so that (B-20) and (28) are, in fact, exactly equivalent.



