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The resulting Poisson's equations can be solved simply
under the additional assumption that Iv(r)/epI«1.
For then Eqs. (A.1) and (A.S) become of the form

V'v(r) = tt'v(r).

The solution of this equation with the appropriate
boundary conditions
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(for Iv(r)/kTI«1), and thus Poisson's equation for
both cases is again of the form (A.10). Hence, the self-
consistent potential energy is again of the form (A.11),
with

which is the screened Coulomb potential used in our
calculations with a=1/r, .

It is easily seen that and

1 4ze' frtrr y

(r,lr)' tr t kT)
(A.14)

(r H)2

47res
t

~&
I

I=—
I II I (A»)

K E2er ) 1VK E k' ) & (sr~)&)

1 47re jrrts q

(r,')' tt t kT)
(A.15)

PHYSICAL REVIEW VOLUME 104, NUMBER 4 NOVEMB ER 15, 1956

Variation of the Amplitude of Thermal Vibration on the Fusion Curve
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A difI'erential relation given previously, which is equivalent to the Debye-Wailer identification of the
Debye and Lindemann frequencies at fusion, is generalized to take into account variation along the fusion
curve of the critical ratio of the root-mean-square amplitude of thermal vibration to the nearest-neighbor
distance of the atoms in the solid at fusion. Thus extended, the theory yields an expression for the Griineisen
parameter of a solid at fusion in terms of fusion parameters and the rate of change of the critical ratio with
respect to volume, which is valid for elements whose fusion curves have either normal or abnormal slopes.
Values of derivatives of the critical ratio with respect to volume, temperature, and pressure at fusion are
obtained for 16 elements. The results yield evaluations of the change in the critical ratio along the experi-
mentally determined fusion curves for three alkali metals, and permit estimates in other cases. It is concluded
that the assumption of a fixed Lindemann constant along the fusion curve of a particular element represents
an excellent approximation, in general, for elements with normal fusion curves (for the case of classical
excitation of the lattice vibrations). The same conclusion is obtained, within certain approximations, from
the order-disorder theory of Lennard-Jones and Devonshire for the melting process, and the theory of
Fisher for stability of the liquid phase.

I. INTRODUCTION
' 'T has been pointed out by the author' and by Cartz'
~ ~ that the Lindemann law of melting can be derived
under certain assumptions from the Debye-Wailer
theory of the thermal dependence of the intensity of

*Now at Research Laboratories, Allis-Chalmers Manufacturing
Company, Milwaukee, Wisconsin.

' J. J. Gilvarry, Phys. Rev. 102, 308 (1956), referred to here-
after as I.

s L Cartz, Proc. P. hys. Soc. (London) B68, 951, 957 (1955).

Bragg reflection of x-rays from a solid. In a recent paper,
the author obtained relatively accurate values of
Lindemann constants, and thus of amplitudes of
thermal vibration for the solid at melting, from the
Debye-Wailer theory for ten elements. ' The results
show that the Lindemann constant, and hence the
critical ratio of the root-mean-square amplitude of
thermal vibration to the nearest-neighbor distance of the

' J. J. Gilvarry, Phys. Rev. 103, 1700 (1956), referred to here-
after as II.



A M PLI TUDEOFTHERMAL VI 8 RATION 909

atoms in the solid at fusion, cannot be a strict constant
over a lattice type. This fact leaves open the question
of whether the Lindemann constant for a particular
element is a strict constant along the fusion curve, as
assumed in derivation of the Simon fusion equation
from the Lindemann law. ' The purpose of this paper is
to answer the question, at least partially. The results
have an obvious bearing on applications of the Linde-
mann law or the Simon equation to estimate melting
temperatures in the interior of the earth5 ' or planets. '

The derivation of the Simon equation in III is
based on a theoretical evaluation, in terms of parame-
ters of the fusion curve, of the Gruneisen parameter of
the solid at melting. The comparison (Table U of I) of
this quantity as obtained from Gruneisen's law with
that obtained from fusion parameters shows that values

by the former method consistently are slightly greater,
when not equal within the accuracy of the data, except
for the cases of Pb, Al, and Hg. However, the necessary
bulk modulus is known only poorly for Hg. Further,
results of II show some uncertainty in this parameter
for Pb and Al at melting, and the volume change at
fusion adopted for the latter element in I is questionable.
If these three cases can be discounted, it seems reason-
able to identify the difference in question with the rate
of change along the fusion curve of the critical ratio
(and thus of the Lindemann constant), which was

neglected in I. With this extension of the theory, the
sign found for the variation of critical ratio with volume
or pressure is consistent with one's expectation, not only
for elements which have a normal fusion curve, but also
for those which do not. The latter class of elements is

covered by the extended theory, but not by the
theory of I.

The results are strictly valid on the Gruneisen and
Debye-Wailer theories, when it is assumed that the
Poisson ratio of the solid along the fusion curve is a
constant. It can be noted that this assumption is an
essential element of the Gruneisen theory'0 j.2; if the
ratio varies significantly, one must take this fact into
account by defining a Gruneisen parameter separately
for the longitudinal and transverse waves. "The lattice
vibrations will be assumed classically excited at fusion,
so that the quantization parameters of I can be assigned
their classical values.

4 J. J. Gilvarry, Phys. Rev. 102, 325 (1956), referred to here-
after as III.

e R. J. Uffen, Trans. Am. Geophys. Union 33, 893 (1952).' F. Simon, Nature 172, 746 (1953).
7 E. C. Bullard, in The Earth as a Planet, edited by G. P. Kuiper

(University of Chicago Press, Chicago, 1954), p. 114.' J. J. ,Gilvarry (to be published).' R. Wildt, Nachr. Ges. Wiss. Gottingen 1, 67. (1934)
'e E. Griineisen, in IIandblch der Physih (Verlag Julius Springer,

Berlin, 1926), Vol. 10, pp. 23, 25, 32."J.C. Slater, Irstrodgctioss to Chemical Physics (McGraw-Hill
Book Company, Inc. , New York, 1939), pp. 240, 451.

'2 J. J. Gilvarry, Phys. Rev. 102, 331 (1956).
'e D. Bijl and H. Pullan, PhiL Mag. 45, 290 (1954).

where
'y„=r+5,

I = st+ ,'qK I3V/L, — (6)

in which q is defined in I, and AV and L are the volume
change and latent heat of fusion, respectively. Equation
(5) yields the corresponding result of I for 5 vanishing,
in which case F becomes a Gruneisen constant as evalu-
ated from fusion parameters.

From Eqs. (1), (2), (5), and (6), one obtains

d lnp/d 1nT = —sb(1 —s) '= 5L/qK IiV, —(7)

directly. Use of Clapeyron's equation yields

d ln p/dI = ,'o(I ,') 'hV/L—=-8—/q-K, (8)—
where P is the fusion pressure. Since the Lindemann
constant c is defined in II by c= (V3/2sr))~'/p, where X

is a function only of lattice type, the definition (1)
yields d inc/d ln V = —8 directly, with analogous
derivatives as the negatives of the results of Eqs.
(7) and (8).

One can expect the parameter 6 to be positive, on
intuitive grounds, ' for either a normal fusion curve

"Dr. A. J. F. Siegert has pointed out to the author that the
result follows directly if one assuines, instead of P(a')A„j& =pr, the
equation P(ss')A„g&=p&(r~ —a), where po and a are constants. This
assumption takes into account the possibility that the region (of
linear extent a), over which the interatomic forces are markedly
anharmonic, does not change with volume. One thus has
p=pe(1 a/r ) and b= sea/(r —a—))0.

II. THEORY

A parameter 8 can be defined by

8=d lnp/d lnV„,

in terms of the volume V of the solid at melting and
the critical ratio p of the root-mean-square amplitude of
thermal vibration to the nearest-neighbor distance of
the atoms in the solid at fusion. When the Poisson ratio
of the solid at fusion is constant, a procedure entirely
analogous to that used in I yields

d lnT /d lnV„= —2(y„—8—-', )

as a difrerential relation equivalent to the Debye-
Waller identification of the Debye and Lindemann
frequencies, if T is the fusion temperature and p is
the Gruneisen parameter of the solid at fusion. The
latter parameter enters Eq. (2) through the Lorentz-
Slater expression"

= ——',——,'d lnK /d lnV

where X is the bulk modulus of the solid at fusion. It
can be proved directly" that y is given also, from
Gruneisen's law as applied to the solid at fusion, by

vm KmcrmVm/Cv, m~

where oI is the volumetric coeKcient of thermal ex-
pansion of the solid at fusion, and C~, is the corre-
sponding heat capacity at constant volume. By a
method used in I, based on Clapeyron's equation, one
obtains
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tt=d in(y —-,')/d lnV„,

and q is fixed by
1 27m, Av+ 3

(13)

(14)

in terms of an average Gruneisen parameter y, A, over
the range of interest on the fusion curve. Integration of
Eqs. (7) with use of Eq. (11) yields

1 (./") = —lb'(~-, .—l)]-'L(T./T. , .)s-1], (»)
for p at the fusion temperature T relative to its value
po at T 0. From this equation, the variation of p as a
function of the fusion pressure I' can be obtained by
use of the Simon equation

P-= (&/&) L(T-/T-. p)' —11,
where

&= (n+t )/(n —1), (17)

and a is defined in III. One obtains

in(p/po)= —l5LP(~-, —-')] 'L(&P-/a+1)" —1]. (1g)

Under the assumption 8«y and the condition that
osculating approximations at the origin of the fusioii

(d T /dP positive) or an abnormal fusion curve
(dT /dP negative). For the latter case, it follows
from Eq. (5) that 8 must be positive if the absolute
value of the slope of the fusion curve is great enough to
make I' negative, since the Gruneisen parameter y
must be positive for the thermal pressure of the lattice
to be positive. The slope of the fusion curve is given,
from Eqs. (5) and (6), by

dT /dP =2(p 8 rs—)T—/qK„, (9)

so that a normal and an abnormal fusion curve corre-
spond to b(p —

3 and 6&p —3, respectively. For 8

vanishing, this criterion yields that given in I. From
Eqs. (7), the sign of d lnp/d lnT is negative or positive,
according as the fusion curve is normal or abnormal. In
either case, the sign of d lnp/dP follows as negative
from Eq. (8). If L(N')A„]' is the root-mean-square
amplitude of thermal vibration at fusion, one has

d I nL( t't) A]l /din V = 8j-', . (10)

Thus, this derivative is always positive; it is less than
or greater than y according as the fusion curve is
normal or abnormal.

To obtain integrals expressing the change in p along
a normal fusion curve, it will be assumed that the
derivation of the Simon equation in III is valid to first
order for 6 vanishing, so that the variation of p can be
calculated as a perturbation when 8 is assumed constant
and small relative to y . From III, one can write

(7-—s)/(7-, o
—s) = (T-/T-. o) ', (11)

where y 0 is the value of y corresponding to the
normal fusion temperature T, p, and P is defined by

P=t /(n —1), (12)
in which

curve are valid, it has been pointed out in III that p, of
Eq. (13) vanishes, p becomes p, p, rt of Eq. (14)
equals 2y„,p+ s, and the Simon exponent 8 of Eq. (17)
reduces to the value

J3= (6y„,p+1)/2 (3y, p
—1), (19)

to the same order as Eq. (20), where

a =(qpE, p)
—',

b-=(v-, p+s)(qplt-, p) ',

(22a)

(22b)

are constants, in which qo and E,o are the values of q
and E, respectively, at the normal fusion temperature.
The last two relations yield p, p

——b /tt '—ss. The
parameter y can be found directly from Eq. (21), by
use of Eq. (3), when one notes that E = —(V /q)dP /
d V and one assumes q constant, as is done in the de-
rivation of the Simon equation. The computation shows
that y = b /a '——', =y, p under this assumption, and
thus that tt=0, only if the expansion of Eq. (21) is
restricted to the terms shown explicitly, through second
order.

The last result means that Salter's determination of
the Simon exponent is valid only when the volume-
pressure relation along the fusion curve is of the
Bridgman form corresponding to the explicit terms of
Eq. (21); thus, the evaluation can be applied in practice,
for a large pressure range, only to relatively incompres-
sible substances. In such a case, the Simon equation
reduces to the terms shown explicity in Eq. (20). In
contrast to the situation for the highly compressible
alkali metals, one expects the range of pressure over
which this approximation is valid to be large for the
relatively incompressible metals, since the isothermal
and isentropic equations of state of iron, for example,
are of the Bridgman form up to at least 3 megabar. '

In III, it is shown that E and L/DV obey a law of
reduced states for 8&(y, corresponding to

E„/IC„,p= (V, p/V„) p,

(L/~V)/a=(V, p/V )~"
(23a)

(23b)

Use of these relations in Eq. (6) shows that I' is constant
when p vanishes and q is constant. Since y is constant
in this case, one concludes immediately from the

"L.Salter, Phil. Mag, 45, 369 (1954)."R.W. Goranson et al. , J. Appl. Phys. 26, 1472 (1955).

obtained by Salter. "For this case, Taylor expansion of
the Simon equation yields

P-= ~L(T-/T-, o
—1)+l (v-. o

—s) '(T-/T-, o
—1)']

+oL(T-lT-, o
—1)'] (2o)

where OLx] designates terms of order x or higher. With
use of the relation T /T„, p (V~, p——/V ) p ' given in
III, where V, o is the initial value of V, one obtains

—(V —V, p)/V„, p aP„——b„P '+—O[P '], (21)
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connection (5) that 8 is constant under the same condi-
tions. Thus, one expects 6 to be essentially constant for
the relatively incompressible metals over the range of
fusion pressure where the Bridgman relation of Eq. (21)
is obeyed.

It follows that the correct forms of Eqs. (15) and (18)
for the relatively incompressible elements are obtained
by taking tt=0, and thus P=O from Eq. (12), and
expanding both sides of the equations in question
through terms of first order. Thus, one obtains

(p p&)/pe=sb(y, o
—s) '(T /2, s—1), (24)

for p as a function of T, and

for p as a function of I', where a is defined by Eq.
(22a). These approximations should be valid over a
pressure range comparable with that over which the
Bridgman equation of state applies.

The fact that approximate constancy of 8 can be
shown only for the relatively incompressible elements
suggests that this assumption for the alkali metals,
which yields Eqs. (15) and (18), is not strictly valid
in this case.

III. NUMERICAL RESULTS

In this paper, the Gruneisen parameter y of the solid
at fusion will be understood to be fixed by Gruneisen's
law (4) applied to the solid at fusion (the identification
of I' as a Gruneisen constant will not be adopted). The
values of y and I' shown in Table I are from I, except
as otherwise noted in the cases of Pb and Al; the values
of I for Hg are omitted. The table shows corresponding
values of b, d lnp/d lnT, and d lnp/dI', as computed
from Eqs. (5), (7), and (8), respectively, with use of
data from I.

If Pb and Al are excluded, one notes that the signs
appearing for the three derivatives are as specified in
Sec. II for normal and abnormal fusion curves. For
elements of the former class, the values of 6 satisfy 6((p
reasonably (except for Sn), so that Eq. (5) imphes the
relation p I' of I to a good approximation, in general.
For the three elements (Ga, Bi, and Sb) with abnormal
fusion curves, 8 is large and comparable with y; in
this case, the approximation y I' fails. The zero
entries in Table I imply merely insufhcient accuracy in

and I' to evaluate b. These cases correspond (except
for K) to relatively incompressible metals, and the
accuracy of the data is not inconsistent with 8&0.1.

In Table I, the first lines corresponding to Pb and Al
show values of y and F from I; anomalously, 6 is
negative. It was noted in II that extrapolation to the
melting point of data for these elements, determined
ultrasonically for temperatures extending relatively
close to the melting point, yielded bulk moduli signifi-
cantly lower than those obtained by extrapolation of
static compression data. The value of the relative
volume change AV/V given in I for Al represents a

TABLE I. Values of derivatives corresponding to variation of the
critical ratio p at fusion.

Cs 16
Rb 1.8
K 1.2
Na 1.2
Li 088
Ag 2.p

Cu 1.8
Fe 1.1
Zn 1.8
Mg 21
Sn 28
Ga 1.2
Bi 08g
Sb 1.1
Pb 34

2.8~
Al 2.1

1.6b

1.4
1.5
1.19
1.1
0.74
1.7
18
1.1
1 8
1.9
2, ]
102—0.6p
0.12
3.7
2.8~
2.6
1.6b

0.2
0.3
0
O.i
0.14
0.3
0
0
0
02

(o r)
2.4
1.49
imp

(—0.3)
0

(—0.5)
0

d lnp/d lnT~

—0.09—O.i
0—0.06—0.17—0.1
0
0
0—0.05

(—os)
0.80
0.8p
2+4

~ ~ ~

0

d Inp/dP~
(megabar 1)

—8—8
0—1
103—04
0
0
0—0.4

(—O. iX 10)
5 0 1—53
2, I

~ ~ ~

0

0

& From data of I, with use of the values K~ =0.30 megabar from II and
L =6.3 cal/g from reference 18.

b From data of I, with use of the values K~ =0.44 megabar from II,
L =94.6 cal/g from reference 18, and hV =0.019 cm'/g from reference 19.

"O. Kubaschewski, Trans. Faraday Soc. 45, 931 (1949).
's Metals Han dbook (American Socie'ty for Metals, Cleveland,

1948), p. 20.
"M. Topler, Ann. Phys. u. Chem. 53, 344 (1894).The value is

the one cited in Handbook of Chenssstry and Physics (Chemical
Rubber Publishing Company, Cleveland, 1952}, thirty-fourth
eitidon, p. 1977.

'P Both F and y are almost certainly high for Mg, since the
extrapolated bulk modulus at melting given in I is only slightly
below the normal value."P.W. Bridgman, Phys. Rev. 3, 153 (1914);27, 68 (1926).

mean given by Kubaschewski' from work of four
investigators, and he noted that the value seems high.
Futhermore, the entropy change given by Kubaschew-
ski for Pb seems distinctly low relative to those for the
other face-centered cubic elements, implying that the
value of the latent heat I, may be low. In Table I, the
second lines for Pb and Al show determinations of y
by Eq. (4), from data of I but with values of E from
II. The corresponding values of I' from Eq. (6) were
evaluated from data of I, except that values of E
from II were used, values of I were taken from a com-
pilation" of data for metals of high purity, and AU in
the case of Al was obtained from one" of the four
sources used in Kubaschewski's discussion. In both
cases 8 vanishes within the accuracy of the data. For the
alkali metals, where the accuracy is relatively high, all
values of p and I' satisfy F&p &p, where p is the
Gruneisen parameter at normal temperature and pres-
sure. Kith the revision of Table I for Pb and Al, all
values of I' and p satisfy this condition except those for
Pb, where the discrepancy relative to y is marginal, and
those" for Mg, Sn, and Sb.

In Table II, the normal centigrade fusion tempera-
ture t 0 and the maximum value t, determined by
Bridgman" at the maximum experimental pressure
I' are shown for three alkali metals. The fractional
changes in the critical ratio p computed from Eqs. (15)
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TABLE II. Variation of the critical ratio p along
the fusion curve for three alkali metals.

Cs
Rb
Na

tt, o
Oc

29 7a
38.7
97.6

$m, max
Oc

98 5a
95.9

i77.2

—(p —po)/po
Eq. (15)

0.03
0.02
0.0i

Pen, max
kg/cm2

4000~
3500

i2 000

—(p —po) /po
Eq. (18)

0.03
0.02
O.oi

+ Bridgman, reference 21.

and (18) agree, as shown; values of 8 from Table I were
used with other data" from III. Values computed by
means of the approximations (24) and (25) disagreed
between themselves and from those of Table II by the
order of 50—100%. The sign obtained for the change of

p with fusion temperature in Table II is consistent
with that observed by Dugdale and Simon" for the
change in Lindemann constant for solid helium, but the
magnitude of the change implied by their data is
greater in spite of a smaller temperature range. Note,
however, that the melting temperatures they observe
are significantly below the Debye temperature, so that
variation of the quantization parameter Q of Iproperly
should be taken into account.

2~ Values of y, 0 and B were taken from the first and fourth
columns of Table I, respectively; values of p were taken which
correspond to p and q in the first two columns of Table II."J.S. Dugdale and F. Simon, Proc. Roy. Soc. (London) A218,
29i (i9S3).

IV. DISCUSSION

The values of 3 in Table I and of (ps —p)/ps in Table
II for the alkali metals are sufficiently small so that the
derivation of the Simon equation given in III is virtually
unaGected, for the pressure and temperature range
covered by Bridgman's data. In general, the values of
8 and p justify the approximation b(&p for elements
with normal fusion curves.

From Eq. (18) and the values of 3 in Table I, one
obtains the result that p/ps decreases to about 0.8 for
Cs and Rb, and to about 0.9 for Na, at a fusion pressure
of 100 kilobars (roughly the limit of pressure measure-
ment in Bridgman's experimental technique). If one
assumes 8 0.1 for iron, consistently with the accuracy
of the data in Table I, the ratio p/ps for this relatively
incompressible element at the same pressure decreases
by only about one percent, from Eq. (25) with use of
data from I. Thus, the conclusion stands that the
reformulation given of the Lindemann law yields an
excellent approximation in general, when 5 is assumed
to vanish for elements with normal fusion curves. This
fact is underscored by the success of the theory in
predicting the complete inversion of the normal fusion
order among the alkali metals at high pressure, as
hypothesized from experimental data by Bridgman;
aside from the Lindemann law, the prognostication
required use only of the Thomas-Fermi equation of
state and a common value of Poisson ratio for the alkali

metals. '4 These considerations give some indication of
the measure of conhdence that can be attached to
similar extrapolations in geophysical or astrophysical
contexts. ~'

This theory characterizes an element having an
abnormal fusion curve as one in which the rate of change
with volume of the critical ratio p along the fusion curve
is large enough to exceed y ——',, or d in[(tt')A, jl/d InV
exceeds y . The examples among the elements are all
loosely-packed, with relatively low coordination num-
bers for Ga, Bi, and Sb, and the quite low value 4 for
germanium" and silicon. ' A correlation of low Gruneisen
constant with loose packing for the elements is known.
Druyvesteyn has pointed out that this constant for the
body-centered cubic elements is less than 1.8, while the
reverse is generally true for the face-centered cubic
elements. "He explained the eGect qualitatively on the
basis of a Lennard-Jones intermolecular potential; a
more detailed explanation has been given by Zener. "
The correlation in question holds, in general, if the
hexagonal close-packed elements and the rhombohedral
elements As, Bi, and Sb are included in the com-
parison. ""Thus, one can strongly suspect an abnormal
fusion curve for As, which shows the very low value
0.19 for the Gruneisen constant" at normal pressure
(where it sublimes on heating); in fact, the Gruneisen
parameter at the triple point must rise to at least —,

' for
this element, if a normal fusion curve is to be possible
(since 3 is non-negative). However, that an abnormal
fusion curve for an element may not be simply a matter
of loose packing is shown by the fact that graphite
apparently has a normal fusion curve, " although the
coordination number (3 in the plane of the benzene
rings) is less than that of Ge and Si. Nevertheless, one
can suspect an abnormal fusion curve for diamond (in
its region of stability), since the lattice type is the
same as for Ge and Si.

V. CONCLUSION

The results of this paper and of II permit one to assess
tentatively the significance of the Lindemann law as
reformulated from the Debye-%aller theory. It has
been shown in II (on the basis of one counter-example)
that the Lindemann constant is not strictly Axed over a
lattice type. The results of this paper show that the
variation of this parameter along the fusion curve does
not vanish for the alkali metals, and is large for the
elements with abnormal fusion curves. These facts
mean that Lindemann's original idea, that instability

'4 J. J. Gilvarry, Phys. Rev. 102, 317 (1956).
~5 R. G. Shulman and D. M. Van Winkle, J. Appl. Phys. 24, 224

(1953);H. T. Hall, J. Phys. Chem. 59, 1144 (1955).
C. H. L. Goodman, quoted in Trans. Faraday Soc. 52, 885

(1956).
"M. J. Druyvesteyn, Philips Research Repts. 1, 77 (1946)."C.Zener, Etastt'ctty and Anelasttct'ty of Metals (University of

Chicago Press, Chicago, i948), p. 30."H. Steinle and J. Basset, Z. an ew. Mineral. 2, 28 (1940);
A. Neuhaus, Angew. Chem. 66, 532 i954).
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of the lattice sets in when the amplitude of the thermal
vibration reaches some definite critical size, can be true
for a normal fusion curve only in an approximate sense
(it is not clear that the same statement can be made on
the assumption" of instability caused by appearance of
an imaginary lattice frequency in the Born-von Karman
dynamics). However, the discussion of Sec. IV shows
that the assumption of a fixed Lindemann constant
along the fusion curve of a particular element represents
an excellent approximation, in general, for elements
with normal fusion curves when the lattice vibrations
are classically excited.

The same conclusion can be shown directly, within
certain approximations, from the order-disorder theory
of fusion given by Lennard-Jones and Devonshire"
(independently of their derivation of a relation of the
Lindemann form). The Simon equation has been ob-
tained by Domb" from a variant of the theory of these
authors, and by de Boer" from an approximation on
their theory. By use of Bethe's order-disorder approxi-
mation, Domb obtained the value 8=1+3/e for the
Simon exponent on the assumption of a Lennard-Jones
intermolecular potential in which e is the (negative)
exponent of the replusive term and the attractive term
is neglected. Gruneisen" has computed the Gruneisen
constant directly for such a potential as'4 (m+2)/6
(corresponding to Domb's tacit neglect of coupling of the
vibrational modes"). With this value of Griineisen
parameter, Eq. (19) from the Lindemann law yields
educ/ly Domb's result. On the same approximation of
neglect of the attractive term, de Boer obtained 8=5/4
for n= 12, which agrees with Domb's result and that of
Eq. (19).Thus, these conclusions from approximations

"J.H. C. Thompson, Phil. Mag. 44, 131 (1953)."J.E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc.
(London) A170, 464 (1939)."C.Domb, Phil. Mag. 42, 1316 (1951)."J.de Boer, Proc. Roy. Soc. (London) A215, 5 (1952).

'4 Consistency with Griineisen's general result (a+m+3)/6 can
be shown by noting that a term in the potential can be ignored in
computation of the Griineisen constant only if it is of the harmonic
form A (r —rs)', where A is a constant and ro is the normal value oi
the interatomic distance r (reference 12). An attractive term—2Ar /r~ scan be brought into this form only by taking m= —1
and including the constant Aros, which yields A (r —rs)' when the
second-order term Ar' is neglected, consistently with the fact that
r must be small relative to ro for the repulsive term to be dominant.

on an order-disorder theory are precisely those one
obtains by assuming that the critical ratio p is constant
along the fusion curve for a particular element. One
expects the treatments of both Domb and de Boer to be
valid at moderately high pressure, so that their discus-
sions agree in principle with the method used by the
author to obtain melting temperatures at high pressure
from the Lindemann law (for 8=0), by use of the
Thomas-Fermi equation of state. '4

Further, Fisher" has given a theory of the stability
of a liquid phase, which yields a fusion equation identi-
cal in form with that of Simon. When the attractive
term of a Lennard-Jones potential is ignored, he obtains
Domb's result 8=1+3/e for the Simon exponent, in
agreement with Eq. (19). In Fisher's derivation, the
properties of the solid do not enter.

The view that fusion is due to instability of the lattice
implies that prediction of fusion temperatures can be
made from properties of the solid alone. However, the
essential assumptions made by the author in developing
the reformulation of the Lindemann law are the exist-
ence of harmonic lattice vibrations of the solid, and,
for the differential forms (5) and (9), the validity of
Clapeyron's equation; no assumption is made on the
Gibbs free energy of the amorphous phase. Hence,
certainly when the possibility of variable p is allowed,
the theory should yield a general description of fusion,
which is independent of the specific mechanism of the
melting process. " In consonance with this view, the
Lindemann assumption of a constant critical ratio of the
solid at fusion, the order-disorder model of Lennard-
Jones and Devonshire for the fusion process, and
Fisher's theory of the stability of a liquid phase, all
yield evaluations of the Simon exponent consistent with
that obtained in III.
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