
STOP PI NG POWE R OF VARIOUS GASES FOR Li IONS 96i

Experimental values of the stopping power of metal
foils for lithium ions at energies considerably above the
range of our experiments are available. "Wilcox meas-

ured the stopping power of gold for Li ions from

4Bes(P, tt)Lis at approximately 810 kev. In Table II
Wilcox's value is listed as applying to Li', by giving the

Kinetic energy
|'Mev)

Atomic stopping power in units of 10» ev &&cm2/atom
Al CU AU

0.944
2.74

4 ~ ~

112
~ ~ ~

166
123
208

TABLE II. Stopping power of metals for Li' ions.

energy at which Li' has the same velocity as an 810-kev

9 S D d J H To l P o Ph Soc (London) A69 Li ion. The data on Au, Cu, and Al are from Devons
s H. A. Wilcox, Phys. Rev. 74, 1743 (1948), Fig. 4. '6 '

345 (1956). and Towle, who used Li' ions from Be (d,cr)Lit.
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The treatment of three-body van der Waals forces between hydrogen or helium atoms, given in an earlier

paper, is extended to the heavy rare gas atoms. Two of the three atoms are supposed to be close together
(e,g. , nearest neighbors in a crystal), whereas the third atom is considerably farther away. Expressions are
given for the induced dipole-dipole and dipole-quadrupole components of the 6eld. The electronic charges in
the atoms are represented by Gaussian distribution functions. The results are applied to a determination of
the most stable crystal structure of the heavy rare gases at absolute zero temperature (excluding zero-point

energy); it is found that the face-centered cubic crystal is favored over the hexagonal close-packed by about
one-tenth of one percent of the van der Waals cohesive energy, if the first and second shells of neighbors are
excluded from the region of summation for the third atom. If this restriction is dropped, then the difference
between the two structures vanishes, while the eGect itself rises abruptly and very steeply. The e8ect of
three-body interactions in general is to weaken the attractive forces in the crystalline state. Under the above
restriction, the relative magnitude of these interactions is twenty percent of the van der Waals cohesive

energy for xenon. The three-body forces vanish identically if the Gaussian goes over into a Dirac 8 function.

INTRODUCTION

'HE evaluation of the partition function for a
system of E-interacting atoms or molecules is

usually carried out in two steps. First, the eigenvalues

of the energy are found for a system of two fixed atoms
as a function of the distance between their centers of
mass. Then these eigenvalues are used as pair-potential
functions in the Hamiltonian for a simpli6ed system of

E point particles. Much of the empirical research in

molecular physics has been based on this procedure

and has concentrated on finding more and more ac-

curate two-body potential functions to describe prop-
erties of dense systems. There exists in the literature a
variety of different potential functions with diferent
numbers of parameters which have been obtained

empirically from analyses of different physical phe-

nomena (second and third virial coefficients, viscosity,

and heat conductivity of gases, compressibility of

molecular crystals; especially, argon, Debye character-

istic temperatures, etc.). Moreover, an explanation of

the stability of the cubic close-packed crystal structure

* Supported by the Ofhce of Naval Research.
$ This paper is based on part of a thesis to be presented to the

Graduate School of the University of Maryland in partial ful6ll-

rnent of the zeqmremcnts for the degree of Doctor of Philosophy.

of the heavy rare gases on the basis of any two-body
potential function has been unsuccessful. ' 4 All the
results of such calculations indicate the hexagonal
close-packed lattice to be more stable, although it is
favored over the cubic by only one hundredth of one
percent of the cohesive energy. In addition to this
problem, there may be other physical phenomena
which cannot be explained qualitatively on the basis
of two-body interactions.

Deviations from the principle of two-body forces
occur when the finite extension of the atomic charges
is taken into account. It is logical to consider such
many-body forces as a perturbation of the Hamiltonian
for point particles; then the di6'erent corrections are
obtained in the corresponding orders of perturbation
theory. ' The relative importance of these diGerent-
order corrections varies with the density of the system.

' T. Kihara and S. Koba, J. Phys. Soc. Japan 7, 348 (1952).
~ T. Kihara, Revs. Modern Phys. 25, 831 (1953).
3 Prins, Dumore, and Tjoan, Physica 18, 307 (1952}.
4T. H. K. Barron and C. Bomb, Proc. Roy. Soc. (London)

A227, 447 (1955).
5 The point-particle basis for a perturbation treatment implies

that the expansion of many-body forces in terms of simultaneous
interactions among increasing numbers of atoms converges rapidly,
in which case interactions among clusters of more than three
atoms may be neglected.
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At low densities, where a simple-product type of zero-
order wave function for the system of interacting atoms
may be used, the first nonvanishing correction occurs
in the third order; at very high densities the first order
is predominant. The third-order dipole-dipole correc-
tion has been found by Axilrod and Teller to favor the
cubic crystal, but not sufIiciently to insure its absolute
stability. "First-order forces are of such short range
that they a6'ect mainly the twelve nearest neighbors
around a central atom. Comparing the two crystals,
one finds that only three of the twelve nearest neighbors
have diferent positions. Rosen's 6rst-order calculation'
for three helium atoms may be shown to favor hexagonal
structure by a very small amount. '

In a previous publication's (hereafter referred to as
I), we have suggested that the stability of the cubic
structure may arise from a three-body force in secomd-

order perturbation theory. Two of the three atoms
should be neighbors in the crystal and, therefore, repre-
sented by an antisymmetric zero-order wave function;
otherwise there would be no triplet term in the second
order. Numerical results were given for dipole-dipole
interactions between three hydrogen atoms with parallel
spins and three helium atoms. In this paper we will
extend the calculations to include the heavy rare gases,
using a Gaussian distribution function for the atomic
charges. Since the results indicate that the triplet
dipole forces constitute an appreciable portion of the
cohesive energy of the crystals, the triplet dipole-
quadrupole interactions are also evaluated. The result is
summed over a finite portion of the cubic and hexagonal
close-packed crystal structures.

FORMALISM

For the calculation of the second-order energy of
interaction between three heavy rare gas atoms, we
can use a procedure similar to that outlined in I. Con-
sider two of the atoms A and 8 to be nearest neighbors
while the third atom C is farther away. The second-
order energy is given by

order wave function is

+0 {Qg( 1) PKPAPBj9c. (2)

&i~ (»k~ (3) I
&"

I i~ (3)kB(1)).
The coupled exchanges may have the following forms:

(i~(1)j~(2)kyar(3) I&"li~(3)j~(1)k&(2))

Here q» is an antisymmetrized wave function for atom
A, etc., and Pq is the permutation operator for ex-
change of pairs of electrons between A and B. Even if
the wave functions for the heavy atoms were known
with suKcient accuracy, the evaluation of (H")os

would be extremely complicated. However, the use of
a much simpler representation of the charge distribu-
tion in the atom may be justified. In I it was shown that
the second-order energy for hydrogen or helium atoms
is of the form

W"=Ws"/(1 —As)+ W",s,

where 5 is the overlap integral for atoms A and 8 and
lVp" is the second-order energy summed pairwise. Since
the contribution of three-body interactions is calculated
as a relatively small di6erence between two large quan-
tities (W" and W&"), it seems as if using only approxi-
mate wave functions might invalidate any conclusion
about the sign and magnitude of the three-body eGect.
This is not true, however, because TV" equals 5 p"
plus a correction so that the use of approximate wave
functions affects only the three-body term itself. The
contribution W',„,h involves exchange of electrons
between A and B. For hydrogen atoms only a single
interatomic exchange is possible, in helium a double
exchange also occurs, and in heavier atoms multiple
exchanges are possible. An additional complication in
the case of the heavy atoms is that the interatomic and
intraatomic exchanges may be coupled. For example,
if i&, j&, k&, l& represent four orbitals on atoms A and

and j, 2, 3, 4 are four electrons, then the matrix
element for the single-exchange integral is given by

W = (+ )oo/2@Av (&) (i~(1)j&(2)k&(3)4(4)
I

H" I4(4)j&(1)k&(2)l~(3)),
where EA, is a mean excitation energy of the atom and
EP=P~o'+Ps''. The justification for using this par-
tial Hamiltonian has been given in I. Since the distance
from atom C to either A or 8 is large compared with the
nearest-neighbor distance in the crystal, a multipole
expansion may be used for II&z' and II&z'. The zero-

6 B.M. Axilrod and K. Teller, J. Chem. Phys. 11,299 (1943).
r B.M. Axilrod, J. Chem. Phys. 17, 1349 (1949);19, 719 (1951);

19, 724 (1951).
s P. Rosen, J. Chem. Phys. 21, 1007 (1953).
9 Three-body forces in the first order of perturbation theory

can be evaluated equivalently by the method of molecular orbitals;
this was done for alkali metals by Lowdin LP. O. Lowdin, J.
Chem. Phys. 19, 1570, 1579 (1951)7 and for a linear array of three
helium atoms by A. Shostak fJ. Chem. Phys. 23, 1808 (1955)g.

» R. McGinnies and L. Jansen, Phys. Rev. 101, 1301 (1956).

etc. We have determined the relative magnitude of
such coupled exchange terms by calculating them for
neon atoms using the wave functions of Brown" as
modified by Bleick and Mayer. "We found that coupled
exchange is an order of magnitude less important than
single exchange contributions. Furthermore, the results
for helium obtained in I indicate that a double ex-
change process gives a negligibly small contribution
compared with single exchange except at very small
interatomic distances. We have verified that this is
also true for neon; for helium and neon the ratio of
double to single exchange is of the order of

r' F. W. Brown, Phys. Rev. 44, 214 (1933).
W. E.Bleick and J.E. Mayer, J. Chem. Phys. 2, 252 (1934).
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By extrapolation of the results for helium and neon
to the heavier rare gases, it seems reasonable to assume
that also for heavier atoms only single interatomic
exchange needs to be considered. This makes it possible
to use a collective model for the negative charge dis-
tribution of the atom, and we choose for convenience a
Gaussian distribution function with adjustable width. f.
The three-body interactions for heavy atoms become
then formally the same as the expressions for three
hydrogen atoms, the dipole-dipole part of which was
given in I. [See I, Eqs. (11) and. (12).j An antisym-
metric character is inserted in the Gaussian-type wave
function by this analogy with the hydrogen-like wave
functions. The various exchange integrals must be
evaluated using a Gaussian distribution function:

p(rA) = (p/&')' exp( prA') (4)

where r~ is the distance from the nucleus at A. There
are similar expressions for p(rB) and p(rc).

TAC
1 RACRAC

U—3- (6)

EVALUATION OF THREE-BODY FORCES

(a) Dipole-Dipole Interaction

The perturbation Hamiltonian H~c' for dipole-
dipole interactions is given by

+AC PA ' TAC'PCy

where pA is the dipole vector p,e,r, of atom A, pc that
of atom C, and, TAc is a second. -rank tensor defined by

TABLE I. Characteristic parameters for heavy rare gases.

Element
& X10&s
(ergs) cr (A) EAy (eV) R (A) P (A 1) ~'/(1-~')

Neon
Argon
Krypton
Xenon
(Helium)

49.14
165.3
229.3
317.2
(14.11)

2.749
3.405
3.652
3.937

(2.55)

21.56
15.76
14.00
12.13

(24.5)

3.20
3.84
3.94
4.37
(3.60)

1.07
0.623
0.532
0.454

(1.59)

1.72
1.20
1.05
0.993

(2.87)

2.71)&10 3

0.0609
0.125
0.162

express it is in terms of the interior angles y1, y~, and

y3 of the triangle A, 8, C. The following final result is
then obtained:

Wo" (ABC) A A3-(1—~ )

1 1 3 tr sin 'yi Sill ps)
x + —-i +

RAc' RBc' 4 & RAC' RBC')

+ (2—3 COS yo+3 COS'yi COS'ys COSys)
2Rgc'RBc'

~ RAB RAC RBC

The parameter p in the Gaussian distribution func-
tion may be determined by calculating the secon.d-order
dipole interaction between two atoms and equating the
result to the London expression or, equivalently, to an
empirical expression such as the Lennard-Jones po-
tential. The second-order dipole energy between two
atoms a distance R apart in terms of p is

The distance between the centers of mass is Rgc, and

U is the unit tensor. The second-order energy W" is
evaluated using the same coordinate systems as in I,
Fig. 2. The result can be taken directly from that for
three hydrogen atoms; the integrals 6, I& and Io Lde-

fined in Eq. (10) of I) have the following forms:

A=exp( —p'), Is=Is=d/2P',

where p=PRAB/2
Ke are interested in the relative deviation from the

principle of two body forces; i e., in the ratio

(W —Wo )/Wo (ABc), with

Wo (ABC) Wo (AB)+Wo (BC)+Wo (AC)i)

the pairwise second-order dipole interaction between

A, 8, and C. As in I, the result depends on the par-
ticular triangular conhguration. A convenient way to

t The fact that only single interatomic exchange has to be
taken into account and that coupled exchanges may be neglected
implies that the effect depends sensitively only on the general
shape of the charge distribution of the atom and not on the
precise form of the wave function. R. H. Tredgold and R. U.
Ayres (private communication) have fitted the outer region of a
Hartree-Fock wave function for argon with a Gaussian function
and obtained a value for the width which agrees within 6%
with our empirical value.

3e4
Ter II
VV 0

4P'R'E R' (9)

16~0-'EAy
(10)

Table I gives the values for )a=PR/2 for the rare gases,
using the nearest-neighbor distance in the crystals for R.

The values for P increase slowly from xenon to argon,
but the value for neon is much larger than that for the
heavier atoms. This indicates that a Gaussian dis-
tribution function is not a good approximation for the
charge distribution in neon atoms.

(1) Dipole-Quadrupole Interactions

The Hamiltonian H~c' for dipole-quadrupole inter-
actions between atoms A and C has the form

+AC OPA'+TAC. (IC OPC ~TAC QA.

Here, T is the tensor already defined and q=g, e;r;r;
is the quadrupole tensor of an atom. The matrix ele-

where e and o are the Lennard-Jones parameters. Then

3p4
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TABLE

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

C~ N hop Nfco No. Nhep Nfee

1
1
1
1
1
1
2
2
2
2
22

23
3
3
3
3
3
3
3
3
32

33

5
5
5
5
5
5
5
5

52

52
52

52
6
6
6
6-'

61

6-'
6-'
6-',

7
7
7
7
7
7
7
7
71
71
71
71
8
8
81
813

23
3
3-
4
3
33
5

3
33

5
52
6
6-',
7'
33

6-'

71

5
7
9
5

6-',

7
8
9
92

10
6
6-'
71

92
10-',

113
7
92

11
6-'
71

10-',
11-',
7'

103

123
7
9
93

10
11
11—',

12
13

10
113z

133
9

13

10-',

24
36

9
54
18
9

36
24
24
12
24
12
36
24
48
48
24
36
24
48
24
48
24
24
24
24
24
48
12
12
24
24
48
0

24
24
24
12
48
12
24
48
24
12
48
24
24
12
24
24
12
24
24
24
48
24
24
24
36
72
24
48
48
24
24
48
24
24
24
12
0
0

12
24

24
36
0

72
0

18
48
0

48
0
0
0

48
0

96
96
0

48
0

96

0
0
0
0

48
96
24
48
0
0

96
48
96
0

48
0
0
0
0
0
0
0

96
0

48
0
0
0
0
0
0
0
0
0
0
0

96
192

0
96
96
0

96
96
0
0
0
0

48
48

0
0

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
iii
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

81

81
9
9
9
9
9
9
9
92
92

10
10
10
10
10
10

103'
10
10-;
11
11
11
11
11
11
11
11-,'

113

113
113
11—,'

113
113
113
113
113
113

11-,'
12
12
12
12
12~3

123
12-,'

12-,'
12-,'
13
13
13

113
11-',
12-,'
133
14-',

10
12
13
14-',

15
16
92

10
103
11
113
113

143

153
16-',

113
13
15
153
17
103'

133
14-,'

153
173
11
12
13
14-,'
153
17'
18
12-,'

16-'
17-,'
103
113
12k
13
133
143
153
153
17
18
18-,'
18-,'
19
13
15
17
19
14-',

16-,'
173
18-',

193
13
15
153

24
24
24
24
24
24
48
12
48
12
24
12
24
24
24
24
24
48
24
24
48
24
48
24
24
48
24
24
24
12
24
24
24
24
24
24
12
24
48
24
24
24
24
24
12
24
24
24
24
24
24
48
24
24
48
24
24
24
24
24
24
24
12
24
24
24
24
24
24
24
24
24
24

0
0
0
0
0
0

144
48

192
0

96
24
0
0
0
0
0
0
0
0
0
0
0
0
0

144
96
0

48
0
0
0
0
0
0
0

48
96
96
0
0

96
48
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

96
96
48
96
0
0
0
0
0
0

96
192

0

II. Numbers of triangles with sides a= 1, b, c occurring in
f.c.c and hcp lattices.

ments of (EV')00 are evaluated in the same way as for
the dipole-dipole interactions. The calculations are
straightforward and give the following result for a par-
ticular triangle for the relative deviation:

8"'—S' "
Tx7 fI

— ~~ 0 (ABC) - d—q

1
X t P-',p'(1+2 cos'y~)

~AC

+ g()p (1—2 cos 'ran+5 cos Yy)j

+ L-,'p'(1+2 cos'y~)
~BC

+lop'(1 —2 cos'72+5 cos'72) j
p,

+ L2 (1—2 cos'yq) sing~ siny2
SRgc'RBc'

+6 sin'y~ cos'ya —3(1—3 cos'yq) cosy' cosy,

+p'(cosya(1 —3 cos'y~ —3 cos'yg

—4 sing& cospy sin+2 cos+2+9 cos py cos p2 I

—sinya( 2 sing~ cosy~+2 sin+2 cos+2

—6 costi cosy2 siny3))j .

In principle, higher multipole interactions can be found
in a similar manner, but the calculations become very
tedious. Since we are primarily interested in the order
of magnitude of three-body forces, we shall not carry
the computations further. '

SUMMATION OVER CRYSTAL STRUCTURES

The expressions obtained for the three-body dipole-
dipole and dipole-quadrupole forces must now be
summed over the hexagonal and cubic close-packed
lattices to determine which is more stable. We consider
only triangles in which one side (R~s) is a nearest-
neighbor distance in the crystals, We need a list of all
such triangles appearing in the crystals and a count of
how many of each kind there are in each lattice.

The face-centered cubic and hexagonal close-packed
lattices can be formed by stacking layers of hexagonally
arrayed atoms. Consider a Cartesian coordinate system
with the x-y plane in a hexagonal layer such that the
x-axis passes through nearest neighbors. We will call
this an A layer. We can construct layers 8 and C by
shifting an A layer a distance ro/V3 and —ro/V3 in the

y direction, respectively. The sequence of layers in the
fcc lattice is then ABCABC, and in the hcp lattice
it is AMMB -. A convenient way to count tri-
angles in these lattices has been devised by Axilrod. '
We will summarize the results briefly. The sides u, b, c
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of a particular triangle in either lattice are given by

a'= (rpr ——,'ep)'+-,s (ns+-asap)'+-'sr&ps,

b' = (m& ——',ms)'+-,' (ms+-'sos)'+-'sos',
c'= a'+ f '—2 (er—-,'es) (mr ——',ms)

5('+2+ 8~ s) (~2+ s~p) —(4/3)~3~3

(12)

where each n,; and m; assumes all integral values. The
integers E3 and M3 are defined as follows:

(1) In the hcp lattice: /Vs is zero or one when ep is
even or odd. with a similar dependence of M3 on m3.

(2) For the f.c.c lattice: Xs——0 for res
——3s, A'p ——1 for

ep ——3s+1, and Es —1 f——or es ——3s+2, where s is an
integer; 3f3 depends on nzs in a similar manner.

The triangles are counted within a region distance
rp1/15 from the origin. Table II gives the numbers of
triangles of different types in each of the two lattices;
a'= 1 for all of the triangles. With the help of this table,
we can calculate the ratio Q(W"—Wp")/QWp for
each lattice for both the three-body dipole-dipole and
the three-body dipole-quadrupole interactions. Since
the theory is not applicable if atom C is close to either
A or 8, we will discard triangles in which C is a nearest
neighbor of either A or 8 (No. 1 through No. 6). The
total number of triangles in the region of summation is
approximately 3600, of which 141 are different (No. 7

through No. 147). Since the sign of the difference be-

tween the two lattices appears to be critically dependent
on the distance of closest approach of atom C, we

computed three different results. The first includes all
the different kinds of triangles from 7 through 147. For
the second sum we deleted the smallest triangle with
sides squared 1, 2, 3, and in the third case we deleted
all triangles for which 5 or c is 2. Table III gives these
results. Each partial summation extends over the same
number of triangles in each lattice. Even after summing

over 3600 triangles, the result is not converging rapidly;
however, it is found that after the first 39 different tri-

angles (No. 7 through No. 46), the difference between

the sums for the two lattices is practically constant.
The total relative magnitude of the three-body forces

is found from the following formula:

P(W" Wp")s ~+(fs/—fr)E(W" Wp")d, —
(13)

(2 Wp")a u+(fs/fr)(2 W-o")~.

TABLE III. Relative magnitude of three-body dipole-dipole
and dipole-quadrupole interactions in the f.c.c. and hcp lattices:
z(w' —w.")/zw, ".

Region
of sum- Ele- Dipole-dipole
mation ment f.c.c. hcp Diff. )&102

Dipole-quadrupole
f.c.c. hcp Diff. )&10~

Ne 0.00886 0.00879
7 147 A 0.0962 0.0955

Kr 0.152 0.151
Xe 0.177 0.175

Ne 0.00709 0.00718
A 0.0771 0.0780
Kr 0.122 0.123
Xe 0.141 0.143

0.007
0.07
0.1
0.2

-0.009-0.09—0.1-0.2

0.0134
0.126
0.193
0.221

0.0106
0.101
0.155
0.178

0.0135
0.127
0.194
0.222

0.0108
0.102
0.157
0.180

—0.02—0.1—0.2—0.2

Ne 0,00548 0.00545
A 0.0596 0.0592
Kr 0 0941 0 0935
Xe 0.109 0.109

0.003 0.00748 0.00747
0.04 0,0703 0.0702
0.06 0.107 0.107
0 0.123 0.123

0.001
0.01
0
0

a single charge is used for the atom, then fs/fr is 5/4p'. $
Therefore, the Gaussian wave function emphasizes the
higher multipole contributions more than does the
harmonic oscillator model; this tendency continues in
the case of quadrupole-quadrupole interactions. In
either model, however, the quadrupole-quadrupole
forces contribute less to the cohesive energy than the
dipole-quadrupole forces. The numerical results for
Eq. (13) are given in Table IV.

TABLE IV. Relative total magnitude of three-body forces
in the f.c.c. and hcp lattices.

Region of
summation

7-147

Ele-
ment f2/f1 f.c.c.

Ne 0.634 0.0105
A 1.31 0.112
Kr 1.71 0.177
Xe 1.90 0.205

hcp (f.c.c.-hcp) &(10

0.0105
0.112
0.177
0.205

DISCUSSION

We conclude from this analysis that three-body long-
range forces contribute signi6cantly to the static lattice
energy of crystals of the heavy rare gases. The use of
two-body potentials to describe physical properties of
dense media is based on the assumption of point mole-
cules. In our formalism this means that P approaches
in6nity and the Gaussian becomes a Dirac 8 function.
This assumption becomes more invalid the larger the
molecules and the denser the medium. (The same con-
clusion holds for Axilrod's third-order effect in which

where
3e'

4Ep„P4rp' 8E P rp'

Ne 0.634 0.00836 0.00850
A 1.31 0.0900 0.0912
Kr 1.71 0.142 0.143
Xe 1.90 0.164 0.166

—0.014—0.12—0.1—0.2

and, therefore,

fs/fr 15/Sp'. —— (14)

Ne 0.634

ii 147 A 1.31

Xe 1 90

0.00620
0.0653
0.102
0.118

0.00618
0.0651
0.102
0.118

0.002
0.02
0
0

The nearest-neighbor distance in the crystal is ro, and.

lr, =Prp/2. The values of f&/fr are 0.634, 1.31, 1.71, and

1.90 for neon, argon, krypton, and xenon, respectively.
If a three-dimensional harmonic-oscillator model with

$ H. Margenau, Revs. Modern Phys. 11, 1 (1939).The reason
thatch"& is different in our model from that of harmonic oscillators
is primarily that the energy levels of harmonic oscillators are
equally spaced vrhile ere have used a centroid assumption.
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the parameter determining the magnitude of the triple-
dipole energy is n/ro', with the polarizability n becom-

ing larger for larger molecules. ') It is, therefore, not
surprising that different forms for two-body potentials
are found from analysis of diferent physical phe-
nomena. It appears that in molecular physics the
occurrence of many-body forces is a direct consequence
of the fact that atoms and molecules are not "funda-
mental" (or "point") particles.

Some conclusions may also be drawn with respect to
the stability of rare gas crystals. Since the calculations

apply to the static lattice energy, we assume that the
crystal structures are still cubic at O'K. The data
available at the lowest temperature are for neon which
has been measured at 4'K."The possibility of a thermal
transition to the hexagonal structure below this tem-

perature can be eliminated on the basis of Domb and
Barron's analysis. 4 We also assume that the difference
in zero-point energy between the two crystal structures
is negligible; this has beeri veri6ed theoretically for
pair-potential functions. "' However, in view of the
importance of three-body forces, this conclusion should

be substantiated by extending the Born-von Kar-
man lattice dynamics theory to include many-body
interactions. "

The results in Tables III and IV indicate that the
diGerence in three-body forces between the two lattices
depends markedly on the distance of closest approach
of atom C. If all the triangles 1 through 147 are in-

cluded in the summation, the result is a very large
repulsive energy. The theory, however, is not strictly
valid for triangles with two or three nearest neighbors;
so, these results have not been listed in the tables.

Nevertheless, their size shows how sensitive three-body
forces are to the exact nature of the model used, and
this in turn implies that using an approximate model
(e.g. , harmonic oscillators) and extending the calcula-
tions to nearest neighbors in the crystal is unjusti6ed.
It may be remarked that for Axilrod's third-order
dipole-dipole energy the triangles with two or three
nearest neighbors contribute more than half of the
three-body interactions and half of the difference be-
tween the two crystal structures. 7 Summing over tri-
angles 8 through 147 gives a result which is definitely
in favor of the fcc lattice both for dipole-dipole and
dipole-quadrupole interactions, the difference being of
the order of one tenth of one percent of the van der
Waals energy of the crystal. This difference is anorde, r
of rrtagrtitude larger thart that obtairted ort the basis of
pair poterttiats, and it is of opposite sign. If the three-
body forces do not aGect the sign of the difference
between the Debye characteristic temperatures of the
two crystals, 4 then this would mean that the cubic
structure is stable at all temperatures. However, the
diGerence between the two crystals becomes indecisive
if the summations are carried out over triangles 7
through 147 or 11 through 147. Even if atom C is
restricted to a region which is relatively far from a
central atom, multipoles of still higher order should be
included in the calculation. In addition, one would
have to account for triangular configurations with two
or three nearest neighbors to which the present theory
does not apply. We have shown that three-body forces
in second-order perturbation theory may increase the
diGerence in lattice energy between the two crystal
structures by an order of magnitude compared with
that based on the assumption of two-body forces.

"de Smedt, Keesom, and Mooy, Proc. Acad. Sci. Amsterdam
33, 255 (1930)."L.Jansen and J. M. Dawson, J. Chem. Phys. 23, 482 (1955).

'5 An additional condition, of course, is that the cubic crystal
structure is really the equilibrium configuration and not a frozen-in
unstable state.
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