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The average kinetic energy of any nucleon in
units is:

MTAy yokp p

Hence the binding energy per nucleon is

An examination of the numerical value of Eq. (9) for
the values X,=0.8015, X,= 1.1400, and P, =P, =P
=2.0304, shows that 8' never becomes positive in the

(7) region of the physically interesting value of kF. Hence
it seems that the S-state separable potential of Yama-
guchi does not lead to suAicient binding energy for a

our nucleus when surface eGects are not taken into account.
;Vote added in proof Eq.—uations (3) to (9) should

(g) involve X, and X, in the form (X,+3K,)/4 rather than
as (X,+X&). This does not, however, lead to any change
in the final result.
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The static theory of Chew and Low is used to calculate the form factors for the charge and current of
the proton. The cross section obtained with these form factors is found to be in close agreement with the
electron-proton scattering data of McAllister and Hofstadter up to 236 Mev. Root-mean-square radii of
6.5)&10 " cm for the charge and 9.7)&10 " cm for the current are found. The role of an extended core
charge is discussed. The value of the coupling constant used is f'=0.08.

1. INTRODUCTION

HE Stanford experiments on elastic electron-
proton scattering' indicate that the proton is a

structured particle which occupies a region of the
order of 10 "cm. Additional information on the spatial
distribution of the charge and current of the proton is
beginning to emerge from these experiments. Due to
the strong pion-nucleon interaction, the gross features
of this structure may be expected to be largely deter-
mined by the cloud of virtual pi mesons surrounding
the nucleon core. Thus electrons whose wavlength is
suKciently large, so that they do not probe the proton
structure in too much detail, may have an elastic cross
section whose principal deviation from the Mott-
Rutherford cross section is determined by the pion-
nucleon interaction. ' It is therefore of interest to see

' R. Hofstadter and R. McAllister, Phys. Rev. 98, 217 (1955);
R. Hofstadter and E. E. Chambers, Bull. Am. Phys. Soc. Ser. II,

10 (1956); R. Hofstadter, Proceedings of the Sixth ~annual
Rochester Conference on High Energy E'uclear Physics (Interscience
Publishers, New York, 1956); E. E. Chambers and R. Hofstadter,
Phys. Rev. 103, 1454 (1956); R. McAllister and R. Hofstadter,
Phys. Rev. 102, 851 (1956).

'A 200-Mev electron has a reduced de Broglie wavelength
10 "cm.

whether the Chew-Low form of a Yukawa-type theory,
which has had a degree of success in explaining the
I'-wave part of the low-energy pion nucleon scattering, '
and low-energy photomeson production, 4 is also in
accord with these experiments.

The electric and magnetic form factors for the proton,
which determine the electron proton cross section, have
been calculated in the first approximation of the Chew-
Low theory. The calculations of Miyazawa, ' Zachari-
asen, ' and Treiman and Sachs, ' indicate the strong
likelihood that the inclusion of higher order corrections
would not qualitatively alter the form factors predicted
by the first approximation of the static theory. In
addition to the meson charge and current, a statically
spread out nucleon core charge has been assumed, as
suggested by the related problem of the neutron-electron
interaction. ' As has been shown, the first approximation
of this theory can be brought into rough agreement with

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
4 G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956).
5 H. Miyazawa, Phys. Rev. 101, 1564 (1956).

F. Zachariasen, Phys. Rev. 102, 295 (1956).
7 S. Treiman and R. G. Sachs, Phys. Rev. 103, 435 (1956).' G. Salzman, Phys. Rev. 99, 973 (1955).
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the experimental neutron-electron interaction' if the
nucleon core charge is assumed to be statically spread
out in a region of approximately the same extent as that
of the virtual pion cloud. "We have not attempted to
calculate, in the static theory, contributions of those
terms which are of purely relativistic origin. Such con-
tributions are likely to be unreliable, as is discussed in
Sec. 3. With this treatment, we find that for low energies

(up to 200 Mev) the dilTerential cross section for
electron proton scattering is in close agreement with
the experiments.

In Sec. 2 the invariant form factors are defined and
their static limits are expressed in terms of weighted
integrals of the charge and magnetic moment density
of the nucleon. The charge and current of the "physical"
nucleon are calculated using the Chew-Low theory in
Sec. 3, and in Sec. 4 the form factors are evaluated and
the results briefly discussed.

2. STATIC LIMIT OF THE INVARIANT FORM FACTORS

The most general form of the S-matrix element for
the elastic scattering of an electron and a nucleon,
correct to second order in the electromagnetic coupling
and to all orders in the meson nucleon interaction, is

Sr;———i(2')484 (p+ q) Mg, ,

Mg, ———{u(p')i (a&„+2i&&„,V.)u (p2) )

where p= p~' —p~ and q= p2' —p2 are the four momenta
transferred to the electron and nucleon, respectively,
during the collision, u(p~) and N(p2')[=u*(p2')p] are
the normalized Dirac spinors for the initial and final
nucleon states, u is the Hermitian adjoint of u, w(p&)
and m(p~') likewise for the initial and final electron
states, p,p, =p' —p42, j '„=i( e)y„, ——e is the electron
charge, Greek indices have the range of values 1, 2, 3,
4, the summation convention applies to repeated
indices, y„are the Dirac matrices, y„„=y„y„—y„y„, and
t. and p, are invariant functions of q,q . Natural units
(A=c=1) are used throughout. Equation (1) may be
obtained by an argument similar to that given in
reference 8.

The invariant functions e and p, are the efI'ective

charge and effective anomalous moment of the nucleon,

Hughes, Harvey, Goldberg, and Stafne, Phys. Rev. 90, 497
(1953). A more recent value of —4.2~0.3 kev for the effective
interaction energy given by Melkonian, Rustad, and Havens,
Bull. Am. Phys. Soc. Ser. II, 1, 62 (1956) agrees with the earlier
value of —3.9~0.4 kev. For addition references, and discussion
of the experimental situation, see Crouch, Krohn, and Ringo,
Phys. Rev. 102, 1321 (1956).

"This conclusion is unaffected by the fact that the currently
accepted value of the pion-nucleon coupling constant, f', is about
one and one-half times as large as the value used in reference 8.
The reason for this is that both the meson contribution and the
assumed core contribution are proportional to f, so that the
extended core charge still cancels the same fraction of the pion
contribution to the effective interaction energy as it did before.

and may be expanded as follows:
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This result is correct to second order in the electromag-
netic coupling and to all orders in the meson nucleon
interaction. Here E is the electron energy, assumed to
be )&mo, 0 is the electron scattering angle, both quan-
tities as measured in the laboratory system, and M is
the proton rest mass.

The fixed nucleon theory of Chew and Low will be
used to calculate the static limits of the two form
factors, and then use made of Eq. (3). For this purpose
we need to identify the static limits of F& and F2, or
equivalently of e and p. In order to make the identi-
fication, it will be assumed that the static theory is to
be considered the limit, as the nucleon mass becomes
infinite, of a relativistic theory. We proceed as follows.
The matrix element for the elastic scattering of an

"L. L. Foldy, Phys. Rev. 87, 688 (1952); 87, 693 (1952)."See for example, D. R. Yennie, Proceedings of the Fifth AnnuaL
Rochester Conference on High-Energy NucLear Physics (Inter-
science Publishers, Il c., New York, 1955).

"M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).

The coeKcients in these expansions are the invariant
parameters introduced by Foldy, " which characterize
the electromagnetic properties of the nucleon and
which can in principle be experimentally determined.
They are independent of any details of the electro-
magnetic field with which the nucleon is interacting. In
particular, ~0 equals e for the proton, zero for the
neutron; po is 1.79 nuclear magnetons for the proton and
—1.91 nm for the neutron. The physical interpretation
of the parameters is given by Eq. (7).

In describing the electron-proton scattering experi-
ments it is convenient to introduce two invariant form
factors, " one of which represents the fact that the
charge is distributed in space and the other that the
current, (or magnetic moment) is likewise not confined
to a point. The charge and current (or electric and
magnetic) form factors F& and F2 may be defined by
the equations

t-'= ~OFx, p =poF2.

From Eq. (1) it then follows that the differential
cross section for elastic electron-proton scattering" is
given by
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electron by a fixed nucleon, calculated with the inter-
action energy density —j'„(r)A~„(r), where A ~„(r) is

the four-potential due to the nucleon, is given by

«i .(r)A~. (r)+' I

, j".(r')
= —{e(p&')j'„w(p&)},I dre '~ '— dr'

4~ & ~r —r'~

which is easily transformed to

drj „(r)e &»' »& —'{e(p,')j „~(p,)}/p'.

Since from Eq. (7a),

limeo ——~~ drp~(r) and limeq ——-',
,

t drp~(r)r',
J

1 1
limF g

= 1 ——(r,2)'q'+ (r,4)'q'—
6 120

(Sa)

an rms radius with respect to the charge density may
be defined,

(r, ~) = L6 lim(eg/eo)]l,

and likewise from Eq. (7b) for the current density,

(r„)= [10lim(pq/up)]i.

The static limits of the form factors may then be
written

The static limit of Mr;, given in Eq. (1), is now identi-

fied with expression (4), that is,

l im {u(p&')i (eel,+2iu'r~~q„) u (p2) }

1 1
h~2 1 (» 2)2q2y (»~4)4q4

10 280
(gb):JI dr j& (r)e'0 'f (5)

where "lim" means "the limit as M~~."
We note that

X2

u(pq) =lV(p2) e pq
X2

E2+M

( 0 io, )—.

Eio, 0

lime= I «p" (r)e'&' (6a)

f
limiuo'X q= dr j~(r)e"'& ',

J
(6b)

where the Pauli spinors have been omitted. From Eqs.
(2) and (6) it follows, as shown in the appendix, that

where X(p~) is the normalization constant, y2 is the
Pauli spinor for the initial nucleon state, Latin indices
have the range of values 1, 2, 3, the o.; are the 2&(2 Pauli
spin matrices, and E& is the initial nucleon energy. Since
the small components of the nucleon spinors vanish as
M—+~, we obtain from Eq. (5)

For suSciently low rnornentum transfer, only terms of
order up to q' need be considered. Once charge and
current distributions are specified for the nucleon, Eqs.
7(a), and 7(b) determine the static limits of the terms
comprising the form factors.

3. NUCLEON CHARGE AND CURRENT EN THE
CHEW-LOW THEORY

In this section we obtain the expectation values of
the mesonic charge and current densities of a "physical"
nucleon. Closely related calculations, using the tech-
niques of Chew and Low" and Wick" have been carried
out by Miyazawa' for the frequency-independent part
of the nucleon magnetic moment, by Zachariasen' for
the proton charge density, by Fubini" for the nucleon
charge and current density, and by Treiman and Sachs'
for the rms radius of the neutron-electron interaction.

In a static theory calculation of an electric or mag-
netic moment of a nucleon, there is a question as to
how much of the total moment one should attempt to
include in the calculation. Consider the frequency-
independent part of the proton magnetic dipole
moment. If terms of relativistic origin are to be cal-
culated, then the operator which corresponds to the
Dirac moment must be included, as is done by Sachs"
and Miyazawa, ' who in eGect calculate the expectation
value, in the physical proton state, of the operator

lime„= drp~(r)r'",
(2n+1)! &

(7a) e (1+»&q
~«Ll r X j-(r)]+

) '

6(n+1) a
limp„= — I dr[2rX j~(r)]r'".

(2n+3)! 3 " (jb)

The p~(r) and j~(r) which appear in Eqs. (7) should

be the total charge and current density of the stationary
nucleon, including core as well as meson contributions,
but not including terms of purely relativistic origin.

and then subtract e/2M to obtain the anomalous
moment. Here the nucleon is fixed at the origin, j is
the pion current density, and ~ is the isotopic spin
operator for the nucleon.

"G. C. Wick, Revs. Modern Phys. 27, 339 (1955)."S. Fubini, Nuovo cimento 3, 1425 (1956).' R. G. Sachs, Phys. Rev. 87, 1100 (1952).
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As remarked by Miyazawa, the calculation of the
relativistic terms in a static cuto6 theory should not be
taken too seriously. These terms depend quadratically
on the cutoff, and, as pointed out by Sachs,"and by
Miyazawa, ' they involve the assumption that the bare
proton magnetic moment is one nuclear magneton.
Because of the unreliability of these terms, we choose
to omit the Dirac moment part of the operator, as was
done by Chew, "Friedman, "and Fubini. "This omis-
sion is not expected to be serious, in view of the fact
that Miyazawa found that this part of the operator
gave a contribution to the isotopic vector part of the
anomalous moment of the order of one-tenth the con-
tribution of the meson current. Further, the isotopic
scalar part of the anomalous moment, which is thus
also omitted, in experimentally very small (—0.06 nm).
The remainder of this section contains a derivation of
the meson charge and current in the physical nucleon
state.

Following Chew and Low, we take as the Hamiltonian

H =Ho+Hr,

Ho= Qk ~~k'&k,

Hr =Qk(Vk~k+ Vkt~k'),

we then want to obtain

(4'p, j %p) and (4'o,p 4'p).

For this purpose we need

(eP, (ak tea k)(ak+a k&)eo),

which may be written as

(&k +o,eA'o)+ (& k&k +o,+o)
~(+0,& k &k+o)~(& k+0,~ k+o), (11)

where a term (4'p 8kk.@p) has been omitted because it
will give a vanishing contribution when it is multiplied
by 6"„„and the isotopic spin sums are performed.

The identity

$H, akj=Hak akH = L—HP, ak]+ ttH r,ak] = —a&ak —Vk t

may be written

(H+~) ak= —VktyakH,

and, simply adding cu'aI, to each side, we also have

(H+~+~ )ek Vk +&k(H+~ ) ~

From these identities one gets immediately that

f' iv(k)
Vk= (4m)&— r.e k,

p (2(u)'* and

VI t+0,

(12)

where the index k includes momentum (k) and isotopic
spin (~), ra= (p'+k') &, akim and ak are creation and anni-
hilation operators, respectively, for a single meson of

type k, f' is the unrenormalized unrationalized coupling
constant, p is the meson mass, and v(k) is the cut-o6
function. The symbol k is also used for the magnitude
of the momentum k. In this representation the charge
and current operators for the meson fields may be
written as"

j e (4'&+4'2 4'&+4'&), p- = —e (~k4& &4&),

and the usual procedure leads to

+a+~ +0=— VI '+0
H+co+(d H+co

—1 —1
+ Va t- —VI t+0,

H+(o+(v' H+~

where we have taken 8+0=0, used the fact that
[ak, Vkt]=0, and made use of the assumption that
there are no states of this system with energy less than
zero. Substitution of (12) into (11) yields

1 1
Vk~+P

~

z'e

j.=—P (ak t+a k )(ak+a kt)P'. ;e'&"
2 k, k (~')&

(10)
ie (co )~

p.=—p
~

—
~

(~k t —~ «)(~k+~ kt)&"., e"" "",
2 k, k

where the isotopic spin indices ~,~' are here summed
only from 1 to 2, since neutral mesons don't contribute,
and 2'„„ is +1 or —1 according as K,k' is an even or
odd permutation, respectively, of 1, 2, and zero other-
wise. Using 0'0 for the four single physical nucleon
states (the spin and isotopic spin indices are omitted),

'7 G. F. Chew, Phys. Rev. 95, 1669 (1954).
' M. H. Friedman, Phys. Rev. 97, 1123 (1955).
"G. Wentzel, Quantum Theory of Fields (Interscience Pub-

lishers, Inc. , New York, 1949).

1 1
+~%'P, Vk Vkk +P

~H+~ ~+~' )

( 1 1
~(%'P, Vk Vk 4'0

(

H+u&' (o+(o'

1 1

co+(o' H+co' j
1 1

a) +o, V kt Vk'+0
~

(o+(u' H+co

~i 4'k, V k Vkt+o ).
H+(o H+(o'
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made use of, the above six terms are easily combined to
give the following result

2 c+dM +E~& (cd +E~)

" (co+co') (a)+E.) (co'+E„)

X {Tk t (rc) Tk (rc) &Tkt (22) Tk (42) }.
Substitution of this expression into Eqs. (10), and
transformation of the Tk ~(22)T&(22) terms by changing
the summation variables (k~—k'; k'—+—k) leads to
the following:

j =ie
((u+cd'+E )(k„+k')

(cucu') & (cd+co') (cd+E„)(cu'+ E„)

X Tkt(n) Tk (42)6",.e'c"—k'& ',
(13)

(~&a' &)
p.= —2ie P

k,k', n (cd+cd') (~+E„)(cd'+E„)

X Tk ~ &22) Tk (rc)6"., e' ' "'
These expressions are exact, within the framework of
the static theory. To the extent that T&(22) is known,
they determine the meson charge and current.

The complete set of states 4„' ' which we have in
mind consists of the four physical nucleon states,
denoted 4'0, states with the physical nucleon and one
meson, and so forth. The contribution of the physical
nucleon states is easy to obtain because

Tk(0) L = (+0,Vk+0))

is determined by invariance arguments. We proceed as
follows, recalling that Ep=0:

k+k' 4

P T&t(0)T&, (0)P2
kk' ~(g & 1

p.'= —2ie 2 . . . 2 T"(0)
coco ' m co

(0)g12,ei(k—k') r

The superscripts 0 in Eqs. (14) denote that this is
the contribution of the physical nucleon states. Now

p2 ~l f'
Tk e(0) =

~

—
~

—iv(k)(+0& ', r,cr. k%'0'~&)
&~) p

(22r ) & f
iv(k) (u, r—„cr"kue),

Lcv) p

If the complete orthonormal set of "incoming"
eigenstates 4'„' ) is introduced, the definition Tk(rc)
= (lr c ~, Vk+'0) adopted, and the properties

(+0 V21r„'—&) = —T&~(22) = T&(24) = —T &(22) = T k~(42)

where f is the renormalized unrationalized coupling
constant, ' I and Np are normalized Pauli spinors, and
the spin and isotopic spin indices cc and P are tem-
porarily unsuppressed. It follows that

f f~ "(k) (k')
Q Tkt(0)Tk (0) =22r~ —

~
r„cr kr„c.r k', .

1 lp) (&co )~

where the spinors flanking the operators have been
dropped, and v e shall regard our results as operators
in the nucleon spin and isotopic spin variables. If this
result is substituted into (14), the sum over the isotopic
spin indices done, gk, k replaced by (22r) 'J'dkdk', and
terms of the integrand that lead to zero on integration
dropped, one obtains

4ie—p f ) ' c. v(k)v(k')
i

—
i r, i dkdk' kcr (kXk')e'Ck —'i'

(2~)' ( pi J

4e ('f )
'

p
v(k)v(k')

p.'=
~

—
~

r2 dkdk' k k'e'&k —k'& '
(22r) ~ p ~ ~ KQJ ((8+CO )

These are equal to the expressions given by the lowest
order perturbation calculation, except that the renor-
malized coupling constant appears here. This feature
of the static theory, i.e., that the physical nucleon
states reproduce the lowest order perturbat. ion result
with the renormalized coupling constant, has been
noted previously. 4 "

The contribution of the one-meson states is seer}
from Eqs. (13) to be

(co+co'+(o")(k+k')
j '=ie

&.&'.&" (cue)') *'(cd+co') (cd+cd") (cd'+(u")

XTc~(k")T (k")8'-' e"" k''
(cued')'

p.'= 2ie-
M GO GO GO M CO

X Tkt(k") Tk (k")8" e'"—k'& '.
If, following Chew and Low, we introduce the decom-
position

—22rv(k)v(k')
Tk(k') = {P)~(k',k)k2((u')

(coed') &

+ (P&2+P&&)k2(~ )+P22k2(~ )}~

P„(k',k) =-32r„.r.cr k'cr. k,

P22(k', k) = zr„r„L3k' k —cr k'cr k),

P„(k',k) = (e„„',r„r„)cr k'cr k, —-

P33(k', k) = (5 —-', r„rk)[3k' k —cr k'cr k),
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2e(f)' p" k4

lim~o'= r
7r t.y J ~ 0

—Sie J. k "4v(k) v(k') v'(k") (~+~'+~")
j '=— r3

~

dkdk'dk"
3 (27r)' COCO GO 4) CO GO CO GO M

then straightforward calculation leads to the following In particular, we 6nd
expressions:

(18a)

Xk(r (k&(k')(
I
h~(cu") I'—2

I
h2((u") I'

e (fq'!" k'(dvy'
»m~~'=r3 —

I

—
I

~

37r (y] .Io co' &dk)
+ I

h3(o( ) I
'}e"

k "4v (k) v (k') v'(k")Se
p '=- —r3

' dkdk'dk"
3 (2v.)' CO M CO CO GO GO CO

xk k'(Ihg((o") I'+ Ihg((d") I'

4e (f) ' p" k4

3v Ey) o (((

(15k4 5k'y
+

I

—
I
v', (18b)

2((( (o )

(18c)

—2Ih, (o( ) I
}e'&"

It may be noted that the contribution of the (3,3)
state to p

' has the opposite sign of p ', in agreement
with the conclusion of Treiman and Sachs that if the
major contribution of higher meson states comes from
the vicinity of the large (3,3) resonance then this will

tend to cancel the contribution of the physical nucleon
states to the neutron-electron interaction.

4. EVALUATION OF THE FORM FACTORS
AND RESULTS

Equations (7) and (15) determine the meson current
contribution of the physical nucleon states to the static
limits of the electric and anomalous magnetic moments,
e„and y„. If Eqs. (15) are substituted into Eqs. (7),
the exponential exp[i(k —k') r7 used to enable the re-

placements r~iV(, and r'"~( V'~ )" to be mad—e, the
differential operators transferred by integrations by
parts, the 8(k —k') functions which remain used to
perform the k' integrations, and several identities for
the resulting differential operators made use of to
perform the angular parts of the k integrations, then
the following results are obtained:

(—1)"4e (f)' t" k'v(k)

(2++1)!v.(y)

2e (fq' t" k'(dvq'

3 5v. Ey) &o cg4 (dkl

(10k4 8k'y
+I — Iv-". (18d)

6 o(8)

Equations (18) contain only charge and current due
to the meson cloud, whereas Eqs. (7) show that the
electric and anomalous magnetic moments should be
calculated using the complete charge and current of the
stationary nucleon. To Eq. (18a) must be added the
contribution of the nucleon core charge if it is to give
the result required by Eq. (7a), namely zero for the
neutron and e for the proton. There is however, no
compelling a priori reason for adding core contributions
to Eqs. (18b, c, d). H one assumes, as Treiman and
Sachs do, that the core charge has no appreciable
extension, then (18b) gives the static theory prediction
for the contribution of the physical nucleon states to
the neutron electron interaction. With this assumption
the first approximation of the static theory leads to
severe disagreement with the experimental neutron-
electron interaction, as noted by Treiman and Sachs,
and Salzman.

If however, the core charge is assumed to be statically
spread out in space, for example with a density propor-
tional to the source function

s(r)[= (2v.) 'fdkv(k) exp(ik r)7,
v(k')

d~n

CO CO M

(—1)"Se(@+1)(fy ' t" k4v(k) v(k)
limy, „'=ra

I

—
I (

dk
(2e+3)!v. Ey) 0,

where

(8 4)8
d=I —+-

I

—,
(ak kj r!k

6pa—i
s"=(q'(.)"+2P (q'(,)"—*—

I
q2(, —

k2]

(17)

then reasonable agreement can be achieved. We now
want to examine the effect of this assumption on the
form factors for the proton.

Since no additional current is assumed, the anomalous
magnetic moments (18c, d) are unaffected. However,
the extended core makes positive contributions to the
electric moments for both neutron and proton, and
there is a tendency to cancel the meson contribution
in the case of the neutron, while adding to it in the
case of the proton.

Explicitly, we assume the core charge is given by

p (r)=ce~(r)
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Fro. 1. Elastic scattering of 100-Mev (Lab) electrons from
hydrogen. The data are those of McAllister and Hofstadter. The
"point charge" curve is a plot of 0.~g. The "point proton" curve
is a plot of 0- with @02M/e=1.79, and F1=F~=1. The "static
theory extended proton" curve is also a plot of o, but with
F1=1—(1/6) (6.5&(10 ' cm) q~ and F~=1—(1/10) (9.7X10 "
cm)'q' See Eqs. (3).

where the constant C is determined, for the proton, by

I drp~(r)= ~dr[p, (r)+p (r)]=e.

A rough estimate based on the assumption that (r, 4)

and (r„4) are not appreciably larger than (r,~) and (r„'),"
indicates that for the range of momentum transfer
considered, inclusion of the q4 terms can be expected
to change the form factors by less than 10%. When
account is taken of the fact that for a nonrelativistic
proton,

4E' sin'(0/2)

1+(2E/3f) sin'(8/2)

then Eqs. (3) and (19) determine a cross section, which
is shown labeled "static theory extended proton" in

Figs. i—3.
On each of the graphs there are two other curves,

labelled "point charge" and "point proton. "The point
charge curve is the Mott-Rutherford cross section,
corrected for recoil of the scatterer, and is given by o.»
[see Eq. (3)].The point proton curve is for scattering
by a relativistic proton with an anomalous magnetic
moment of 1.79 nm, but with no spatial extension, and
is given by putting F& F& 1 in Eq——. (3——). As indicated

by Figs. 1, 2, 3, the low-energy electron proton scat-
tering data are in closer agreement with the static theory
extended proton curve than with that of the point
proton. The experimental cross section is relative, and
the points have in each case been normalized to the
static theory extended proton curve at a low value of 0,
at which the theoretical curves nearly coincide with
each other.

We may then conclude that the first approximation

If now p
' is used for p, and the normalization of the

source function, J'drs(r)=1, recalled, then the core
contribution to the first electric moment is, by Eq. (7a),

-', C'e[—Vk'v(k)]~ o, C'= 1—limeo'/e. (18e)

We then obtain the following approximation to the
form factors for the proton:

1 1
limFP=1 ——lime~'+6 1——limeo'

e e

X[—V~'v(k)]~ 0 q'+

limF(=1 —(lim(pP/goo) }q'+ - .

Numerical evaluation of these expressions, using
Eqs. (18a-e), with a coupling constant f'=0.08, a cutoff
k =5.6 p and a cut-off function v(k) =[1+(k/k, )'] '

leads to the following"

limF~'=1 —6(6.5X10 "cm)'q'+
limF~'=1 ——,', (9.7&(10 "cm)'q'+. (19)

~ The ratio Lim(y1/p0) was actually evaluated using the cutoff
function v'=exp( —k'/k a ~), but this ratio is highly insensitive
to the shape of the cut-off function and the quality of the fit to
the experimental cross section is likewise insensitive to this choice.
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Fro. 2. Elastic scattering of 188-Mev (lab)
electrons from hydrogen.

~' This assumption is reasonable if the charge and current dis-
tributions are short-tailed, as is indicated for the charge by
Zachariasen (reference 6).
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& j=0 and I dr& [jr(q r)"]=0,
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which hold for the current of a stationary nucleon, we
can transform the right hand side of (6b) as follows:

i"
I dr j~(r)e'o '=P —~dr j~(r) (q. r)"

J .~k!J

kP
dr[rXj~(r)]Xq(q r)" '.

e=o (k+1)!J

The vector character of j~(r) and its vanishing
divergence require that

I I I l I I I I I
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FrG. 3. Elastic scattering of 236-Mev (lab)
electrons from hydrogen.

of the static theory, with an extended core charge, is
in rough agreement with the neutron-electron inter-
action and in substantial agreement with the electron-
proton scattering up to 236 Mev."This agreement is
achieved with the same value of the coupling constant
determined by Chew and Low.

The fact that the experimental neutron-electron
interaction is almost exactly accounted for by the
Foldy term alone"" imposes a severe test on meson
theories, namely that for the neutron, the r' moment
of the charge distribution must vanish. It seems highly
unlikely that any theory which describes only the pion
charge cloud associated with the neutron, ignoring
spatial distribution of the charge on the residual
nucleon core, will predict a vanishing r' moment. As
mentioned, this is the case with the first approximation
of the Chew-Low theory, and, as shown by Treiman
and Sachs, this difhculty probably persists even if the
contributions of higher order meson states are included
in this theory.

APPENDIX

By making use of the identity

&'[jr(q'r) ] (&' j)r(q'r)
= (k+1)(q r)"j+k(q. r)~'qX[rX j],

~ The electron-proton data are fit equally well with a point core
as with the extended core used here. For a point core (r,&) is
reduced from 6.5)&10 " cm to 5.5)(10 " cm. The effect of the
extended core is small for the proton essentially because the core
is present only a fraction C of the time, which is 0.3 for the
values of f' and k „used.

2'L. L. Foldy, Phys. Rev. 83, 688 (1951). The Foldy term
accounts for —4.1 kev of the eAective interaction energy.

j"(r)=g(r)eX r, (Ai)

where g(r) is spherically symmetric. Therefore only
terms with odd k can contribute in the sum. Multi-
plication of Eq. (6b) by (—i/2q')erXq. and use of the
results just obtained enable us to write

(—1)"(2n+ 1)
limp =+ P dr[rX j (r)](q r)'" (A2)

n=o (2n+2)!

where
P= —,'(er —(er. q)q) and q=q/q.

The spherical symmetry of p~(r) insures that if the
exponential in Eq. (6a) is expanded in powers of iq r,
then only the even powers can contribute to the
integral. We therefore obtain

- (—1)"!
lime=+ drp (r)(q r)'".=o (2n)! J

(A3)

From Eqs. (2), it follows that

lim(e, p) = + (—1)"q'" lim(e„,p„).
nm

Using this, we obtain from Eqs. (A2) and (A3) the
following:

lime„= drp~(r) (q r)'",
(2n)! J

(A4)

2n+1
limp„= P. I dr[rX j"(r)](q r)'". (AS)

(2n+2)!

If use is made of the spherical symmetry of p~(r) and
of Eq. (A1), then Eqs. (A4) and (AS) may be rewritten
as Eqs. (7a,) and (7b).


