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According to the Thomas-Fermi and the Thomas-Fermi-Dirac
models of the atom, the electrons in an atom of a given Z have a
given continuous distribution in angular momentum. Therefore,
the question of how many s, p, d, or f electrons are to be found in
an atom of a given Z cannot be answered by the statistical model
as it stands. However, this question can be answered by assigning
all the electrons which have values of angular momentum within a
certain interval to a definite angular momentum quantum number
l. There is, of course, some arbitrariness involved in selecting the
method of angular momentum assignment. Fermi first calculated
a set of curves for the numbers »(/,Z) of s, p, d, and f electrons in
an atom as a function of Z on the basis of a particular angular
momentum assignment, and using the Thomas-Fermi statistical
theory. Since the completion of Fermi’s work, Dirac has modified
the Thomas-Fermi theory to include the exchange effects of the
electrons. In the present work, curves for »(/,Z) have been

calculated on the basis of the Thomas-Fermi-Dirac theory in order
to investigate the effect on such curves of the exchange interaction
between the electrons. Complete sets of curves have been found
using the angular momentum assignment proposed by Fermi, and
also using an angular momentum assignment proposed later by
Jensen and Luttinger. Some isolated points on the »(},Z) curve
have been plotted using a third angular momentum assignment.
On the basis of the analysis of the graphs so obtained and their
comparison with the empirical data, it is concluded that the ex-
change effects are not negligible for this calculation, that no
simple angular momentum assignment such as the ones proposed
by Fermi and by Jensen and Luttinger agrees well with the
theory, and that it is probably possible by sufficient juggling to
find an angular momentum assignment which would fit the
empirical data reasonably well.

I. INTRODUCTION

PROBLEM which is of interest in atomic physics

is the determination of the number of electrons
with a given orbital angular momentum quantum
number / which are present in an atom of a given atomic
number Z. This problem was first treated by Fermi! and
later treated by Jensen and Luttinger? on the basis of the
Thomas3-Fermi' statistical model of the atom. The
question of the number of electrons with a given / in the
atom is not subject to treatment by the statistical model
as it stands because in this model the electrons are
distributed continuously in angular momentum over a
given range of values. However, this question can be
answered by assigning all the electrons with angular
momenta within a certain interval to a given angular
momentum quantum number /. Since there is some
arbitrariness involved in selecting the method by which
this is done, the question set forth is not well defined.
Various methods of angular momentum assignment are
discussed in Secs. IT and IIT below.

Jensen and Luttinger discussed the angular mo-
mentum assignment which Fermi used and proposed
another one. They mentioned the fact that Fermi used,
in his treatment, an approximate integration which was
not sufficiently accurate to give a reliable representation
of the model. However, they did not extend their
treatment as far as Fermi did. Fermi obtained the com-
plete curves for the number »(l,Z) of electrons with
quantum number / per atom as a function of Z over the
whole range of values of Z for s, p, d, and f electrons.
Jensen and Luttinger determined only the values of Z
for which the p, d, and f electrons make their first

1E. Fermi, Z. Physik 48, 73 (1928).

2J. H. D. Jensen and J. M. Luttinger, Phys. Rev. 86, 907
(1952).

3 J. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).

appearances in the atom. They used the value of Z for
which the appropriate curve for »(1,Z) cuts the line,
v(1,Z)=1 as the value of Z for which the electron of the
corresponding angular momentum makes its first ap-
pearance.

Since there is arbitrariness involved in selecting the
method of angular momentum assignment, the question
of which method best fits the experimental data should
be investigated. The following argument indicates that
the first-appearance problem is not a good one for this
application. The general types of curves for »(/,Z) which
are obtained using the statistical model with an angular
momentum assignment of the type mentioned above are
qualitatively like the curves which Fermi obtained.
These curves are found in Fermi’s original paper! and
are reproduced in Condon and Shortley.* The general
form of the empirical curves is restricted greatly by the
fact that the number »(1,Z) of electrons present must be
an integer for any integral value of Z. These curves have
abrupt jumps in them and their slopes only change
discontinuously. On the other hand, the theoretical
curves vary smoothly and have only continuous changes
in slope. Therefore, the theoretical curves cannot be
expected to agree with the empirical curves at all points.
It seems most reasonable then to observe how well the
theoretical curves agree on the average with the
empirical curves. Since the theoretical curves which fit
the empirical ones the best on the average do not agree
with them for all values of Z, it does not seem reasonable
to expect a particular theoretical curve necessarily to be
the one which best agrees with the corresponding
empirical curve at some previously selected, individual
value of Z. The first-appearance problem for a given
quantum number consists of comparing the theoretical

4E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (University Press, Cambridge, 1935).

954



ANGULAR MOMENTUM DISTRIBUTIONS

TaBLE I. Forms of the function L(J) which are to be used in
Eq. (1) for each type of angular momentum assignment.
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and experimental results at a particular value of Z.

Therefore, the use of the agreement between the theo-
retical and experimental results in the first-appearance
problem as a criterion for choosing the best angular
momentum modification might give misleading results.

The treatments mentioned above are based on the
Thomas-Fermi statistical model of the atom. This model
neglects the exchange interaction between electrons
which is not really negligible. The model was modified
by Dirac® to account for the exchange interaction. The
Thomas-Fermi-Dirac model should therefore be used in
preference to the Thomas-Fermi model in testing the
statistical theory of the atom. The angular momentum
considerations are of exactly the same nature in both
models. Therefore, the theoretical adjustments which
must be made in accounting for exchange effects in the
angular momentum problem are slight. The purpose of
the present work was to investigate the forms of the
curves for »(},Z) which result from various angular
momentum assignments using the Thomas-Fermi-Dirac
model, and to see which ones best agree on the average
with the empirical curves. In the process of this in-
vestigation it was found that the exchange effects are
not negligible.

An interesting approach to the first-appearance prob-
lem which does not make use of an angular momentum
assignment of the type discussed in the present work was
given by Ivanenko and Larin.® Their method involves
retaining the continuous distribution of the electrons in
angular momentum. Because of the marked difference
between their viewpoint and that of the present work, it
was found instructive to determine which (if any)
special case of the treatment used here corresponds to
the result of the latter viewpoint. This is done in Sec. IV.

II. SUMMARY OF THE RESULTS

Jensen and Luttinger? have discussed in detail the
general method of angular momentum assignment which
accounts for the fact that orbital angular momentum is
quantized. The expression which they obtained for the
number »(1,Z) of electrons which are present in an atom
of atomic number Z is

v()=N{LD}—=N{L(I+1)}, ey

8§ P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).
6 D. Ivanenko and S. Larin, Doklady Akad. Nauk (S.S.S.R.),
88, 45 (1953).
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TABLE II. Summary of the results which have been plotted in
Figs. (1) and (2), with indications as to the statistical theory which
is used, the type of angular momentum assignment which is used,
the figures in which the given results are plotted, and the values of
! for which the given results are plotted. In the last column, all
entries without the superscript c or d indicate the results which
were calculated in the present investigation.?

Angular Figure Values
momentum containing f !
Theory assignment curves considered

T-F-D Jand L 1 1,2,3,4
T-F-D F 2 1,2,3,4
T-F-Db Text 2 1,2,3
T-F F(approx) 2 1)e
T-Fb F(exact) 2 1
T-Fb F(exact) 2 (2,3, 4)d
Empirical 1,2 1,2, 3, 4)°

a Key: T-F-D—Thomas-Fermi-Dirac; T-F—Thomas-Fermi; J and L—
Jensen and Luttinger; F—Fermi; F (approx)—Fermi assignment with
approximate integration; F(exact)—Fermi assignment with exact inte-
gration,

b Indicates that only isolated pomts have been plotted.

¢ Curves obtained from Fermi'st original graph which is illustrated in
Condon and Shortley.4

d Points obtained from the first appearance calculations of Jensen and

Luttinger.?
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and ¢(x) is the solution to the Thomas-Fermi-Dirac
equation for the particular value of Z involved. The
integration is carried out over values of x for which
(3wZ/4)%xo— L? is positive. The form of the function
L(I) determines the particular angular momentum as-
signment. The most straightforward angular momentum
assignment is the one proposed by Jensen and Luttinger.
The form of the function L(J) is tabulated in Table I for
this angular momentum assignment, the one originally
used by Fermi and a third one which is discussed below.

A summary of the curves obtained in the present
calculations and those obtained from previous calcula-
tions is given in Table II.

The solution to the Thomas-Fermi-Dirac equations
which were used came from two sources, Metropolis and
Reitz” and Jensen et al.® The Metropolis and Reitz
tables do not contain solutions for the neutral uncom-
pressed atom. Therefore, it was necessary to make
approximations to these solutions using the solutions
which they do contain. The thesis® upon which this
discussion is based contains an account of these ap-
proximations and the method of numerical integration
which was used. The spreads involved in some of the
curves in Figs. 1 and 2 are results of these approxi-
mations.

where

where

MH

7N. Metropolis and J. R. Reitz, J. Chem. Phys. 29, 555 (1951).
8 Jensen, Meyer-Gossler, and Rohde Z. Physik 110 277 (1938).
9T, A. Oliphant, thesis, M. S., Cornell 1956 (unpubhshed)
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Fic. 1. Number »(/) of electrons per atom with angular mo-
mentum quantum number /, as a function of Z. The curves con-
sisting of broken lines represent the empirical data and the
smoothly varying curves represent results of the T-F-D theory

using the Jensen and Luttinger angular momentum assignment
(see Table II).

III. DISCUSSION

The first of the present calculations was done for the
Thomas-Fermi-Dirac theory using the Jensen and
Luttinger angular momentum assignment (see Fig. 1).
The fact that was first noticed was that the s electron
curve is much too low, the p electron curve is about
right, the d electron curve is a bit too low and it is not
possible to tell much about the f electron curve. In
order to discuss the meaning of these features, a brief
digression is necessary. In the process of deriving Egs.
(1) and (2) the following expression is obtained for the
number of electrons which have an angular momentum
lying between %L and #(L+4-dL) in the unmodified
statistical model.

4L pdxf 372\t 3
n(L)dL=— ——[(——) xgo—L2] dL. 3)
T x 4

This integration is carried out over values of x for which
(3wZ/4)%xo— L?is positive. The number »(J) of electrons
with quantum number / is calculated in the following
way:

L(I41)
v()= n(L)dL
L(l)
LOD 4T, pdal /302N } 3
_ f AL _[(_) x¢—L2]!dL. @)
LY ™ X 4 ]

This integration can be visualized by the graphs con=
tained in Fig. 3. These curves are schematic plots of the
x integrands in the expression (3) for #(L) as functions
of L for the various angular momentum assignments.
Integration of one of these curves gives the x integrand
of Eq. (4). Equation (4) is exactly equivalent to Egs.
(1) and (2). It is evident, according to Fig. 3(a), that

THOMAS A. OLIPHANT,
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there is a correlation between the relative widths of the
L intervals and the heights of the theoretical curves
relative to the empirical curves. If it is assumed that the
height of the theoretical curve for d electrons is correct
insofar as angular momentum subdivision is concerned,
then the s-electron curve is too low and the p-electron
curve is too high. Also the width of the s-electron region
in Fig. 3(a) is smaller and the width of the p-electron
region larger than that of the d-electron region.

The foregoing correlation suggested that the various
numbers / should have intervals of equal length on the
diagram in order to give theoretical curves with heights
roughly proportional to the heights of the empirical
curves. This leads to the postulate that /"dL=1 for each
angular momentum interval. The simplest way of
setting up an angular momentum assignment under this
requirement is to set up the assignment illustrated in
Fig. 3(b), which turns out to be identical with the Fermi
assignment. Therefore, it is not necessary to regard the
Fermi angular momentum assignment as an approxi-
mation to that of Jensen and Luttinger.

The above observations lead to another calculation
using the Thomas-Fermi-Dirac theory, but this time
using the Fermi angular momentum assignment. The
theoretical curves lie below the empirical curves to
about the same extent for each value of /. This justifies
the conclusion that the constancy of the width of the
angular momentum interval should give heights to the
v(l) curves which are roughly proportional to the
heights of the empirical curves. There is, however, still
the difficulty that the theoretical curves all fall below
the empirical ones.
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F16. 2. Number »(/) of electrons per atom with angular mo-
mentum quantum number /, as a function of Z. The curves con-
sisting of broken lines represent the empirical data. Four of the
smoothly varying curves represent the results of the T-F-D theory
using the Fermi angular momentum assignment and a fifth one
consists of an earlier calculation of Fermi® using the T-F theory.
The round points are for the T-F-D theory using a third type of
angular momentum assignment and the diamond-shaped points
are for the T-F theory as calculated by Jensen and Luttinger?
using their angular momentum assignment (see Table II).



ANGULAR MOMENTUM DISTRIBUTIONS

No further straightforward ways were found to set up
the angular momentum assignment which would bring
the theoretical curves closer to fitting the empirical
ones. The method of setting up the angular momentum
assignment is, however, somewhat arbitrary. The ques-
tion which remains is then whether it is possible to set up
an angular momentum assignment, with less previous
justification, which will bring the theoretical curves
closer to fitting the empirical ones. In order to determine
whether or not this could be done, the most extreme
angular momentum assigned which seemed at all reason-
able was set up. It is illustrated in Fig. 3(c). In this
assignment all electrons with angular momentum below
#[1(141)]? are assigned to the quantum number —1.
This is the most extreme modification that still seems
reasonable because it does not seem reasonable to assign
anelectron of angular momentum greater than [7(14-1) ]
to the quantum number /—1. Tt must be kept in mind
that the relative angular momentum interval lengths are
not equal although they do decrease monotonically.
Points at Z=92 have been calculated for s, p, and d
electrons. The s point lies very much above the corre-
sponding point on the empirical »(J) curve, the p point
lies above it, and the d point lies below it. Therefore, it
seems possible that some method of assignment of
angular momentum intermediate between this method
and the Fermi method would give good average agree-
ment with the empirical curves. Because of the arbi-
trariness involved in the angular momentum assign-
ment, the determination of the exact method of angular
momentum subdivision which gives the best agreement
with the experimental data would probably not be of too
much significance.

It is interesting to see whether the theoretical curves
given in Fig. 2 would fit the empirical curves better if
the exchange correction were removed. The individual
points in Fig. 2 which were obtained from the first-
appearance calculations of Jensen and Luttinger are
points on the theoretical curves which would be ob-
tained by removing the exchange correction from the
theoretical curves which are plotted in Fig. 2. The fact
that these points lie above the corresponding Thomas-
Fermi-Dirac curves suggests that there is a good possi-
bility that the removal of the exchange correction would
improve the agreement between the theoretical and
empirical curves. In a brief investigation of this ques-
tion, two points on the s curve were calculated and
plotted in Fig. 2. The positions of these two points
verify the expectation for the s curve. The curves which
would be obtained by extending these calculations can
be regarded as the old Fermi curves corrected for the
error in the approximate integration which he used. The
two points calculated suggest the possibility that such
curves would agree with the empirical curves as well as
or better than the original Fermi curves. The analysis
might have proceeded in the following way if the ex-
change effects had been neglected at the beginning. The
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angular momentum interval length problem would have
come up in the Jensen and Luttinger method of angular
momentum assignment and would have been settled by
examining the figure corresponding to Fig. 3(a). Then
the Fermi angular momentum assignment would have
been used and, if the rest of the curves fitted as well as
the brief portion which was actually calculated, there
would have been a tendency to be satisfied with the
results and to say that perhaps the exchange effects are
negligible.

The results which have been obtained, however, indi-
cate that the exchange effects are not negligible. The
individual points plotted in Fig. 2 for the Thomas-
Fermi theory would lie on the corresponding curves in
Fig. 2 which were plotted for the Thomas-Fermi-Dirac
theory if the exchange effects were negligible, since the
only difference in the two cases lies in the fact that one
of them contains the exchange effects and the other one
does not. The disagreement between the results with
and without exchange effects is apparent. Since electrons
are known to have the exchange interaction, we must
accept the Thomas-Fermi-Dirac theory in preference to
the Thomas-Fermi model. Therefore, the above-men-
tioned investigation in the Thomas-Fermi theory was
not carried out. At this point it should be reemphasized
that the angular momentum assignment is somewhat
arbitrary and that by changing it sufficiently it is
probably possible to get good average agreement be-
tween the theory corrected for exchange effects and the
experimental data, even though not with the most
straightforward type of angular momentum assignment.

IV. THEORY WITHOUT ANGULAR MOMENTUM
ASSIGNMENT

An approach to the problem which accounts for the
exchange forces between the electrons but does not
make explicit use of an angular momentum assignment
was used by Ivanenko and Larin® in the first-appearance
problem. Tt is instructive to discuss this viewpoint and
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F16. 4. Same curve
n(L) as in Fig. 3(b). The

rectangular blocks il-
I N1

lustrate the approxi-
] 2 3 4 5
L

mate method of inte-
gration of this curve
used by Fermi.

to see how it corresponds to a slightly modified special
case of the present viewpoint.

The assumption made by Ivanenko and Larin is
equivalent to requiring that if in the expression (3) for
n(L) there is a range of values of x over which the
integrand is positive then the electron with angular
momentum L has made its appearance. The value of Z
for which an electron with quantum number / makes its
first appearance is then found by requiring that L have
the value (+3%)% and determining the value of Z at
which the x integrand in (3) first begins to have a region
in « over which it is positive.

The following treatment gives the same results as the
Ivanenko and Larin treatment. The Fermi angular
momentum assignment is used and it is assumed that
the curve can be replaced by the blocked-in curve in
Fig. 4. This is exactly what Fermi did in his approximate
integration. Therefore, Eq. (4) becomes

L(11) L(HD
n(L)dL=n(L) daL.

L)

v())=

L

In the Fermi method,

L(A4D)
f dL=1.
LW

v(1,2)=n(l+3, Z).

Therefore,

This results in the relation
4L dxf f3nZ\} 3
== [E(Z=) se-erpr]. ©
T x 4

The graphs for this »(,Z) for the Thomas-Fermi theory
are the ones originally given by Fermi.! One of the curves
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FiG. 5. Schematic
plot of »(,Z) as a
function of Z, ob-
tained without the
explicit use of an
angular momentum
7 assignment of the
o - type discussed in

Sec. II.

v(92)

is reproduced schematically in Fig. 5. Now for a value
Z1 of Z which is greater than Z,, v(,Z) has a finite range
of integration in «. This value Z, of Z is therefore the
value of Z at which the electron with quantum number ]
makes its first appearance in the Ivanenko and Larin
theory. This is equivalent to the value of Z at which the
curve given by Eq. (5) intersects the line »(I)=0. This
is slightly different from the discrete angular momentum
approach because in the latter approach the first ap-
pearance occurs at the Z for which »(l,Z) in Eq. (5)
intersects the line »(!)=1 instead of »(})=0.

In conclusion it should be pointed out that Ivanenko
and Larin have compared the critical Z for first appear-
ance of an electron of a given angular momentum with
the experimental data. In view of the arguments which
were advanced in Sec. I in favor of comparing the curve
v(1,Z) with the data on the average over the whole range
of values of Z, their excellent agreement with experi-
ment seems somewhat fortuitous.

V. ACKNOWLEDGMENTS

I would like to thank Professor Philip Morrison for
suggesting this problem and for his help and encourage-
ment throughout its progress, and Mr. N. Baker for
providing a translation of the Russian paper.

Note added in proof.—In a Letter to the Editor® Larin
pointed out the difference between the treatment by
Ivanenko and Larin® of the first-appearance problem,
which maintained the continuous distribution of angular
momenta, and the treatment of Jensen and Luttinger,?
which considered the quantized nature of the angular
momentum.

10 S.) I. Larin, J. Exptl. Theoret. Phys. (U.S.S.R.) 28, 498-501
(1955).



