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mode cannot contribute significantly to the thermal
conductivity. The reason for this probably lies in the
magnitude of the group velocity. Unpublished calcula-
tions show that at about 20'K, the out-of-plane group
velocity is smaller than the softest in-plane mode by a
factor of at least 13.This in-plane mode has a constant
group velocity, a T' specific heat contribution down to
very low temperatures and a Debye temperature of
about 1600'K. If this mode is the major contributor to
the thermal conductivity, the values of the crystallite

sizes obtained in the present paper would be wrong by
about 50% which would change none of the conclusions.
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A study has been made of the effect of a magnetic field on the scattering of electrons in a semiconductor
with spherical energy surfaces. The theory has been applied to longitudinal magnetoresistance in the case
of a very large magnetic field and low temperatures so that all conduction electrons are in the ground
oscillator state. Relaxation times for phonon and ionized impurity scattering have been calculated and
the corresponding mobilities for a degenerate and nondegenerate semiconductor have been derived.
Contrary to the zero magnetoresistance predicted by the usual Boltzmann theory, a field-dependent mag-
netoresistance is found. For a nondegenerate semiconductor and in the ionized impurity scattering range
a negative magnetoresistance is predicted.

I. INTRODUCTION

HE electrical resistivity of a wire is usually
affected somewhat by the presence in the wire

of a magnetic field. This magnetoresistance may be
large or small, and it depends on the nature of the
energy band structure of the material, the carrier mo-

bilities, the strength of the magnetic field, and the
temperature.

Theories of magnetoresistance are usually based on

the one electron band model of solids, and, ordinarily,
on a Boltzmann theory treatment of transport. Such
theories with various degrees of generality have been

given by many authors. '
We will concern ourselves here with the result, valid

for the most general energy surface and Boltzmann

scattering integrals, that for suSciently high values of

a magnetic field the resistance of a wire approaches a
limiting value independent of the strength of the
magnetic field. The predicted saturation of the mag-

netoresistance is a consequence of the assumption in

most theories that the scattering processes are not much

aBected by the presence of a magnetic field. This
assumption is valid for magnetic fields

H&(mc/er,

in which m is the carrier eGective mass and r is the

' J. McClure, Phys. Rev. 101, 1642 (1956). This reference
contains references to other relevant work.

mean free time. This condition may also be written as

G)p'T((1 )

in which cop is the cyclotron resonance angular frequency
which is directly proportional to the magnetic field.

On an intuitive basis we might expect that for mag-
netic fields such that Gop7.)1, the relaxation time may
become appreciably dependent on the strength of the
magnetic field. For in so strong a magnetic field, the
path of the carrier between collisions is very much
curved since the period of execution of a complete
circular orbit is less than the time between collisions.
Thus for copv &1, the predictions of the ordinary Soltz-
mann treatment, which assumes the collisions unaffected
by the magnetic field, cannot be trusted without closer
examination.

Treatments of electric conduction in strong magnetic
fields have been made by Titeica' and Davydov and
Pomeranchuk. ' Each of these treatments was somewhat
special, but both showed that in magnetic fields for
which ~p7+)1. there can be noteworthy eGects on the
magnetoresistance arising from the quantization of the
electron orbits. It is such effects that we wish to discuss
in the following work.

The theory of Titeica concerned the resistivity of a
good metal in which the chief mechanism of scattering

~ V. S. Titeica, Ann. Physik 22, 129 {1935).' B. Davydov and I. Pomeranchuk, J. Phys. {U.S.S.R.) 2 )47
{~940).
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is the electron lattice interaction. Thus in this theory
it is assumed that the electron gas is degenerate and
that the electron phonon interaction diminishes strongly
below the Debye temperature. The aim of the theory
was to explain certain results of Kapitza of the mag-
netoresistance of metals in fields up to several hundred
thousand gauss.

The theory of Davydov and Pomeranchuk concerned
the resistivity of a semimetal in which the chief
mechanism of scattering is the interaction of electrons
with very strongly localized imperfections. Thus in this
theory the electron gas is assumed degenerate or nearly
so, and the scattering interaction is temperature inde-
pendent and can be represented by a set of delta func-
tions in space. The aim of the theory was to explain
certain features of the strong-field magnetoresistance
of bismuth in the temperature interval for which im-

purity scattering is dominant.
In the following, we present a theory of the magneto-

resistance of a semiconductor or semimetal interacting
either with phonons or ionized impurities. In our theory
the Fermi energy will be assumed very small, so the
electron-phonon interaction will remain strong for tem-
peratures far below the Debye temperature. The elec-
tron gas may be either degenerate or nondegenerate. We
wiB be concerned primarily with the conductivity of
carriers under conditions such that

(1.3)

in which e is the energy of the carrier.
We will limit our attention to the case that the mag-

netic field is parallel to the applied electric field. We do
this for two reasons. One is that the treatment of the
transverse problem is somewhat more complicated and
presents points which we don't wish to discuss in this
paper. The other is that quantum effects on the longi-
tudinal magnetoresistance are somewhat more clear cut,
since in the simple case we will discuss, the usual
Boltzmann theory predicts no longitudinal magneto-
resistance at all.

In the theory presented here, a single simple energy
band with isotropic effective mass is assumed. This
assumption could be generalized somewhat in that an
ellipsoidal energy surface could be assumed, but for a
variety of reasons we think it best to present here only
the simplest case.

The general idea of our treatment is to make a
transport theory using the eigenstates of the carrier in
the magnetic field. Calculation of the scattering integral
in these states takes properly into account. the e8ect of
the magnetic field on the scattering processes. Since we
shall be concerned only with the case that A~0& e, i.e.,
all carriers are in the lowest quantum state of the
transverse motion in the magnetic field, we speak of
"magnetoresistance in the quantum limit. "

Our calculation is conveniently broken into several
parts. In the first we calculate the energy eigenstates

which are required for the strong-field transport
problem and the transition matrix elements between
these states. Next we calculate the momentum transfer
relaxation times for lattice and impurity scattering.
Finally, we calculate the conductivities on various
assumptions about temperature and degree of de-
generacy.

3'.= Pp.'+(p„+mpppx)'+pgj.
21g

(2 1)

We have used the gauge which is particularly suited to
the discussion of electrical conductivity. The eigen-
values and eigenfunctions are

e(Nk„k,)= h(v p(N+ p)+h'k, '/2m, (2.2)

P(Nk k,)= y~(x+X'k )e'"»'"**5 &1. —&. (2.3—)

Here k„and k, are the wave numbers associated with
the y and s coordinates and 1.„, I-, are the correspond-
ing normalization lengths. y~(x+X'k„) is the wave
function for a harmonic oscillator of frequency ~0 in its
Eth excited state and oscillating about the point

—X'k„= —hk„/nuop. (2.4)

We shall be concerned only with the ground oscillator
state for which

and

1 )x+X'k„~ '
p p (x+X'k„)= (s.X')—l exp —-~

e(0k„k,)= ,'hcop+e„-

(2.5)

(2.6)

with e,= h'k, '/2m, the kinetic energy of the electron in
the s direction.

Each of the wave functions P(Nk„k, ) describes a state
for which the electron probability distribution is dif-
ferent from zero only in a slab symmetrically disposed
about the plane x= —)'k„.

A calculation of the electric current carried by an
electron in one of these states shows that the average
electric current is in the 2 direction and is given by

J(Nk„k,) = (—e)hk, /m. (2 &)

The mean values of the operators for the components
of electric current in the x and y directions, vis. ,
J,.= (—e/m)p, and J'„= (—e/m)(p„+euapx), vanish for
each of the energy states, regardless of the values of k„
and S.

We will calculate next the transition matrix element
of the function e''i ' between two energy states. In most
of this work we will be concerned with magnetic fields

II. WAVE FUNCTIONS AND TRANSITION MATRIX
ELEMENTS

We consider a one electron problem for which the
Hamiltonian (for a magnetic Geld II along the s axis) is
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so large that the available thermal energy is insufFicient
to raise the electron to an excited oscillator state. In
that case the appropriate matrix element is

&Ok„'k,'I e' 'Ik, k„0)=5(k„'—k„—q„)8(k.' —k,—q.)

Xexp( iyo[q o+q 2+2jq (k '+.k )]) (2 8)

From Eq. (2.8) it will follow that the transition
probabilities which we will need will be proportional to
exp[——,

'
(q '+q„')X'].

III. RELAXATION TIME FOR ACOUSTICAL
SCATTERING

A = (2ir/h) (Ei2kT/ps') (3.5)

Using Eq. (2.8) for the matrix element, we find

Xexp[——',X'(k„'—k„)']P exp( ——,'X'q, ')

It is instructive to calculate the transition probability
to all states with given k, ',

We now wish to calculate the relaxation time for
momentum transfer for electron in a definite energy
state f(»k„k,) due to collisions with acoustical lattice
vibrations. We will consider only the case X=0, AX=0,
i.e., the electron is executing zero-point motion trans-
verse to the magnetic 6eld both before and after the
scattering.

The perturbation Hamiltonian can be written

we find

where

W(k. ,k, ') =Q W(k„k„k,'k, ');

2'
W(k„k,') =AS(o, ' —o,)—N(k, '),

L,

1 1 1 m
N(k. ') = —= —hp~o

(2m-)' li' (2»r)' h'

(3.6)

(3.7)

&i=&i Z» qQ»e" '. (3.1)

The scattering rate into unit volume of q space will be
taken from perturbation theory. What we will calculate,
however, is not the scattering rate but the rate of loss
of momentum in the s direction. We can write

k, = Q W(k„k„k„'k,')(k, ' k.). —(3.2)

Now, for acoustic lattice vibrations with pi(q) =sq,
where co is angular frequency, q the wave vector of the
normal modes of vibrations of the lattice, and s the
sound velocity, the transition probability per unit time
is I (Bio)
W(~ ~') =—

I I&[I&~'I e*"l~& I'q(». +1)
V( ps)»
X~(o- o-+hM—)+ I

&~'I e" 'I ~& I'

which yields

=Q W(k„k.'),
L

(3 8)

7 II 6z
=A)I 6(og cg)N(oz )do, '=A»(og), (3.9)

is the density of states (not including spin) per unit
wave number interval [see Eq. (5.3)]. This demon-
strates that backward and forward scattering (the
only two possibilities) are equal, in exact analogy to
the isotropic scattering of the field-free case. The dif-
ference between the two cases is twofold: the magnetic
field, in the quantum limit, makes the motion of the
carrier one dimensional and alters the density of states.

Defining the relaxation time rii~ by 1/rii~ —k,/k„——
we get from Eqs. (3.2) and (3.6)

Xq»»5(o —o —hpo)]. (3.3) where now
1 1~2m~ &

N( )=
I I

h . , ~

(2~)»2& ho)
(3.10)

is the density of states with energy ~, per unit energy
interval (spin not included). We thus see that the effect
of the magnetic field on the lattice relaxation time is
directly given by its eGect on the density of states.

The corresponding relaxation time in the absence of
the magnetic field is found with a similar analysis. In
this case the matrix element &a'Ie'»'In&=8(k' —q —k),
and thus

W(k, k') = (A/V)8(o». —o»).
As before

Here, o. denotes the pair of quantum numbers k„, and
k„n' denotes the pair k„' and k, ', V is the volume, and

p the mass density of the specimen. )Lt~ is the number
of phonons q.

We will be concerned here with the case that the
electron energy is very small, e kT. Then for tem-
peratures T)1'K, the energy ho~(tl) of the phonons
absorbed or emitted is much smaller than that of most
of the electrons, i.e., A~&(e kT. We can then take the
collisions as elastic and the distribution of the concerned
phonons as classical, i.e., N» N»+1=kT/—hpi= kT/hqs.
Combining absorption and emission, we thus have

1
W(~,~') =A~(o. —.)—2 l&~'le"'l~&l', (3.4)

V c
=Q W(k, k') =A»p(ok),

7.0L e
(3.11)
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where now If we calculate the backward and forward scattering
probability we see that the former is' smaller than the
latter, in contrast to the case of phonon scattering.
Only the backward scattering contributes to the relaxa-
tion of momentum.

We obtain after some calculations

1 (2m) &

Xo(»)= i i
»&

(2s.)' & k' i
(3.12)

is the density of states (not including spin) in the
absence of the magnetic Beld, and»~=h'k'/2m is the
kinetic energy of the electron.

Combining (3.9) and (3.11), we get
1 ~e'Er I(y)

r,'(2 m) & 1+(»./4». )
(4.4)

~rr' &o(»)

roz N(», ) (oooo/2)
(3 13) where

k 1»g (»g)
i

1+4—
2m r,o ho)o (

(4 5)

I(y) = xe
—dx/(x+y) =1+ye& Ei(—y), (4.6)

0

Equation (3.13) shows that for electrons of kinetic
energy less than k&ao/2 the relaxation time is always
smaller in the quantum limit than in zero field.

v(r) =~ (e'/x) (e
—~' /r) (4.1)

In the Appendix we prove that this is the self-consistent
potential energy of an electron around a charged
impurity, under a simplifying assumption about the
reaction of the free electrons to the extra charge. In
Eq. (4.1), ~ is the dielectric constant and r, the appro-
priate screening length, expressions for which are
derived in the appendix for different conditions of
interest.

In the second order of perturbation theory we may
neglect any effects due to coherence of the scattering
amplitudes from diGerent scattering centers. Thus we

find for the transition rate per unit time due to inter-
action with ionized impurities

W (k„k.,k„'k, ')

2'=—P i(Ok„'k, 'in(r —R) iOk„k,) ['0(».'—»,). (4.2)
jZ R

In Eq. (4.2), R denotes the position of an impurity in
the lattice. Writing

4x'e2 1 eiq ~ (r—R)

v(r —R) =w
g U o q'+1/r, o

we can evaluate the matrix elements by making use of
the integral given in Eq. (2.8). Thus, for a random
distribution of impurities,

tr4m. e'
)
' Xr

P i (Ok„'k.'
i (r—R) i Ok„k.) i'= i—

R E~) U

exp( ,'X'[q.'+—(k-„' k„)')}-X+,(4.3)
o. tq'+(k ' k)'+(k ' —k)'+1/r ')'—

where Nz= concentration of ionized impurities.

IV. RELAXATION TIME FOR IONIZED
IMPURITY SCATTERING

We will treat ionized impurity scattering using a
screened Coulomb potential of a single ionized impurity,

Ei(—y) being the exponential integral. In the range of
interest, i.e., 0 &y & 10, this can be approximated

1(v)=—1/(1+v). (4.7)

In the absence of the magnetic Geld, a similar analysis
yields the following expression for the ionized impurity
relaxation time

1 me4Nz
»-'Dn(1+P) —P/(1+P)),

~ r lro(2m))

V. LONGITUDINAL MAGNETORESISTANCE

We will now calculate the current induced by an
electric 6eld, E in the s direction. We set up a Boltzmann
equation for the distribution function f(k„,k,) referring
to the N =0 eigenstates of the electron in the magnetic
6eld, i.e., f(0k„k, ; r). Since the magnetic Geld does not

where P= 4»/», .
We observe that the factor I(y)/[1+ (»./4»)) in Eq.

(4.4) remains always between 0 and 1 for increasing
values of »„whereas the factor Lln(1+P) —P/(1+P))
in Eq. (4.8) is greater than unity for all »&»., which are
the energies of interest. Thus, for suKciently strong
magnetic Gelds the electron relaxation time may
actually be increased by the presence of the magnetic
field. We will show in the next section that this eBect
can give rise to a negative magnetoresistance under
some circumstances.

In the appendix we give a simple theory of the
screening lengths, r,~, r,', in the presence and absence
of the magnetic Geld, respectively. We Gnd that in the
case of classical statistics the magnetic field does not
aRect the screening length, whereas in the degenerate
case it shortens it, according to the formula

(rp/r o)'=X (»po)/E(»p") =2(»po»p~)&/hco

where op~, ep' are the Fermi energies with and without
the magnetic Geld on, respectively.
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e af f—fo(e)

h ak, r„(e,)
(5.1)

To the first order in the field E, this integrates to

eEhk, dfo
f(k„,k,)=fo(e,)+ r„(e,)

fS A,
(5.2)

The density of states with a given oscillator quantum
number (N=O) and k, in the range k„k,+dk, is

2L„L, t'+& ""' 2 1
N(k, )dk, = dk. ———dk„= —dk„(5.3)

V 2m 2~ ~ —(r,y2v) (2.)'XP

as can be seen from Eq. (2.4). Thus, the current density
in the s-direction is, according to Eqs. (2.7) (5.3), and
(5.2),

J=( eh/m) —'

k,f(k,)N(k, )dk„

acct the motion of the electron in the z direction, the
electric 6eld in the same direction simply accelerates
the electron uniformly and thus

(af/at)„;i, = (e/h)E(a f/ak. ).
The steady state condition for the distribution function
is then

( e/h—)E(8f/Bk, )= (8f/Bt)„~~.

For elastic collisions the scattering rate (8f/Bt), ,u is
equal to —(f—fp)/r(e) where fp(e) is the distribution
function for thermal equilibrium in the absence of the
electric field and 7. is the momentum relaxation time
—k,/k, (see Eq. (3.2)J. We, therefore, have the fol-
lowing steady state equation:

to the right-hand member of Eq. (5.2), except that
rp(e) replaces rH(e, ) and e now is the kinetic energy of
the 3-dimensional motion of the electron. The con-
ductivity and density of the electron gas are

2e 2 )2m)' t' dfp
~p ———

I I
e&rp(e) de, (5.6)

m (2~)'(ho) ~o

2 (2m)p e"
o=

I I
e'fo(e)de.

(2n.)' & h' ) o

(5.7)

We explicitly allowed in the above formulas for the
possibility of change of carrier density with the intro-
duction of the magnetic field. Although we shall not
present here a detailed theory of this e6ect, we like to
point out that the deepending of the impurity energy
levels and the change of the density of states, both due
to the magnetic Geld, can result in a substantial decrease
of carrier concentration.

In general, of course, 1/r~=(1/r" )+(1/rH) and
similarly for the field-free case. Thus, the last four
equations along with Eqs. (3.9), (3.11), (4.4), and
(4.8) give us the conductivities of an electron gas in
very strong and zero magnetic fields, in so far as ionized
impurity and acoustical lattice scattering are the
dominant relaxation mechanisms.

Below we shall discuss these results in the limiting
cases of degenerate and classical statistics.

A. Degenerate Case

The degenerate case is that for which eg))kT. If e~P

is the Fermi energy in the absence in the magnetic
6eld, Eqs. (5.6) and (5.7) give

and, therefore, with
Op ——(e'/m)rior p(ego) (s.s)

2e 1 (2m)&
I heep

m (2m)'(h') dp

ego= (3n ) l(h'/2m)No&. (5.9)
dfp

es'ra(es) des& Similarly, if op~ denotes the Fermi energy in the

(54) presence of the magnetic Geld, Eqs. (5.4) and (5.5) give

(2m' &

'B~=
I I h(dp

(2~)P & ho)
e,—&fp(e, )de, . (5.5)

where cr~ is the zz™element of the conductivity tensor.
Since the expectation values of the x and y components
of velocity for our states vanish, the xz- and yz-elements
of the conductivity tensor also vanish. Under such
conditions it is easy to see that 0.& gives immediately
the longitudinal magnetoresistance as measured in a
long wire with the magnetic and electric fields along
the wire. For, since o„=o.„,=O, we have p„=1/o.„
= 1/o" and thus ~p/po= (o'o/a'a) —1.

By use of Eq. (5.3), the density of electrons is found
to be

o~= (e'/m)e~r~(ep~) (5.10)
with

(h'q'(n" y' 4]e"y'/e 'y'., =4.
I II I=-I II

'
I,:. (s.11)

(2m& (h-o) 9(eo) (h-o)

In order for these expressions to be applicable, certain
conditions have to be met. First, we must recall that
all conduction electrons must be in the ground oscillator
state; this is so if harp) op~. Also, op~&&kT if the electron
gas is to remain degenerate. Thus Eq. (5.10) is appli-
cable only if

4(e~)p(e'p)p
h o&-I

I I I
e"»kT.

9&n, ) Eh, )
Similarly, in the absence of the magnetic field the If, therefore, a degenerate semiconductor (ep»kT) is

disti''jbution function, to the first order in E, is identical put into a magrietic fieM such that A~p is of the order
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We thus 6nd that for po«1of magnitude of ego, most of the electrons will occupy
the ground oscillator states and will be degenerately
distributed. For eo 10"cm ' this requires a magnetic
field II 3)&10' gauss, a value independent of the
carrier mass. For much stronger magnetic fields the
distribution is no longer degenerate and for much
weaker fields the carriers are spread over the excited
oscillator states.

When the condition for degeneracy is satisfied, we
have

(ozz) po (hollo) 3 ( no ) (hooo)
I

1+-1 11
4oo) z 4 Loio) 4(nzz) (opo)

B. Nondegenerate Case

If kT&&op, nondegenerate statistics can be used. In
this case the electron distribution takes the form

fo(o) =exp/(op' —o)/kT j.~a nzz rzz(oz ~)

oo Ro 7'o ~s'
(5.12)

Equations (5.4), (5.5), (5.6), and (5.7) then yield

(~zz) 4(ezz) (op')'
(oo ) z 3 &no) i Puuo&

(5.13)

In the temperature range where acoustical scattering
is predominant, Eqs. (3.9), (3.11), (5.11), and (5.12)
give and

4+ ( no
o&ro(o) e 'i'r-zlo (5.16)

3~&no ((kT)'") ~ o

2e ( nzz
0 zz 1 1

o~&rzz (o.)e "'rdo, . (5.17)
m&no ((kT)&) "o

where

»(1+P.)-P./(1+P )
X (5.14)

1(Vzz)

p~=4(oF /" ) v~=(""/h~o)(1+p~)~

po=4op /o,

In the appendix we derive expressions for the energies

o,o, op associated with the screening, Eqs. (A.12) and

(A.13).
For

Po = (3~o)~aono~&&1

(ao=i~h'/e'no=Bohr's radius) expression (5.4) takes a
simple form. For, then,

and
pzz

——(2'/3') ( /nn zz)'( o'/ohi)'opoo«1o

va=(" /»o) = (3/4) (no/n~) (h o/o~')

In this range of pzz, I(yzz) = 1/(1+yzz) and also

I h (1+P.)—P./(1+P.)j=—lP".

Equation (5.13) states that at sufFiciently high fields
the resistivity should be proportional to H'. The H'
dependence of pzz/po is in contrast to the dependence
expected from the classical theory, which predicts a
value of pzz/po independent of field. The dependence on
H comes about as follows: 1/rH~ is proportional to H
for an electron with a given velocity; further, 1/rzz~ is
inversely proportional to the velocity of the carriers
and at high magnetic field the mean velocity decreases
linearly with H on account of the increase of the density
of oscillator ground states with H.

In the range of ionized-impurity scattering Kqs.
(5.12), (4.4), and (4.8) give

(~zzl (2)'(nzz)'(o& l'1+pzz

&o'o ) z E3) ( no ) (hollo ~ pzz

The conditions for applicability of Eq. (5.17) will be
always satisfied in the strong-field limit when

&coo)&kT.

Numerically this condition requires a magnetic field
P&)(kT/2ys)=10'nT gauss, where n is the ratio of
effective to true electron mass.

In the range of predominantly lattice scattering we
find, from Eqs. (3.9), (3.11), (5.15), and (5.16),

(ozz) nzz (kT p

(oo ) z no (ho)o)
(5.18)

Thus for a nondegenerate semiconductor in the quantum
limit the longitudinal magnetoresistance in the lattice-
scattering range, will exhibit a linear dependence on the
magnetic field (assuming a negligible dependence of nzz

on H), in contradistinction to the classical Boltzmann
theory which predicts no magnetoresistance at all. It
is worth noting that Eq. (5.18) would afford a deter-
termination of the effective mass of the carriers if
(no/nzz) could be determined independently.

Assuming no compensation of impurities, we find
from Eqs. (5.16), (5.17), (4.4), and (4.8) that when
ionized impurity scattering is predominant,

(0'zz)
I

= l (1+b.)-
(oo ] z 1+bo.

1 3(1i kT ( 4 3i-
X -+-1 —1+3 I

2+-+—
1

. (5.19)
2 4lb) hollo( b b')

In obtaining this result, we have carried out the inte-
gration (5.16) assuming the logarithmic factor constant
and equal to its value at the maximum af the rest of the
integrand, 'Jak&ng for r,o the usual Debye screening
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length, Eq. (A.15), we see that

kT 6 (mQT)')
ba=12

~I eh'a' i
(5.20)

In carrying out the integration (5.17), we have approxi-
mated I(y), appearing in vHr(e, ), by 1/(1+y), accord-
ing to Kq. (4.7). From Eq. (A.14) for rP, we see that
in Eq. (5.19)

b= bp(no/mlI) (5.12)

An interesting feature of formula (5.19) is that for
values of ba&1, aH/aa will usually exceed unity. Thus
Eq. (5.19) indicates the possibility of a negative mag-
netoresistance in a simple electron gas.

Equation (5.19) is based on the usual Born approxi-
mation for the scattering, which is not always appli-
cable. However, the possibility of negative magneto-
resistance is a feature of this theory that is independent
of the applicability of the Born approximation. The
origin of the negative magnetoresistance is in the eRect
of the magnetic field to inhibit the small-angle scatter-
ing which in the field-free case is primarily responsible
for momentum loss. Thus in the strong field the resis-
tivity arises solely from the direct backward scattering,
which is relatively weak.

VI. DISCUSSION

We will begin this section with a critique of our results
and those of Titeica' and Davydov and Pomeranchuk, '
who have considered certain facets of the strong-field
problem. We will conclude with a discussion of the
feasibility of a direct experimental observation of the
eRects.

The theory of Titeica is fairly extensive and is capable
of comprehending a number of different cases. However,
it contains implicitly one limitation which prevents its
application to a number of cases of experimental
interest. In all the treatment it is tacit that the Fermi
energy is large, of the order of electron volts, as in a
good metal. Perhaps because of this assumption, about
the Fermi energy, the only scattering mechanism con-
sidered is acoustical lattice scattering. Thus, the applica-
bility of the theory appears to be limited to good
metals, or to semimetals and semiconductors at elevated
temperatures. A feature of the theory which is unsatis-
factory from the formal point of view is the failure to
separate the scattering theory from the transport
theory. Thus the calculation of the scattering rate for a
carrier with a given set of quantum numbers. is not
separated from the calculation of the current carried
by an ensemble.

The work of Titeica was designed to be useful in
discussing magnetoresistance experiments. on good
metals at fields of several hundred kilooersted. For such
experiments the magnetic energy quantum Acro would
normally remain well below 0.1 ev, while the electron
energies would range up to values more than an order

of magnitude greater. Thus the extreme quantum limit
would be unattainable, and most electrons will occupy
states of fairly high oscillator quantum number. Thus
the part of the theory which admits of experimental
comparison is the treatment of high magnetic fields,
which are, however, inadequate to reach the quantum
limit.

The theory of Davydov and Pomeranchuk is a
theory of quantum eRects on relaxation in a semimetal,
and so assumes the Fermi energy to be small. These
authors are interested in interpreting experiments on
strong-field magnetoconductivity of bismuth, a sub-
stance in which the eRective mass is very small, and
the experimental possibility of reaching the quantum
limit exists. They are concerned chieQy with the inter-
pretation of certain oscillations in the resistivity. as a
function of magnetic field together with the notable
no»at«ation behavior at the highest fields. Their
qualitative interpretation of the former is doubtless
correct, but the treatment of the latter is open to some
objection.

In this theory it is assumed that the mobility is
determined chivy by the scattering from ionized im-
purities. The scattering potential of such an ionized
impurity is eRectively taken to be a delta function in
position, and the scattering matrix elements calculated
on this basis.

Now it is a fact that the scattering matrix elements
calculated from a delta function potential are typical
of acoustical rather than Coulomb scattering. Thus the
theoretical model of Davydov and Pomeranchuk would
yield 7 ~ c rather than 7 ~ e: as on the customary
theories of ionized impurity scattering or r ~ e' on the
theory of neutral impurity scattering. Since the be-
havior of the resistivity in the quantum limit is very
sensitive to the scattering mechariisrn, the delta function
approximation would appear unsatisfactory.

The present work is limited in scope to materials of
very low electron concentration and low temperatures.
We choose to discuss a set of cases which are similar to
those in e-type InSb which seems particularly well
suited for the study of the quantum limit. Our aim in
the calculation was not so much to predict the outcome
of experiments done in the quantum limit as to deter-
mine the degree to vrhich the outcome is sensitive to
scattering mechanism.

We And that the field dependence of the relaxation
time in the quantum limit is very sensitive to the
mechanism responsible for scattering. Thus, for lattice
scattering the magnetoresistance is always positive, but
for impurity scattering a negative magnetoresistance is
to be expected under some circumstances.

In order to best observe the quantum eRects experi-
mentally, the material of choice is a semiconductor or a
semimetal in which the electron mass is very small. A

good example is e-type InSb, and we will consider it for
illustrative purposes.
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According to Kittel et al. , the effective mass in InSb
is about 1/70 of an electron mass. Thus for a magnetic
field of 5X10' gauss the magnetic quantum would
have a value, in temperature units, of about 4000'K.
Fields of such magnitude are currently produced in the
laboratory and used for quasistatic measurements of
the sort discussed in this paper. Clearly an energy of
4000'K is more than adequate to permit studies under
the condition Euop&&kT even at room temperature.

The concentrations of carriers needed to realize the
conditions assumed in our calculation are easily achieved
in practice. The relation between degeneracy tempera-
ture and concentration for InSb is

We can determine the particle density rt(r) in terms
of v(r) under the simplifying assumption that v(r) is
such a slowly varying function of position that we can
treat its effects on the unperturbed system classically,
i.e., we may assume that at every point the system
behaves as if a constant potential energy, equal to the
local value of v(r), were added to the energy of the
system. We can then take, for the energies of the per-
turbed system,

e'(r, k,)=v(r)+ e,.

With this assumption,

Tg) 2X10 e& 'K.

This formula gives for e 10"a degeneracy temperature
of 4'K; for v~10" TD 20'K; for v~10'" TD 90'K
for e 10", TD 400'K. These concentrations and

temperatures at once span the range of compositions
over which it is feasible to prepare single-crystal speci-
mens and that over which it is feasible to make precise
electrical measurements.

We will not make any interpretation of experimental
results in this paper, because of various questions
having to do with the applicability of our models to
those experiments which are available. However, we

will point out that Sladek and Xeyes at Westinghouse
and Frederickse4 at the National Bureau of Standards
have made measurements of the electrical conductivity
of InSb in strong magnetic 6elds and have found eHects
of the qualitative nature and of the same order of mag-
nitude as those expected on our theory. f

where f(e') is the Fermi probability function. Using
Eqs. (2.3) and (2.5), we see that

and with the help of Eq. (5.3) we can write

where

tt(r) = f(v+e,)N(e.)de„
Jp

1 (2tttq
*

N(e, )=
I I

kcope,
—'

(2~)s & tts )

(A.2)

(A.3)

is the density of states with energy e'= v+e, per unit

energy interval. The particle density in the absence of
the impurity is obtained from Eq. (A.2) for v=0, i.e.,

APPENDIX

We present here a simple theory of the screening
lengths appropriate for the ionized impurity scattering
under the conditions considered in this paper.

Let v(r) be the self-consistent energy of an electron
at a point r from a point charge (+e) placed in our
unperturbed system, i.e., an electron gas of density e~
lectrons per unit volume in a magnetic field H strong

enough to force all electrons in the ground oscillator
states. The electron gas is held together by the lattice
positive charge density +erttI. If tt(r) is the electron
density at r when equilibrium has been reached after
the introduction of the impurity the self-consistent
potential energy v(r) must satisfy Poisson's equation

rtII —— f(e,)N(e,)de„
Jp

(A.4)

(A.5)

where now

Np(r)
f(v+e)Np(e)de

np ~p ~Jp
f(e)Np(c)de (A.6)

with

and this determines the constant Fermi level.
For the case V=0, we similarly have

4ore'rtrr e(r)
Pv(r) = — —1

where K is the dielectric constant of the lattice.

(A.1)

Np(e) =
I 2/(2v-)') (2m/h') iel. (A.7)

Degerterate statistics. In this case Eqs.—(A.2), (A.4),
and (A.6) give

(ggH p)

4 R. J. Sladek and R. W. Keyes (private communication) and
H. P. R. Frederickse (private communication).

$ tV ote added ia proof Results simi.l—ar to some of ours have been
recently reported by Dr. J. Appel of OSRAM, Augsburg, and
Professor R. Kubo of the University of Tokyo (private communi-
cation) .

s(r) ~ p

e,
—

&dc,
v(r) l

6F
(A.S)
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and
No(r) v(r) 1

(A.9)
1 4+es ( rts q 2e' )2nsq &

I
(er')' (A 13)

(r ')' tt ((2ets/3)) z.tc ( k )

es pe
ary-

v(r) =~—
Iz4r) (A.11)

The resulting Poisson's equations can be solved simply
under the additional assumption that Iv(r)/epI«1.
For then Eqs. (A.1) and (A.S) become of the form

V'v(r) = tt'v(r).

The solution of this equation with the appropriate
boundary conditions

e' (1)
v(r) ~ a—

I

— I, v(r) —& 0,air) rico

1s

Classical statistics. —In this case it is clear that since

we get
f(v+ e )~e—u(r&tsTe ezlkT—

e(r) Ns(r) v(r)—
&
—e (r) /keg

+a kTfEO

(for Iv(r)/kTI«1), and thus Poisson's equation for
both cases is again of the form (A.10). Hence, the self-
consistent potential energy is again of the form (A.11),
with

which is the screened Coulomb potential used in our
calculations with a=1/r, .

It is easily seen that and

1 4ze' frtrr y

(r,lr)' tr t kT)
(A.14)

(r H)2

47res
t

~&
I

I=—
I II I (A»)

K E2er ) 1VK E k' ) & (sr~)&)

1 47re jrrts q

(r,')' tt t kT)
(A.15)
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Variation of the Amplitude of Thermal Vibration on the Fusion Curve
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A difI'erential relation given previously, which is equivalent to the Debye-Wailer identification of the
Debye and Lindemann frequencies at fusion, is generalized to take into account variation along the fusion
curve of the critical ratio of the root-mean-square amplitude of thermal vibration to the nearest-neighbor
distance of the atoms in the solid at fusion. Thus extended, the theory yields an expression for the Griineisen
parameter of a solid at fusion in terms of fusion parameters and the rate of change of the critical ratio with
respect to volume, which is valid for elements whose fusion curves have either normal or abnormal slopes.
Values of derivatives of the critical ratio with respect to volume, temperature, and pressure at fusion are
obtained for 16 elements. The results yield evaluations of the change in the critical ratio along the experi-
mentally determined fusion curves for three alkali metals, and permit estimates in other cases. It is concluded
that the assumption of a fixed Lindemann constant along the fusion curve of a particular element represents
an excellent approximation, in general, for elements with normal fusion curves (for the case of classical
excitation of the lattice vibrations). The same conclusion is obtained, within certain approximations, from
the order-disorder theory of Lennard-Jones and Devonshire for the melting process, and the theory of
Fisher for stability of the liquid phase.

I. INTRODUCTION
' 'T has been pointed out by the author' and by Cartz'
~ ~ that the Lindemann law of melting can be derived
under certain assumptions from the Debye-Wailer
theory of the thermal dependence of the intensity of

*Now at Research Laboratories, Allis-Chalmers Manufacturing
Company, Milwaukee, Wisconsin.

' J. J. Gilvarry, Phys. Rev. 102, 308 (1956), referred to here-
after as I.

s L Cartz, Proc. P. hys. Soc. (London) B68, 951, 957 (1955).

Bragg reflection of x-rays from a solid. In a recent paper,
the author obtained relatively accurate values of
Lindemann constants, and thus of amplitudes of
thermal vibration for the solid at melting, from the
Debye-Wailer theory for ten elements. ' The results
show that the Lindemann constant, and hence the
critical ratio of the root-mean-square amplitude of
thermal vibration to the nearest-neighbor distance of the

' J. J. Gilvarry, Phys. Rev. 103, 1700 (1956), referred to here-
after as II.


