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FIG. 4. Change in optical density (AD) vs wavelength (X) in
millimicrons for crystal exposed at —28'C. Curve 1—Exposed to
2X10" quanta per square centimeter at 416 mp (approximately
20% absorbed). Curve 2—Bleached by exposure to 1X10"quanta
per square centimeter at 580 mp {less than 8% absorbed). Curve 3—After curve 2 the crystal was warmed to room temperature and
then recooled to —28'C. Curve 4—Exposed to 1.5&(10"quanta
per square centimeter at 416 mp, .

band does occur near the peak of the band, long
illumination with 580-mp, light will ultimately bleach
the crystal completely. This is most striking in the case
of a crystal darkened at —28'C. Here a 60-mp band of
illumination completely bleached a band of color which
extended beyond the 600-mp range investigated for this
paper.

It is also possible that several different kinds of
absorption centers may form in the crystal if for no
other reason than the "bleaching" light of wavelength
580 mp can itself produce darkening at room tempera-
ture. There exists some evidence that at least some of
the darkening produced by extended exposure to 580-mp
light is due to a surface colloidal deposit of silver.

It might be profitable to extend the investigation to
include a wider range of temperatures and to try the
darkening and bleaching with a series of diferent
wavelengths where the radiation is more nearly mono-
chromatic.
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The method of "symmetric orthonormalization" is shown to ha, ve a least-squares property: it constructs
those unique orthonormal functions which minimize the sum of squared distances {inHilbert space) between
each initial function and a corresponding function of the orthonormal set. The localization of Wannier
functions is a consequence of this property, since they can be obtained from localized atomic orbitals by
symmetric orthonormalization. The theorem further implies an optimal resemblance of Wannier functions
to atomic orbitals.

' 'N the many-electron problems of molecular or solid-
~ - state physics, it is often desirable to work with
orthogonal one-electron functions. But the natural
starting functions may be, for instance, atomic orbitals
that are localized about different centers and overlap
one another to some extent. The familiar Schmidt pro-
cedure of orthogonalizing the functions one at a time in
successive steps leads to orthonormal functions that
may bear successively less resemblance to the starting
functions and that depend, moreover, on the order in
which the starting functions are selected. Alternatively,
one can sometimes use the symmetry properties of the
system to construct functions that are orthogonal by
virtue of having different symmetries; functions of this
kind (molecular orbitals or Bloch functions) are spread

*This work was performed in the Ames Laboratory of the
U. S. Atomic Energy Commission.

out over the whole molecule or lattice. A third pro-
cedure, which shares with the second the advantage of
treating all the starting functions on an equal footing,
is the "symmetric orthogonalization" originated by
LandshoG and Lowdin. ' The orthonormal functions
obtained by this method, for example the Wannier
functions, are known to resemble the initial atomic
orbitals in being localized about the lattice points
(provided that the atomic orbitals do not overlap
too much). '

The purpose of this note is to observe that the third
procedure has a simple geometrical meaning that helps

P. Lowdin, Advances in Phys. 5, 1 {1956), discusses
orthogonalization procedures extensively and gives references to
earlier papers in which the symmetric procedure vms partially or
completely formulated.' G. Wannier, Phys. Rev. 52, 191 (1937). Also see reference 1,
Eq. (3.78).
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one to understand why it leads to localized functions.
Specifically, the symmetric procedure constructs those
unique orthonormal functions which minimize the sum
of the squares of the distances between each initial
function f; and a corresponding function ic, of the
orthonormal set. Distance means distance in Hilbert
space; that is, the minimized sum is P; J'

I y;—f; I
'dr.

The localization of the Wannier functions may be said
to result from the fact that they approximate the atomic
orbitals more closely in a least-squares sense than do
the functions of any other orthonormal set.

The theorem to be proved is the following statement.
Given a set of e linearly independent complex func-

tions (or vectors) f; (i=1, 2, , rs) with finite norms

IIf II
= (f I f I

'dr)', then those orthonormal functions y;
which minimize P; II p;—f;II' are determined uniquely
to be rp, =P; f, (A 1),;, where 6 is the positive definite
Hermitean matrix with elements 6,;= (f;,f;)=J'f f,dr
and 6 r is the inverse of the (unique) positive definite

Hermitean square root of A.
To prove the theorem, we choose any complete set of

orthonormal functions q (n=1, 2, .) and expand

f,=P y F;.Summation over the Greek index n vrill

always extend from one to infinity (or to the dimen-

sionality of the space in the case of a finite-dimensional

vector space); summat;ion over i or j will extend from
one to n. The matrix with elements F; is a rectangular
matrix with e columns; it satisfies F*F=~, since ~;;
= (f;,f;)=P F;F;.The expansion of q, f,=P p-
&& (E; F;) involves a—similar rectangular matrix E
with elements E,=5;; clearly E*E=1 is the e by e
unit matrix. The sum of squares is then

Z, II.;-f,ll =Z;. IF.;-E.;I
=Tr[(F E)*(F E)j=Tr(-~+1 E—F F*E). —-

We now ask how the first e functions of the orthonormal
set should be chosen in order to minimize this sum of
squares or, equivalently, what matrix F will maximize
the trace of E*F+F*Esubject to the condition that
F*F=A is fixed.

Because the f; are linearly independent, the Her-
mitean matrix 6 is positive definite' and has a unique'
positive definite Hermitean square root, 6&. Let R be
any Hermitean square root of 6&; positive definiteness
is not required of R but it is required of R'= 6& in order
that the (nonsingular) matrix R may be Hermitean.
If we define a rectangular matrix G=FR '—ER, then
it follows from A=R' that

G*G=R 'DR '+R' RE"FR ' R'F*E—R-
= 2h& —RE*FR—'—R—'F*ER

' Z;; e;6;;c;=[~X; c;f,~P is positive unless s11 the coefficients c;
vanish.

P. R. Halmos, Finite Dimensional Vector Spaces (Print:eton
University Press, Princeton, 1948), Sec. 66.

The trace of G*G is

Q; I G;I '= 2 Trh& Tr—(E*F+F*E)
=&'lls *—f'll' —T [(~'—1)'j

If we choose G= 0, or F=ER'=Eh&, then P; II y;—f;II'
is minimized without violating the condition F*F=A.
The first n rows of this matrix F are the n by n matrix

and all other rows are identically zero. Thus
, q „should be chosen to lie in the n-dimensional

linear manifold spanned by the f;, and they should be so
chosen within this manifold that f;=P; y;(d, );;. The
solution of these equations is p; =P; f, (h &);;, which is
precisely the recipe for symmetric orthogonalization.

It is interesting that the maximum value of the sum
of squares is attained when the orthonormal functions
again lie in the manifold spanned by the f; and are
just the negatives of the previous solutions. The proof
is similar, with G replaced by G'= FR '+ER.

The least-squares property of the symmetric method
suggests an extension to weighted least-squares orthogo-
nalization: given a set of weights m;, we may ask for
orthonormal functions y, that minimize P; to;II q;—f;II'.
More generally, if the matrix 8' is Hermitean and non-
singular (but not necessarily positive definite), then
P;, W;, (p, f;, p; f;—) is —minimized by choosing
ic;=P;f,[W(WDW) &$;;, where the square root is
taken to be positive definite. A proof is easily con-
structed by defining G= FW(WAW) & E(WAW) & a—nd
proceeding as before.

A further comment is that the f; can always be
orthogonalized by transformation with a unitary matrix.
Since the Hermitean matrix 6 can be diagonalized by a
unitary transformation, we can write 6 &=UA. &U ',
where U is unitary (but not in general unique) and A &

is diagonal with positive diagonal elements. The func-
tions f;=P; f;U;; are then orthogonal, as asserted
above, but not in general normalized. They become
orthonormal if U is replaced by UA &; they remain
orthonormal and acquire the least-squares property
when the third factor U—' is included. An example of
these successive steps is the series of transformations,
in the case of a crystal lattice, from atomic orbitals to
unnormalized Bloch functions, then to normalized Bloch
functions, and finally to Wannier functions.

We should like to thank Professor Klaus Ruedenberg
for stimulating discussions.

Note added irr proof. Dr. Roland H. —Good has
pointed out to us that a paper by G. W. Pratt, Jr.
and S. F. Neustadter, Phys. Rev. 101, 1248 (1956),
contains a result closely related to the one proved
above. They show that if

I Z;(p;, f;) I
is stationary, then

the q's (except for the freedom of a common phase
factor) are related to the f's by a Hermitean square
root of A. The sum of squared distances used in the
present paper involves the real part rather than the
magnitude of Z;(q;, f;); maximizing the real part elimi-
nates the freedom of a phase factor and also singles out
the positive definite square root.


