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Defoisssation Energy of a Charged Drop. II. Symmetric Saddle Point Shapes
EV. J. SwIArzcKI'

(Received January 13, 1956)

Symmetric saddle point shapes and threshold energies of a uniformly charged drop are studied for values
of the fissionability parameter x in the range 0.6 to 1.0. The method used is a modiacation of a conventional
expansion about a prolate ellipsoid of revolution, which provides some control over the reliability of the
approximations made. The electronic machine calculations of Frankel and Metropolis for x= 0.9, 0.81, 0.77,
and 0.74 are consistent with the present work, but their result at x=0.65 would appear to be in error.

The calculations with an ellipsoid are preceded by a summary of formulas referring to expansions about
a sphere.

1. INTRODUCTION

" 'N part I' certain qualitative features of the deforma-
i. tion energy of a charged drop were considered. In
the present paper we shall present quantitative results
concerning the threshold energies and symmetric saddle
point shapes' of incompressible, uniformly charged
drops possessing a sharp surface. Such calculations have
been made in the past, among others, by Bohr and
wheeler, ' Present and Knipp, ' Frankel and Metropolis4
and, more recently, by Businaro and Gallone' ' and
Nossoff. '

The problem of calculating the surface and electro-
static energies of a strongly deformed drop, though
straightforward, involves a considerable amount of
labor and, as a rule, approximations have to be intro-
duced. In this respect the present calculations are no
exception, but, by using a certain modification of
standard methods, it was found possible to throw some
light on the di%cult question of the validity of the
approximations made. As will appear, this turns out
to be of some importance for the question of the relia-
bility of some of the calculations referred to above.

The saddle point shapes studied in this paper refer
to charged drops with the fissionability parameter x
(equal to the electrostatic energy of the spherical con-
figuration over twice the surface energy) in the range
0.6 to 1.0. They are shapes possessing axial and re-
Aection symmetry and tending to the spherical con-
figuration for @~1.In the next section we shall consider
the case 1—x«1, for which an expansion about the
spherical shape is possible. All the results of that sec-
tion can be deduced from the existing literature, but,
in view of the absence of a comprehensive summary on
the one hand, and, on the other, of diGerences in nota-
tion and one or two misprints in the published formulas,

* Now at the Institute of Physics, University of Aarhus,
Denmark.

' W, J. Swiatecki, Phys. Rev. 101, 651 (1956}.
'-' N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).' R. D. Present and J. K. Knipp, Phys. Rev. 57, 751 (1940).' S. Frankel and N. Metropolis, Phys. Rev. 72, 914 (1947).' U. L. Businaro and S. Gallone, Nuovo cimento 1, 629 (1955).' U. L. Businaro and S. Gallone, Nuovo cimento I, 1277 (1955).' V. G. Nossoff, Report A/CONF. 8/P/653 U.S.S.R. from the

1955 Geneva Conference on the Peaceful Uses of Atomic Energy
(United Nations, New York, 1956).

9

we shall begin by collecting the equations relevant to
the calculation of electrostatic and surface energies of
a slightly distorted drop.

2. SMALL DISTORTIONS OF A SPHERICAL DROP

The equation of the surface of the distorted drop,
assumed axially symmetric, may be specified in spherica, l

polar coordinates by

or by

R(8) =X 'Rp[1+P n„P (cos8)],
74=1

R(8) =RpL1+Q a„P„(cos8)]. (2)
n=o

If the two alternative expansions are to represent one
and the same shape, we must have 1+ap ——X ' and, for
e&1, O,„=ha„.

The constancy of the volume of the drop, assumed
incompressible, is ensured by the condition

(1++n„P„)'d(cos8).
2 i n=l

This gives, without approximation,

00 3 QO

X'= 1++ — n.'+-', g (pqr)n„n,n, ,
1 2++1 p pr=—1

where

(pqr) = P„P,P,d (cos8)
—1

( 2 ) (1 3. (p+q —r —1))
i p+q+r+1I & 2 4 (p+q r) )—
~1 3 (p+r —

q
—1)y f'1 3 (r+q p —1)q-

x! 2.4 (p+r —q) ] ( 2 4 (r+q —p) )
2 4. (p+q+r)x!

(1 3 . (p+q+r —1))
(Consult the work of Hobson, ' p. 87.)

8 E. W. Hobson, The Theory of Spherical and J lHpsoidal Har-
nionics (Cambridge University Press, Cambridge, 1931}.
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1
TABLE I. The coeAicients (py) = P7iPqPrd(cos9).

~ -1
The constancy of the position of the center of mass

requires that

(222)
(224)
(244)
(246)
(266)
(26s)
(2ss)
(444)
(446)

=4/35
=4/35
=4O/693
=10/143
=28/715
=56/1105
=48/1615
=36/1001
=40/1287

(448) =980/21 879
'

(466) =56/2431
(468) =1008/46 189
(488) =72/4199
(666) =800/46 189
(66S) =700/46 189
(688) =1200/96 577
(888) =980/96 577

(112) =4/15
(132) =6/35
(134) =8/63
(154) =-10/99
(332}=8/105
(334) =-4/77

(352) =20/231
(354) =40/1001
(552) =20/429
(554) =4/143
(336) =200/3003
(572) =42/715

(1++n„P„)'cosed(cose) =0,
n=---1

which gives

00 n
naut+&

n (—2.2z+ 1) (2N+3)
Some of the more frequently occurring of these co-

efficients are listed in Table I. +terms of order n~,n n . (3)

The surface and electrostatic energies of the deformed drop, 8, and E„in units of their values for a sphere,
I~', (" and E,('}, can be shown to be given by

E.
8,—=— = 1+(2/5)n2' —(4/105)n22 —(66/175)nz' —(4/3o)n22n4+n4 '+ (o/7)-nz' —(8/105)nznz'- —(156/77)n22n22

(o}

and

—(4/77) n4nz' (40/231) uz—nznz+ (14/11)nz2 —(12/3&)niuzn2 —( 4/1 5) np n2 (68/—105)ui'n 2'

—(20/429)nznz' —(297 6/1 001) n2 uz (4/143—)n4nz2 —(36/35)nin2'uz —(16/63)ninzu4+ (72/77)nin2'nz

—(20/99)nin4uz —(324/1001)n22nznz (80—/1001)nzn4nz+. . .
, (4)

jV

8p
= 1 ——(—1/5}n——2' (4/1—06}uzzy (51/245)nz' —(6/35)n2'n4 (5/2—7)n4' —(10/49)nz' (92/—735)nznz'

f( (o}

+ (47522/88935) n22n22 —(60/539) n4n 22 (&96—0/17787) nznzn: —(20/121)nz-'—(48/245) u iuzn 2

+ (2/15)nizn2+ (442/735)nizn22+ . (5)

In the above formulas, only some of the more important coefficients in the infinite expansions have been re-
tained. The scale factor X, given by the next formula, has been taken into account:

) 2= 1+ (3/5)n22+ (2/35)u22+OXn2'+ (6/35)u2'n4+ (1/3)n4'+ (3/7)nz'+ (4/35)uzn22+OXnz'nz-'

+ (6/77)n4n22+ (20/77)uznznz+ (3/11)n22+ (18/35)ninznz+niz+ (2/5)nizn2+ (10/143)nzn22

+ (6/143)u4n22+ (8/21)ninzn4+ (10/33)nin4nz+ (120/1001)nzn4nz .

If the coefficient ni is eliminated by means of Eq. (3) [ni —(27——/35)uznz+ ]and, in addition, we use n„=P,a„,
the following formulas result:

I&,= 1+ (2/5) a 22 —(4/105) a2'"—(38/175) a2' —(4/35) a22a4+ a42

+a22[(5/7) —(8/105) a2 —(18346/13475) a2' —(4/77)a4] —(40/231) aza3az+ (14/11)a22+, (Sa)

8,.= 1—(1/5) a,'—(4/105) a,'+ (157/1225) a2' —(6/3o) a2'a4 —(5/27) a4'+a22[ —(10/49) —(92/735) a,
+ (1701748/3112725)a22 —(60/539) a4]—(5960/17787) azazaz —(20/121) az'+ . (Sb)

Again only certain terms have been retained. These expressions agree with reference 3.
Recently Xosso67 has given formulas for 8, and 8, which enable one to write down all the terms up to order

a„a,a,a, . For the sake of completeness we reproduce here NossoR's formulas in the notation of Eq. (2):

(zz —1)(I+2)
&.=1+2 2 a„'—-', Q (lzzzzz)aza a„+Q

n 22zz+ l=E,m, n=2 , =2 (2zz+1) (2zzz+1)

(zzz+1) (zz+1) 00

+36 a„a„+ia„a„+2—(1/128) Q [k (&+1)+l(l+ 1)—i(i+1)]
vnn 2(2zzz+ 1) (2,zz=z+3) (2zz+ 1) (2zz+3) 2, i,m, n=2

X[zzz(m+1)+zz izl+1) —i(i+1)] (2i+1)(ikl)(izzzzz)a2aia a„,
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and
e—1 7e—10 00 N —4

B,=1—5 P - — a.'—(5/12) P — (lme)a(a a„+SQ — a„'a„,3

~=3 (2n+1)' I ~,m=3 2e+1 -,.=3 (2e+1)3(2m+1)

(4n —7) (n+1) (m+ 1)
+45 a a„+ia.a.+I+—'„' P Li(i+1)—m(m+1)+-', (n' —n+1)]

~, ~=3 (2m+1) (2m+3) (2n+1)'(2n+3)

2i+1
X— +(2/9)L2m(m+1) —(9/4)i(i+1)+n(n+1) j(2i+1)——,(i—1)(i+2) (ikl)(imn)a(a(a a„.

2n+1

The coefficients uo and a~, which do not appear, have
been eliminated by means of the constant volume and
center-of-mass conditions.

Nosso6's formulas mere found to reproduce Eqs.
(Sa) and (5b) except for the coeff(cient of a33a33 in B„
which we find would be given as 1437 121/3 122 725
instead of the 1701748/3112725 in Eq. (Sb). The
reason for the discrepancy has not yet been cleared
up, but if it is Nossoff s formula which is incorrect,
then there is evidence that the mistake may be in the
fourth-order term with a a +~a„u„+~.

The distortion energy of the drop (surface plus
electrostatic energies), in units of E,(3i, is given by

(E E,(3i+E E,(3I)/E, (W

= (B, 1)+2x(B—,—1), (6)
where x=E,("/2E, ("'.

Using Eqs. (4), (5), and (3), we find

$=AQ33+BQ33+CQ34+DQ33Q4+EQ43

+Q 3 (F+GQ 3+HQ 2 + IQ 4)+JQ 3Q 3Q3+LQ 3 + ' ' ' (7)

where the coeKcients A to E (linear functions of x) are
listed in Table II.

In Eq. (7) all terms with Q„with n)5 have been
omitted. The reason for the particular selection from
among the remaining terms will appear presently.

To determine the saddle point shape which makes $
in Eq. (7) stationary, we first use

Bp/BQ4 ——0 and Bp/BQ3 0, ——

which gives

Q4 —(D/2——E)Q 3 and Q3= —(J/2L)QXQ3. (8)

This leads to an expression for g which is a function of
QX and (x3 only (compare part I)

Q3s " 2..3——333(1—x)—1.2261(1—x)',
Q, s.p. (168/85) (1 x)

$4(,=0.7259 (1—x)'—0.3302 (1—x)'.
(12)

The function g(Q3) in Eq. (9) is a measure of the
stability of the symmetric shapes against asymmetry.
The symmetric shape in question is that specified by
QX and Q4 LQ4 ———(D/2E)Q33j, and the asymmetric dis-
tortion contemplated is given by Q3 and Q3t (Q3
= —(J/2I)QXQ3)). Inserting into Eq (10).the expres-
sion for QXs. P from Eq. (12), we find the following ex-
pansion for g(QXs P ), which now measures the stability
of saddle point shapes against the Inost favorable

TABLE II. CoeKcients in the expansion of the
deformation energy $.

Term Fractions

B n2'

C n&4

D n2n4

A n4

2 2———x
5 5

4 8
3 5 7 3 5 ' 7

66 102
5 5 7 5 7 ' 7

4 12
57 57'

10' 333x

If the term with t is neglected, we 6nd, to lowest order
in (1-x):

QXs p = 2A/3B=—(7/3) (1—x),

4 = (4/27) (A'/B') = (98/135) (1—)'

The inclusion of C gives instead:

where
5 = f(QX)+Q3'g(Q3)

f(Q3) = AQ33+BQ33+ CQ3',

g(Q3) =F+GQX+HQ34,

(9)

C=C—(D'/4E),

H =H (ID/2E') —(J3/4E)—.
Putting Q3 ——0, the condition 8$/BQX Ogives QXs P for-—
the symmetric saddle point shape, and substitution in

Eq. (9) gives the corresponding threshold energy p,I,.

F n3

G n~32

H n2nP

J n2n6n3

I. nP

5 20
7 77x

8 184
3 5 ' 7 3 5 ' 7 7

23736 4267436
5 5 7 7 ' 11 3 5 5 7 7.7 11 11

4 120
7 11 7-7.11

40 11920
3 7-11 3 7.7.11 11

14 40
11 11 11'
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I zo. 1. Stability against asymmetry of saddle point shapes as
function of x. The lower curve is g(cess P ) from Eq. (13}.The
calculation is based on an expansion about a sphere and becomes
more and more unreliable as x decreases below about 0.9. The
intersection with the x axis at x=0.72 is, therefore, a very un-
certain estimate of the critical x, at which instability of the sym-
metric saddle point shape against asymmetry first appears. In
particular, a value of x, considerably lower than 0.72 could not be
ruled out by the trend of g for x&0.9, the region where the calcu-
lation is reliable. The upper curve refers to the case when o.5 is
put equal to zero.

asymmetry:

g(n, s.p.
) 0 3061 0 3571(1 x) 2 7118(1 is)' (]3)

valid for (1—x)«1.
The reason for retaining the 11 terms in Eq. (7) is

now clear. The lowest order formula for ash requires
the terms in A and 8, whereas the correction in (1—x)'
makes use of C, D, and K Similarly, Ii gives the first
term in Eq. (13), G is needed for the second, and H, I,
J, and I are required for the third term.

If higher even harmonics I'6, I'~, etc. , were included
in Eq. (1), the coefficients ns, ns, etc. , would, like n4, be of
order (1—x)'. [Contrast reference 7 which implies that,
for n) 1, ns„is of order (1—x)". The unique position of
ns, which is of order (1—x), is associated with the fact
that I'2 is the special distortion for which stability is
lost at x= 1j. The effect of P„itwh I)4 on ash would,
therefore, start with the term in (1—x)'. The coeflicient
—0.3302 in Eq. (12) is thus only an approximation to
the correct term in (1—x)'. The inclusion of the higher
even harmonics should always lower the estimate of
ash for a given x, since, with more degrees of freedom
available, the passage over the potential barrier can
be made in a more economical way.

Similarly, the inclusion of odd harmonics E„with
e) 5 would affect the last term in Eq. (13).The effect
would be always to decrease g, since there would be
greater freedom in choosing the asymmetric distortion
most likely to lower the energy. This is illustrated by a
comparison of Eq. (13) with an analogous expansion in
which, however, the coefficient o.5 is taken as zero
instead of that function of n2 and of3 which minimizes
the energy LEq. (8)j. The last term in Eq. (13) is then
replaced by —1.6844(l —s:)'. The two cases are shown

in Fig. 1.
Information concerning the range of validity of the

formulas discussed so far, considered as functions of

1—x, will be provided by a comparison with the more
exact calculations of the following sections.

The formulas of the preceding section were derived
under the assumption that the deviations from the
spherical shape are small, which is not the case in
applications to nuclear fission (when values of x around
0.7 are of interest). In reference 4, electronic machine
calculations were carried out which, in principle, should
be accurate also for large distortions. In this and the
following sections, we shall report some results of
studies of this problem using analytical methods.

Figure 2(c) compares the saddle point shape for
x=0.699 with an ellipse whose axes are in the ratio
1:2.4004. In so far as the saddle point shape can be
regarded as a small distortion of the ellipse, an expan-
sion of the surface and electrostatic energies in powers
of the distortion should be useful. One could proceed
in analogy with the case of the distorted sphere and
write down E, and 1&', to (at least) the second power of
the distortion and, by differentiation, determine the
configuration which makes the total energy stationary.
(This is the procedure followed in references 6 and 7.)
In practice, an alternative method was found to possess
several advantages, which turned out to be of decisive
importance in making practicable an accurate deter-
mination of the thresholds and saddle point shapes. The
method makes use of the general equation for the sur-
face of a liquid in equilibrium under the action of a
surface tension and of electrostatic forces, ~is. :

op+ Sir = constant =k. (14)

z=fl
I

-'"p
~volume sf surface

= J' VpffB+
J

SKfrll.
surface surface

Subtracting J;„„f„,Sf' times a Lagrange multiplier
k to ensure conservation of volume and equating to
zero the integrand leads to Eq. (14). The Lagrange
multiplier k is determined by considering the eGect of
a uniform change of scale on a shape satisfying Eq.
(14). The associated change in the total energy can be

Here n is the electrostatic potential at a point on the
surface of the liquid, ~ is the total curvature at that
point, p is the (uniform) charge density, and S is the
constant surface energy per unit area.

The above relation results from equating to zero
the first-order change in the total energy associated
with a small volume-preserving deformation of the
surface. If the deformation is specified by a normal dis-
placement of the surface, be, then the change in the
energy is
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--0

(3)
"80 t

ZO

--9 0
--I 0

(b)
-$0

---0 5'

--0 5

(c)
-z'o

FIc. 2. Three ellipses, given in spheroidal coordinates by pe=1.4, 1.2, and 1.1, and the saddle point shapes for
x=0.876, 0.792, and 0.699. Each of the three sets represents an optimum adjustment of the saddle point shape
and the initial ellipse which minimizes the residual in the least squares 6t. The values of the expansion coefficients

defining the saddle point shapes LEq. (17)g are as follows: (a} em=0.03777, e4= —0.02859, e5
——0.00347; (b) e2

=0.03393, ~4= —0.03693, ~6=0.00687; (c) &~=0.03040, e4 ———0.04100, e =0.01019.
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written in two ways. On the one hand,

~ surface

f
(vp+5~)be= k) be= kb V,

surface

~bvq-E.-E.= [(l)E.+(5/3)E.)1 —i.Ev)
Hence k=[(oo)E,+(S(3)E,])V, where V, E„and E,
are the volume, and the surface and electrostatic
energies of the equilibrium shape, respectively. Ex-
pressing all quantities in units of their values for a
spherical configuration, Eq. (14) can be written in the
fol m

(v ) 1(x
~1 —~, I+-I —~, I

=o,
(vo ~ 5 E~o )

(15)

where ~0 and Kp are the surface potential and total
curvature of the original sphere and 8, and 8, are as
de6ned in Sec. 2.

To determine the distortion of an ellipsoid which will
ensure the validity of Eq. (15), one may now write
down the surface potential and curvature as functions
of position on the surface, expand in powers of the
distortion, and satisfy Eq. (15) by, for example, a
least-squares fit. The disadvantage, that in this method
one has to calculate the expansion of a function of
position on the surface of the drop rather than of a
number (the total energy) as in the conventional treat-
ment, is offset by several factors. Firstly, since Eq. (15)
represents the stage after the differentiation of the
total energy which determines the equilibrium shape,
an approximation equivalent to calculating the energy
to second power in the distortion is obtained by writing
down v and ~ in Eq. (15) only to first power. This avoids
the necessity of deriving the complicated formulas for
second-order eAects. Secondly, if, as is usually done,
the distortion of the ellipse is written as a superposition
of several harmonic distortions, analogous to PoNa„P
in the case of a sphere, the number of coefhcients in the
expansion of the energy to second order is proportional
to IV-', whereas, using Eq. (15), only one new function
has to be calculat;ed for each additional harmonic (see
below). Moreover, since one is dealing with first-order
formulas, general expressions for any e are readily
written down. As will appear presently, this made
practicable the inclusion of an adequate number of
harmonics and the demonstration of the virtual inde-
pendence of the results of additional terms. Thirdly,

where 5e is now the non-volume-preserving displace-
ment of the surface associated with the change of scale
and 6V is the corresponding volume change. On the
other hand, from a dimensional argument,

p V+bvq *' (U+bvy ot'

br=bE. +bI'. =E,
1 I +E.1—

v ) & v

and most important, the last step in the present pro-
cedure, the reduction to zero by least squares of a
certain expression claimed to be an approximation to
vp+S~ —k on the surface of a distorted ellipsoid (ob-
tained by expanding in powers of the distortion),
provides a check for the absence of accidental computa-
tional errors as well as for the validity of the assumed
expansion. Thus, a computational error will, as a rule,
show up in the impossibility of satisfying Eq. (15).
Similarly it was found that the expected breaking down
of the expansion in powers of the distortion, which
results from attempting to use a given ellipse as a
starting point for saddle point shapes di6ering from the
ellipse by too great an amount, could be followed quan-
titatively by a study, as function of x, of the residua/ in
the least-squares method. The minimum in the residual
corresponds to an optimum adjustment of the starting
ellipse and the saddle point shape which it is supposed
to approximate. By always working at this optimum,
an objective way of picking out the most accurate and
reliable solutions was achieved. No corresponding
method is available in the conventional approach in
which the energy is expanded to second order.

In order to represent the distorted ellipsoids, prolate
spheroidal coordinates rt, P, P were used, o related to
cylindrical polar coordinates p, s, P by

p = co(1 8) '(II' —1)'

s= cong,
(16)

=no[1+(no' —8) '2 o-I'-(5) j (17)

Constancy of volume and center of mass is then ensured

to 6rst order by 6p= E-y=o.

The surface potential and curvature [or rather the
two parts of Eq. (15)j will, to first order in o„,have the
form: (function of $)+P o" (function of $)„o„,i.e.,

--&.=&(~)+2 -&.(~),
't)o n=2

%V. R. Smythe, Stutic and Dynamic Electricity (XtIcGra~v-Hill
Hook Company, Inc. , Ne~v York, 1939).

where co is a constant. (The above $ must not be con-
fused with the deformation energy denoted by the
same symbol. )

The equation of an ellipse in these coordinates is

given by rt($) = constant= go (c& is then the s-coordinate
of the focus of the ellipse). The coordinates rt, $, p
correspond to r, 8, & in the case of spherical polar
coordinates, with j specifying the position on the
surface of an ellipsoid (defined by rt=constant) in

analogy to 0 specifying the position on the surface of
a sphere (defined by r= constant).

The equation of an arbitrary axially symmetric
surface was usually taken in the form

n=n(k)
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with"

Similarly,
B4=8+Gg4g.

B,=b+Q b,„4.
2

(19)

(20)

(21)

Eq. (25), only positive values of $ need be considered.
[Note that G($) and G ($) with e even are even func-
tions of (, and G„(4",) with n odd are odd functions. ]
Explicitly, the sums for (rs) and (r) were taken as

(r~) =2 G (4)G.(4) (no' —('') '~f',
(26)

Here A($), A„(g),B($), and B„(P)are functions of
position on the surface of the ellipsoid. Together with
the constants a, a2, 0, b„ they are defined in the
Appendix.

By using Eqs. (18) and (20), the condition (15) can
be written as

(22)

where G=xA+B and G„=xA +B are functions of &

depending linearly on x. The least squares condition,
taken in the form

b) f'do =0,
surface of

ellipsoid

and
(33)44+ (35)44+ = 0

(35)eg+ (55)45+ =0. (24)

where b means independent variations of the 4„in f',
then leads to the following two sets of simultaneous
linear equations for the optimum values of ~„specifying
an equilibrium shape:

(22)42+ (24) 44+ (26)44+ + (2) = 0,

(24)6g+ (44)44+ (46)44+ + (4)= 01
(23)

(26)42+ (46)44+ (66)44+ . + (6)= 0,

The factor (go' —$ )ldll; is proportional to the surface
element, da associated with g, . [Thus 6&;=0.075, 0.15,
0.15, 0.15, 0.125, 0.1, 0.075, 0.05, 0.05, 0.05, 0.025 for
i=1, 2, 11. The factor (go2 —$,2)*' represents the
result of integrating over the azimuth p.]

The solution of Eqs. (23) gives the symmetric saddle
point shape, speci6ed by a set of e„.The threshold
energy follows from using Eqs. (6), (19), and (21).
Note that Eqs. (19) and (21) give only the linear terms
in $ considered as function of e„.The derivation of the
quadratic terms in 8, and 8, can be avoided by re-
membering that the value of a quadratic expression
y= a+bx+cx', calculated at the point xi where the first
derivative y' vanishes, is given by y(xi)=u+b(xi/2),
which does not require a knowledge of c. Hence, with
the values of e„available, the threshold energy is
given by Eq. (6), but with B, and B, in Eqs. (19) and

(21) evaluated at 4„=2,4„sP-
The other set of simultaneous linear equations, Eqs.

(24), is always satisfied by e oz&=0, corresponding to
symmetric shapes. If, however, the determinant of the
coefficients in Eq. (24) should happen to vanish, the
set of equations can also be satisfied by finite values of
e„,dz. This corresponds to the appearance of asym-
metric saddle point shapes. (See part I.) Asymmetric
shapes will not, however, be discussed further in the
present paper.

4. RESULTS

Here

(rs) ~ G„G,do.
~ surface of

ellipse

(r) ~ GG&o..
~ surface of

ellipse

(25)

In practice the functions G„(P)were calculated for
eleven values of g, at. P;= 0, 0.15, 0.30, 0.45, 0.60, 0.70,
0.80, 0.85, 0.90, 0.95 and, 1.00 (i=1, 2, 3, 11) and
the integrals in Eq. (25) were replaced by sums. The
smaller intervals in $, near (=1 are designed to give a,

better representation near the tips of the ellipse (see
below). Because of the symmetry of the integrands in

"For the reason why coeAIcients u~ with n. &2 do not appear
in (19), see Appendix.

Calculations were carried out with three different
ellipses as starting points, specified by po= 1.4, 1.2, and
1.1.The ratios of the major axis to the minor axis, given

by (1—qo') ', are 1.4289, 1.8091, and 2.4004, respec-
tively. The ellipses are shown in Figs. 2(a), 2(b), and
2(c). Up to 4 even harmonics 42, 44, 44, and es were used
in. the expansion (17), but the term in 48 was found to
have a negligible effect. and was later omitted. With
any given qo, saddle point shapes were calculated for a
range of values of x. [The calculations of (rs) and (r)
for several values of x are simplified if one notes that
these coefficients are quadratic functions of x.] Each
solution was checked by plotting f=G($)+P =-i~ G~(()
as function of P. With all 4 put equal to zero, the quan-
tity fo=G(P) is equal to x[(v/vo) —B,]+-',[(K/140) —B,]
evaluated on the surface of an undistorted ellipse. The
deviation of fo from zero, for example its root-mean-
square value, is a measure of the inadequacy of an
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Fn. 3. The thresholds (th, calculated using the starting point
ellipsoids y0=1.1, 1.2, and 1.4. For each ellipsoid a range of
values of x was investigated (reaching beyond the range of
validity of the expansions used) and the results are shown by the
three curves in the figure. The dots represent the trend of the
lowest order formula &th=0. 726(1—x)'.

ellipse as a representation of a saddle point shape. The
rms value of j is similarly a measure of the residual
deviations for the deformed ellipse. We have used the
ratio

presumably, be removed by introducing esP8 and higher
harmonics in the expansions. On the other hand in
Fig. 5(b), the residual y is Ss%%uq and the long period
deviation of f($) from zero was found to be practically
unaffected by the introduction of esPs, and. must be
taken as an indication of the breaking down of the
expansions.

It so happened that the initial applications of the
present method were made precisely with x=0.74. The
reason for the residual deviation of f($) from zero was,
at that time, not clear, and considerable effort went
into searching for suspected errors, thereby checking
the correctness of all formulas. A by-product of the
search was the localization on the surface of the ellipsoid
of the region where the greatest inaccuracy in the ex-
pansion (22) arises. It was found, namely, that if (with
x=0.74) the least; squares condition is relaxed by leav-
ing out, in turn, the points at $;= 1.0, 0.95, 0.90, 0.85,
and 0.80, then at 6rst the nature of the solution changes
rather rapidly and the residual f(p) over the remaining
region of $ values decreases quickly. With $;=1.0,
0.95, and 0.90 left out, however, the residual is prac-
tically zero and the neglect of further points has a small
e6ect. This was taken as a confirmation of an impres-

f
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as a measure of the relative accuracy of the method for
a given 'gs and different values of x. (The main variation
of y with x comes from the numerator. )

The result of the threshold energy calculations is
shown in Fig. 3. The rapid increase of $,q with (1—x)
[for 1—x((1, $~q ~ (1—x)'7 is seen to continue down to
x 0.65. It will be noted that the calculations with
gp= 1.1, 1.2, and 1.4 do not give identical results in the
regions where the x values investigated with the three
diferent starting point ellipses overlap. This is to be
expected, since an expansion about one of the ellipses
will be approximately valid only in the neighborhood of
a certain x. As one goes away from this neighborhood the
results will become more and more inaccurate. This
can be seen more clearly in Fig. 4, where hatt„divided
by (1—x)', has been plotted. As mentioned above, the
breaking down of the expansions is apparent also in a
study of the residuals f($) or the ratios y (the latter
plotted in the upper part of Fig. 4). Two typical cases
are analyzed in detail in Figs. 5(a) and 5(b), corre-
sponding to calculations with x=0.699 and x=O.T4,
respectively (both using the ellipse rls

——1.1). The re-
sidual f($) in Fig. 5(a) is such that y is only 2-,'cj'r;, and
part of the remaining rapid oscillation in f($) wouM,

0 5--

045' 0 70 0-7g 0 80 0 8& 0$Q

FIG. 4. The lower part of the figure shows the values of gth/
(1—~)3, calculated using the three ellipsoids go=1.1, 1.2, and 1.4.
In the upper part the residuals x in the least squares method are
plotted against x. The minima in y pick out the most reliable
solutions, The corresponding values of its/(t —xl' are shown
circled and the interpolation-extrapolation curve (27), passing
through these points is shown by the thicker line. The results of
the electronic machine calculations of Frankel and Metropolis4
are indicated by triangles and those of Businaro and Gallone' by
squares.
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II. The threshold energy
of x. ase

$th gth/(1 —x)' x (th Pth/(i —x)'

1.00
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.90
0.89
0.88
0.87
0.86
0.85
0.84
0.83
0.82
0.81
0.80
0.79
0.78
0.77
0.76
0.75
0.74

0.0
0.067227
0.055757
0.041935
0.044571
0.048899
0.0001533
0.0002429
0.0003620
0.0005149
0.0007059
0.0009397
0.001221
0.001555
0.001946
0.002400
0.002924
0.003522
0.004202
0.004970
0.005834
0.006800
0.007878
0.009075
0.01040
0.01187
0.01348

.73 0.01524

.72 0.01718
0.71 0.01929
0.70 0.02159
0.69 0.02409
0.68 0.02679
0.67 0.02972
0.66 0.03288
0.65 0.03627
0.64 0.03991
0.63 0.04381
0.62 0.04797
0.61 0.05241
0.60 0.05712

0.55 0.08070
0.50 0.1029
0.45 0.1237
0.40 0.1433
0.35 0.1616
0.30 0.1788
0.25 0.1948
0.20 0.2098
0.15 0.2237
0.10 0.2367
0.05 0.2487
0.00 0.2599

0.7259 0
0.7227 0
0.7196
0.7168
0.7142
0.7119
0.7099
0.7083
0.7071
0.7063
0.7059
0.7060
0.7066
0.7076
0.7092
0.7112
0.7138
0.7169
0.7205
0.7246
0.7292
0.7343
0.7399
0.7459
0.7524
0.7594
0.7667

0.7745
0,7825
0.7909
0.7996
0.8086
0.8177
0.8270
0.8365
0.8459
0.8555
0.8649
0.8743
0.8835
0.8925

0.886
0.823
0.744
0.663
0.588
0.521
0.462
0.410
0.364
0.325
0.290
0;260
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FIG. 6. The threshold (&z in the range x=0 to x= 1. The
interpolation-extrapolation formula {27),applicable for x greater
than about 0.6, is plotted beyond its range of validity. The
behavior of (&h for x((1 is indicated by the straight line. The
interpolation formula {28) {dashed line), which has the correct
value and slope at x=0 and x =0.6, suggests how the intermediate
region might be spanned.

obtained by differentiating Eq. (6). {The total varia-
tion 8)ii, in Eq. (6) is the sum of a term coming from
varying x at a constant shape of the drop I Eq. (29)]
and a term coming from varying the shape at a constant
x. The latter term is zero on account of the stationary
nature of the energy at a saddle point. }

Using Eq. (27), one finds

8,= 1—(1—x)'L1.0889—0.6604 (1—x)
+1.5968 (1—x)'+ 23.6181(1—x)'—42.0214(1—x)4].

With 8, and $~h available, 8, can be found from
Eq. (6).

The saddle point shapes corresponding to the three
optimum solutions on which the above formulas are
based are shown in Figs. 2(a), 2(b), and 2(c), together
with the undistorted ellipses. It may be noted that for
these shapes the second and fourth harmonics $s and
$4 are about equally important (with the second tend-
ing to predominate for higher x and the fourth for
lower x values). The sixth harmonic es is smaller, though
still not negligible, especially for the lower x values.
The eight harmonic e8, however, was found to be very
small. Even with the ellipse go=1.1, where the higher
harmonics are more in evidence, the values of ~8 did
not exceed a few units in the fourth decimal place, For
example, at x=0.7, &8=0.0004. The contribution of
such a term to gati, is then 0.000017 or 0.08%.

The saddle point shapes for the three optimum x
values can again be used to deduce saddle point shapes
for other x values by interpolation and extrapolation.

TABLE IV. Radius vectors of saddle point shapes at
x= 1.0, 0.9, 0.8, 0.7, and 0.6.

00
10
20'
30'
40'
50'
60'
70'
80'
90

x =i.0

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.9

1.227
1;219
1.182
1.130
1;072
1.010
0.956
0.916
0.892
0.883

0.8

1.476
1.447
1.363
1.240
1.097
0.972
0.878
0.813
0.777
0.765

0.7

1.785
1.728
1.576
1.333
1.071
0.872
0.747
0.674
0.637
0,623

0.6

2.140
2.064
1.828
1.411
1.020
0.739
0.588
0.501
0.471
0.460

This was done graphically by reading o6 the radius
vectors R(8) of the three optimum shapes at intervals
of 10', plotting these against x, and drawing smooth
curves with the correct behavior near x—+1 Las deter-
mined by R(8) =Re(1+nsPs), with ns= (7)3)(1—x)].
The result is shown in Fig. 7, where the limiting values
for x=0 are also shown. ' The curves in Fig. 7 were used
to construct the five saddle point shapes at x= 1.0, 0.9,
0.8, 0.7, 0.6 shown in Fig. 8. The extrapolation to x=0.6
might be inaccurate by a noticeable amount. The corre-
sponding radius vectors are given in Table IV.

The threshold energies calculated in this paper are
compared with the results of other authors in Fig. 4.
With one exception, the electronic machine calculations
of Frankel and Metropolis' are consistent with our
results. Thus, at x=0.74, where, in the words of the
authors "the most accurate and extensive calculations
were made, " the value of $ is given as 0.013s, to be
compared with our )=0.0135. At x=0.9, Frankel and
Metropolis 6nd )=0.0007 as against our )=0.000706,
and at x=0.81, /=0.0050 against our 0.00497. The
threshold at x=0.77 "was investigated briefly" by
Frankel and Metropolis. The value )=0.009s is con-
sistent with our 0.00908. At x=0.65, however, the
electronic machine calculations gave )=0.0400 against
our )=0.0363. The discrepancy is even more apparent
in the corresponding saddle point shape which, accord-
ing to Frankel and Metropolis, has at this value of x
separated into two almost distinct fragments, con-
nected by a narrow neck. That there must be some error
in those calculations is suggested by a simple estimate
which indicates that the diameter of the neck is several
times to small for the surface tension round its perimeter
to balance the still considerable electrostatic repulsion
between the two halves of the drop. This shows that
the shape is not in equilibrium and cannot, therefore,
be a saddle point shape. Note also the sudden drop in

the value of the minor axis at x=0.65, implied by the
Frankel and Metropolis solution (Fig. 7).

The calculations of Businaro and Gallone, ' based on
an expansion of the energy around an ellipsoid, with

one harmonic, P&, retained, exceed our values for $ by
7.0%, 9.8%, 8.1%, and 11.1% at x= 0.9, 0.8, 0.74, and
0.7, respectively. Similar calculations by Nosso6~ ex-
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Fzo. 7. Radius vectors of saddle point shapes as functions of x (in units of the radius Ro of the original sphere),
plotted at intervals of j.0'. The curves pass through calculated points at the x values indicated by arrows and
have the correct slope near x= 1.The points on the left refer to the configuration of equal tangent spheres (the
symmetric saddle point shape for @=0).The circled points give the major and minor axes calculated by Frankel
and Metropolis. ' (The value of the minor axis at x=0.81 is not given. )

ceed our $ by amounts varying from 27%%uo at x=0.9 to
46%%u,

'
at x=0.6S

It may be noted that the simple formula $= (98/135)
X (1—x)', based on a lowest order expansion about a
sphere LEq. (11)j, gives thresholds which are actually
correct to within 10%%uq down to x=0.7. This must be
regarded as an accident, since the assumed expansion
is certainly not valid for the very deformed shapes
around x=0.7, as can be seen by noting that, on the
one hand, the inclusion of the next term in (1—x)'
gives a less satisfactory formula and, on the other, that
the saddle point shapes calculated with the lowest
order formula (11) provide a very poor representation
of the correct shapes. (See Fig. 7.) As a rough, semi-
empirical formula, however, the result

/=0. 726(1—x)'

should be useful in the range of values of x where the

liquid drop model has been applied to the theory of
nuclear fission.
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APPENDIX

e shall give here an outline of the procedure used
in cleriving the coefficients in the expansions (18)—(21)
and a summary of the results.

The first order expansion for v/vo in Eq. (18) is ob-
tained by writing down the change in the surface
potential as a sum of a term due to moving the surface
in the field of the undistorted spheroid and a term which
gives the potential on the spheroid due to the distortion
(considered as an equivalent surface charge). For the
potential of a surface charge on a spheroid, consult
reference 9, especially page 206.

The expression (19) for B, may be obtained by
calculating the energy of the distortion (again con-
sidered as a surface charge) in the field of the spheroid.
The fact that the surface potential on a spheroid is a
qladratic function of $ is responsible for the vanishing,

by orthogonality of the I'„,of all coe%cients a„with
e& 2.

The derivation of the formula for»/»p was fairly
involved. An intermediate step was the derivation of a
general expression for the change b~ in the total curva-
ture of a surface of revolution associated with a dis-
tortion of the generating curve, specified by a normal
displacement be given as function of the length of arc s,

i.e., Sn=8e(s). This formula reads:

~»= —(+i ++' )8&—p
' sine—($n) ——(pN)

ds dg~

where R», R2 are the principal radii of curvature of the
undistorted surface, p is the length of the cylindrical
radius vector of the point in question and 0 is the angle
between this vector and the normal. Using the above
expression in the case of a distortion specified in
spheroidal coordinates, one obtains Eq. (20). The ex-
pression for 8, is obtained by using the relation

6A = )I »8e
surface

for the change in area associated with a displacement
5n. In this integral there appear expressions of the type

which give rise to the coeflicients denoted by D„&"I (see
below). Special cases of such integrals have been con-
sidered by bauer

The results of the steps just outlined are summarized
below.

The functions A($), A„($),B($), and B„($)in Eqs.
(18) and (20) were found to be given by the following
expressions: Let

A =cH, A =cH„, 8=cM, and 8„=cJIf„,
where

"G.Bauer, Crelle's Journal 56, 101 (1858).
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T'hen

where

&= —}1pQpPp,

&p rlo—Q—p/m W—Pp+ TpPp,

H &p= —WP +T„P„,

IF= }1p'w(Q pPp —Qp'),

T =3z1pP„(qp)Q„/m,

recurrence relation

D ir} 2L (r}D (r} ~ (r}D (r} g (r}D (r} (30)

where

(2n+3) (2e+5)
(~)—

(n+2) (n+r+3)

(2n+3) (2e+5)e(n —r—2)
(&)—

(2e—1)(2n+1) (n+2) (e+r+3)

Here P„stands for the Legendre polynomial P„($),
with $ as the argument, except where otherwise indi-
cated. The Legendre polynomial of the second kind is
denoted by Q„(consult reference 8) and the argument is
always rip. The derivative dQ„/dqp is denoted by Q„'.

Similarly,

M=i'o(q —1—s),
M „&i '(RP„+Sp——„+—TP„" U„), —

s=m 1gp' sin '(1/z}p),

q= E(1+mw),
R= EL(—w/m)+ (3—5qp')w'+3qpzmw'],

5=E(—w+3mw'),

T=E(—1+mw),
E=go'w1/m'.

In the above, p stands for )dP„/d$ and P„"= d'-'P„/dg'.
Further, the coefFicients U„aregiven by

U„=L&pm—:D„~-»+&,-im-1D. ~-»]/(ny-;),

where the D„&"} (which are functions of qp) are the
coefficients of P ($) in the expansion of (1—P/qpz)""
in Legendre polynomials:

The D„'")can be calculated conveniently from the

TABLE V. Coe%cients in the recurrence relation (30).

L, 63/16 143/36 255/64
3f 15/8 247/126 697/352

21/16 143/140 2125/2112

n= 2 4 6

I. 63/8 143/24 85/16
M 9/2 65/21 119/44
cV 63/8 143/56 2975/1584

Table V gives some of the coefFicients L„('),3f„("),
S (") explicitly.

The constants a, ap, b, and b„in Eqs. (19) and (21)
are given by

8= c}1pQp,

0p = —elf pQ p/m,

=b,'c(1 +s), -
t ~)i= 2CUn.

(2n+5) (e+1)

(2n+1) (e+2)

(2e+3) (2n+5) (n 1)—(e r 2)——
,~)7 (~)—

(2e—3) (2n —1) (n+2) (n+r+3)

Further, for r= —j., we have

Do& i}=qp sin '(1/z1p),

Dp' "=(15/4)L(np' —p)Dp' "—~p(np' —1)'],
and for r= —3,

Dp' "=no/(np' —1)',
Dp' "=(15/2)L(np' —p)Do' "—np'»n '(1/np)]


