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Specific Heat of the Superconducting State
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A semiempirical argument is presented which shows that for tin the lattice specific heat of the normal
state is also present in the superconducting state. This result follows from the law of similarity for the
threshold field curves. It is also shown that the so-called "electronic specific heat" of the superconducting
state contains a large contribution from the motions of the ions in the lattice.

I. INTRODUCTION
' "X two recent publications, "new measurements on
- ~ the speci6c heat of superconducting vanadium and
tin have been reported. These measurements are par-
ti.cularly signi6cant because they are more accurate and
extend to lower temperatures than any previous meas-
urements. In the analysis of these data it was assumed
that the so-called "lattice specific heat" of the normal
state was also present in the superconducting state.
The notion of an independent lattice speci6c heat in
the normal state arises because it is nearly always
possible to write the total speci6c heat of this state, C„,
in the following form,

C =yT+A(T/8)'.

In this equation, y and A are independent of the tem-
perature. The linear term is naturally interpreted as
the contribution of the electronic motions in a static
lattice and the T' term is interpreted as the contribu-
tion of the low-frequency lattice vibrations. This simple
interpretation receives considerable support from the
following facts: (i) that y is known, ' in a few cases, to
be independent of the ionic mass; and (ii) that, at
su%ciently low temperature, 8 is a constant, ' inde-
pendent of the temperature.

The assumption that is made in the analysis of the
specific heat data is simply that the term A(T/8)',
of the normal state, is also present in the speci6c heat
of the superconducting state. This term is subtracted
from the total speci6c heat and the remainder is rather
loosely referred to as the "electronic contribution. "
The new measurements we have referred to show that,
at low temperatures, this electronic contribution has
the form aT, 7 exp( —bT,/T), where u and b appear to
be universal constants and T, is the transition tempera-
ture. It has been suggested' that this exponential form

can be interpreted in terms of a gap in a one-electron
energy spectrum.

The purpose of this note is to show firstly, that for
tin, the equality of the lattice speci6c heat in the normal
and superconducting state follows from the fact that
the threshold fields, for the diferent isotopic specimens
of this substance, obey a similarity law; and secondly,
that in general, the "electronic contribution" to the
specific heat contains a large contribution from the
motion of the ions in the lattice. This fact would appear
to make it rather difIicult to interpret this contribution
directly in terms of a simple one-electron spectrum.

Ke shall discuss these two points in Secs. II and III,
respectively.

II. THE INVARIANCE OF THE
LATTICE SPECIFIC HEAT

The law of similarity for the threshold fields for the
isotopes of tin was discovered by Lock, Shoenberg, and
Pippard. ' For our purpose it can be conveniently sum-
marized by means of the following equation:

H, = (3II) ~y((M') T). (2.1)

Here II, is the threshold 6eld for a specimen whose
average isotopic mass is M, T is the absolute tempera-
ture, and the function p is a universal function of its
argument (M)~T. The exponent is equal to 0.50 to
within a few percent. The threshold fields of the differ-
ent specimens of tin are known to obey this law to
within 1 part in 800. This law therefore expresses, in a
very precise way, the functional dependence of II, on
M and T.

From this law we can deduce the functional depend-
ence of C —C, on 3f and T, where C„and C, are the
specific heats in the normal and superconducting states,
respectively. To do this we merely have to use the well-

known thermodynamic relation,
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G.—G,=H.s V/Ssr. (2.2)

where G„and 6, are the Gibbs free energies at zero
magnetic field in the normal and superconducting states,
respectively, and V is the volume of the specimen.
Henceforth we shall use the symbol to indicate the
functional dependence of any quantity on llI and T.
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811 (1951).
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If we substitute Eq. (2.1) in Eq. (2.2), we can write

G —G, (M)-' g((M) T). (2.3)

Now C= T—(it'G/BT') s, and therefore,

C„—C,~(M) Q((M)aT). (2.4)

It follows that any term in C„which has a diferent
functional dependence on the isotopic masses and the
absolute temperature, from that indicated on the right-
hand side of this equation, must be exactly cancelled

by an identical term in C,. Now C„ is the sum of two
terms, pT and A (T/8)'. Since y is known to be inde-

pendent of the isotopic masses, ' yT~(M) a((3II) T),
and this term therefore has the correct functional
dependence on M and T. However, if we identify
A (T/0)' with the contribution from the low-frequency
lattice vibrations, then we can easily show that this
term does not have the required functional dependence.

The most general expression for the lattice specific
heat, which we denote by C„L, is given by the following
equation:

(2 5)C„z=k P f(oo,/kT),

where

f(oc) =oc'ee/(e* 1)'— (2.6)

and k is Boltzmann's constant. In Eq. (2.5) the summa-
tion is over all the lattice frequencies or;,. these are the
solutions of the secular equation, ~

cancelled by an identical term in C,. We have thus
shown that if the similarity law is true, then the lattice
speci6c heat of the normal state must also be present in
the superconducting state. If the similarity law is
general, then our conclusions are equally general. Un-
fortunately, however, tin is the only substance for
which an accurate similarity law has been established
and we therefore cannot at the moment generalize the
argument.

C=C„= (ctU/aT)v. (3 3)

III. THE ELECTRONIC CONTRIBUTION
TO THE SPECIFIC HEAT

If the lattice speci6c heat of the normal state C„L is
subtracted from C„ then it is found that the remainder,
C„, has the form

C„=ayT, exp( —bT,/T). (3.1)

This equation appears to be valid for tin, ' vanadium, '

and aluminum, ' with the same values for the constants
a and b.

We have shown elsewhere" that if G is the Gibbs free
energy of any system and XM is the mean kinetic energy
of the particles of mass M in the system, then

Kss ———M(ejG/ejM) p, s.
Since the difference between C„and C, is very small for
a solid superconductor we will assume the following
form for C:

art+Mite' ~i3
ass+MsMs ass (2.7)

~ ~ ~ ~ ~ ~ ~ ~ ~

The contribution of Ksr to C is therefore (BKst/i)T)i .
If we denote this contribution by C&M&, we have, from
Eq. (3.2), that

where the a;; are related to the force constants and the
M; are the masses of the atoms in the lattice. It is now
a simple matter to express the lattice specific heat in
terms of the determinant D(&o). We have in fact that~

L
1 p D'(s) dD

f(s/kT) ds; D'(s) = . (2.8)
27ri "a D(s) d»

Consequently C„L depends on the masses M; and the
temperature T only through the variables I;=M;T'.
For example, if all the masses are equal to M, then
C„Ldepends on the mass and temperature only through
the variable MT'. Clearly C„L does not have the re-
quired functional dependence on M and T. We there-
fore see that if Eq. (2.4) is valid, C„z must be exactly

r M. Born and K. Huang, Dynamscat Theory of Crystals (Oxford
University Press„New York, 1954), p. 174.' E. W. Montroll and R. B.Potts, Phys Rev. 102, 72 (.1956).

The contour C is such that it includes all the zeros of D
but none of the poles. From Eq. (2.8), we have that

1 t D'(kTst) dD
C z= i f(N) dtt; D'= . (2.9)

2sri & a D(kTN) dst

C'~& =+M (i)S/itM) rv, (3 4)

I.et us now apply this equation to the "electronic speci6c
heat. "We 6nd that

C„'~'=M(BS„/BM) r, v, (3 5)

where C„™is the contribution of the kinetic energy
of the ions to C„. From Eq. (3.1) we can easily cal-
culate S„,

I
rtr exp( —b/x)

Sea=+vTc
~

0 g
(3.6)

Now since u and b appear to be universal constants, we
can reasonably assume that they are independent of the
mass M. Combining Eqs. (3.5) and (3.6), we find that

iMl —&(C g ) (3.7)
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where we have used the empirical relation T,~35—
&.

The right-hand side of Eq. (3.7) is always positive and
is clearly of the same order of magnitude as C„. For



SPECI F I C HEAT OF SUPE RCON DUCTI NG STATE

example at T= T,/2, —,'(C„—S„) C„j3.We therefore
see that the so-called electronic term contains a large
positive contribution from the kinetic energy of the
ions in the lattice. This fact implies that considerable
caution shouM be exercised in any attempt to interpret
C„ in terms of a one-electron energy spectrum. On the
other hand, it does not imply that such an interpreta-
tion is completely impossible. However, an alternative
interpretation of this term would be that it arises from
the excitation of elementary (charged) excitations across
an energy gap. The magnitude of the gap may, and
indeed must, depend on M. These excitations could be
supposed to arise from the cooperative nature of the

interaction between the electrons and the lattice vi-
brations. This kind of interpretation does not suppose
that any separation of the nuclear and electronic mo-
tions is possible and there is no reason to identify the
elementary excitations with electrons.
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The thermal conductivity of various graphites in the temperature interval 10' to 300'K has been deter-
mined and the effect of neutron irradiation and bromination investigated. The thermal conductivity of
large crystallite natural graphite and of nonpitch-bonded graphite is found to vary as T' at low tempera-
tures, as does the specific heat, in accordance with the simple theory of lattice heat conduction. This is in
contrast to the anomalous T" dependence exhibited by various pitch-bonded graphites. The anomaly is
explained in a subsequent paper in terms of the effect of ungraphitized pitch on the total thermal resistivity
of pitch-bonded graphites.

Neutron irradiation is observed to cause the thermal conductivity of graphite to decrease markedly at a
rate which decreases with exposure time. Also, the exponent of the temperature dependence decreases with
exposure. The effect of bromination on the thermal conductivity of graphite is determined and compared
with the effect of neutron irradiation. The results indicate that the change in the concentration of conduction
electrons is not the principal mechanism by which neutron irradiation decreases the thermal conductivity.

The electrical resistivity shows a negative temperature coefficient for all graphites, except the large
crystallite natural graphite. Neutron irradiation increases the electrical resistivity to a saturation value
and decreases the magnitude of the temperature coeKcient.

E. INTRODUCTION

A S a part of a general program' to study the eGect
of radiation damage on the properties of graphite,

the thermal and electrical conductivity of various types
of graphite have been determined as a function of
neutron exposure and temperature in the interval 10'
to 300'K. The thermal conductivity of unirradiated
artificial polycrystalline graphite at low temperatures
has been reported by Tyler and Wilson' and by Her-
man. ' These authors reported an anomalous tempera-
ture dependence which has been confirmed by an in-
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dependent experimental method4 in the present study.
Accordingly, graphite is the only nonmetallic substance
known at present in which, at low temperatures, the
thermal conductivity varies more rapidly with tem-
perature (up to T") than the specific heats (T').
Klemens' has treated this anomaly as due to different
vibrational modes being responsible for thermal con-
duction. and specific heat in thin graphite plates.
Smith' and Hove' have explained it as due to the
presence of small regions of non graphitic carbon,
presumably in the pitch binder, in the arti6cial graph-
ites. Since the latter explanation depends critically on
the effect of the nongraphitic pitch binder, the behavior
of graphites in which it is essentially absent has also
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