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Multiple Quantum Transitions of a System of Coupled Angular Momenta*f

M. N. HAczf
Palmer Physical Laboratory, Princeton University, Princeton, Rem Jersey

(Received May 23, 1956)

The transition probabilities of the multiple quantum transitions of a system of coupled angular momentum
vectors in a uniform static plus perpendicular rotating magnetic field are studied both in the uncertainty
width region, by time-dependent perturbation theory, and at higher amplitudes of the rotating field, by
direct integration of the Schrodinger equation, in the case of well-separated resonance frequencies.

l. INTRODUCTION

A MULTIPLE "quantum transition is a transition
in which, in the terminology of radiation theory,

several quanta supply the necessary energy so that a
generalized Bohr frequency condition holds of the form

Zr —E;= tsiho&r+ ~ +rs„hei, (&)

The n's are positive integers, with P m;~&2, and the
gs are the energies of the initial and 6nal states,
including energy-level shifts due to virtual absorption
and emission of quanta.

The theory of two-quantum absorption and emission
processes, in lowest approximation, was 6rst discussed
by Mayer. ' Although these transitions are rare events
in the optical region, ' ' many cases of multiple-quantum
transitions have recently been observed in electric and
magnetic resonance transitions between hyperfine
levels. The first such observation appears to have been
that of Hughes and Grabner, ' who also discussed the
theory of two-quantum transitions, in lowest approxi-
mation, in the correspondence limit of unquantized
electromagnetic field for the special case that the two
quanta have the same frequency. Such a treatment
(semiclassical radiation theory) is well justified in the
hyperfine case since spontaneous emission is then a
negligible process. Further observations of multiple-
quantum transitions have been performed by many
others. 4

The further development of the theory was under-
taken independently by Besset et al. ,' Salwen, ' and the

*Part of a thesis submitted to Princeton University in partial
fulfillment of the requirements for the degree of Doctor of Phi-
losophy.

t Part of this work was supported by the Higgins Scientific
Trust Fund and the U. S. Atomic Energy Commission.

f Now at Argonne National Laboratory, Lemont, Illinois.
'M. G. Mayer, Naturwissenschaften 17, 932 (1929); Ann.

Physik 9, 273 (1931).' G. Breit and E. Teller, Astrophys. J. 91, 215 (1940).' V. W. Hughes and L. Grabner, Phys. Rev. 79, 314 (1950);
L. Grabner and V. W. Hughes, Phys. Rev. 79, 829 (1950).

4 P. Kusch, Phys. Rev. 93, 1022 (1954); Brossel, Cagnac, and
Kastler, J. phys. radium 15, 6 (1954); R. Braunstein and J. W.
Trischka, Phys. Rev. 98, 1092 (1955); V. W. Hughes and J. S.
Geiger, Phys. Rev. 99, 1842 (1955); J. Margerie and J. Brossel,
Compt. rend. 241, 373 (1955); Brossel, Margerie, and Winter,
Compt. rend. 241, 556 (1955); P. Kusch, Phys. Rev. 101, 627
(1956); Christensen, Hamilton, Lemonick, Pipkin, Reynolds,
and Stroke, Phys. Rev. 101, 1389 (1956).

'Besset, Horowitz, Messiah, and Winter, J. phys. radium 15,
251 (1954).

s H. Salwen, Phys Rev. 9.9, 1274 (1955).

present writer. ' The theories of Besset et al. and Salwen
are based on the steady state solutions' ~ of the
Schrodinger equation for a rotating magnetic field.
In particular, Salwen has studied the line shapes
of multiple-quantum transitions of arbitrary order in a
rotating magnetic field for the case of well-separated
resonance frequencies. However, it has not been well
understood how the time-dependent perturbation theo-
retical treatment of multiple-quantum transitions, as
given for two-quantum transitions by Mayer and
Hughes and Grabner, is related to the theory based on
the steady-state solutions. Thus, the methods used by
Besset et al. are applicable only at higher fields, and
Hughes and Geiger' have pointed out the necessity for
a careful comparison of their own results with those of
Salwen. The present paper gives a formulation of the
theory which clarifies the relation of these various
approaches to each other and moreover has the ad-
vantage that it can be directly extended to oscillating
and multiple-frequency 6elds. ' '

2. EQUIVALENT STATIONARY PROBLEM IN THE CASE
OF A ROTATING MAGNETIC FIEID

We consider a system of two coupled angular mo-
mentum vectors, I and J, with gyromagnetic ratios yr
and yJ, which interact with each other and also with
an external magnetic field. ' The latter consists of a
rotating radio-frequency 6eld of constant amplitude
and angular velocity, K& and &, and a uniform static
field, of amplitude Ko, along the axis of rotation. With
the z axis chosen in the direction of the static field and
the x axis in the direction of the rotating field at time
1=0, the Hamiltonian of the system can be written in
the form

H=Hp+Hr,
where

Hp=ni J+yzJ*5('p+vrl'z~p, (3)
r M. N. Hack, Phys. Rev. 100, 975(A) (1955); thesis, Princeton
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and

Hi (y——~J+yiI) [(3!icosp/t)i+(Xi sincpt)j7. (4)

panded in the form

lt;(t) =2' ~';(t)e-'~'"V (13)

(5)

(6)

~i,Egeo t//II ~
—iEgcu t/fg

)

V=vz&&i+vrI~i,
where

The Hamiltonian given by Eqs. (2), (3), and (4)
depends explicitly on the time. However, a transfor-
mation to a coordinate system rotating with the applied
radio-frequency Geld" reduces the problem to a time-
independent one. ' 7 This follows with the help of the
identity /t;; (t) =art'+ a; "(t)+a;/"' (t)+ (14)

where /ti p=b;;, tt;;&"i(0)=0, and the tt;;&"&(t) are deter
mined by the recursion relations"

where the subscript j indicates that the initial condition
is chosen, without loss of generality, as P;(0)=iP/."
The perturbation theory consists of expanding the a;;
in a series

and P, is the component of the total angular momen-
tum, F=I+J, along the direction of the static magnetic
field. Equation (5) can be proved for example by
observing that the derivative of the left-hand side with
respect to t vanishes by virtue of the commutation
relations of the angular momentum operators. The
left-hand side is therefore independent of t, and since
(5) clearly holds at time t=0, it follows that it holds
generally.

The transformation to the rotating coordinate system
is effected by the unitary operator exp (iF,&pt/ft) so that
the transformed wave function is

and
y —Ult, —e tEzra t//tl|,

dip i—= U + F,et Utl—/—
(7)

where
ih(dy/dt) = Wy,

W=Hp p/F, +V—
(10)

is independent of the time. In the following sections
we study solutions of Eq. (10) for tp in the neighborhood
of resonance frequencies of the system.

3. SOLUTION OF THE RECURSION RELATIONS OF
TIME-DEPENDENT PERTURBATION THEORY

FOR A CONSTANT HAMILTONIAN

Time-dependent perturbation theory starts from the
equations

W= Wp+ V, WptP;= W,tP;, (12)

where the tlt; and. W; are the eigenstates and eigenvalues
of the time-independent unperturbed Hamiltonian 5'p
and V is the perturbation. The wave function is ex-

'~ Rabi, Ramsey, and Schwinger, Revs. Modern Phys. 26, 167
(1954).

= (iA) '(UHU ' tpF—)—y
where in the last line we have substituted from the
Schrodinger equation for dP/dt. By virtue of Eqs. (2)
and (5) and the fact that F, commutes with H p, we have

UHU '=Hp+V.

Consequently, we obtain the transformed wave equation

a '"&(t)=—— Q V e'~'"'/ttt '" '&(t')dt' (15)
A~p

where lV;~=8";—lV~. %e will solve these recursion
relations in the important case that V is independent
of the time. In this case (15) yields for the first- and
second-order transition amplitudes the well-known
expressions

(ei w i/t //i

tt, .(ii= V, i (16)
W, , )

g. ,(2) Q V V ., (etwi/t//t 1)
1

~ W, ,Wt;

(eiirit tl/t 1) (17)
8',)5");

The solution of the recursion relations (15) to all
orders can be described as follows for the case of a
constant Hamiltonian. In Fig. 1 the labels at the right
designate the initial, final, and intermediate states, and
the sequences of arrows are all possible ways of jumping
upwards from state j to state i. If a single arrow in
one of these sequences connects a lower state s to an
upper state p and passes over states r, , II on the
way, we associate with it a factor

1/(W~, W„. W„).
If p happens to be the final state, we adjoin an addi-
tional factor (e'~&'t//t —1). For each sequence of arrows
we take the product of all such factors, multiply by
the product of matrix elements Vi~ V;, and sum
over all intermediate states. The rule for obtaining the
sign of each term is explained below. In this way, for

Fto. i. Diagram for con-
struction of the third-order
transition amplitude.

"The solution satisfying the most general initial condition
|t (0) = Pi cpP; is clearly P(t) =g/ cpP;(t) (reference 12).

t' M. Born, Z. Physilp 40, 167 (1927).
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the third-order case illustrated in Fig, 1, we arrive at where
the following transition amplitude:

and
~p=Hp —~~.,

ts, .is) =Q V,.tVt V . — (eitritt/s 1)
i,m

+ . (etwtmtls 1)
+im+lm +m j

1 1
(etwtt tls 1)

8';) 8')jW„j

(etwtttls 1)
W;

The diagram for order os+1 gives 2" terms and can
be constructed from the diagram for order ts by (1)
continuously extending the Anal arrows one level higher
(no new arrows) and (2) adding a new row of arrows
across the top of the diagram for order e. The sign rule
is then as follows: The 2" ' terms corresponding to (1)
arise from the exponential terms of the preceding order
m and get an additional minus sign when the corre-
sponding terms of order n+1 are obtained from Eq.
(15). Their signs are therefore opposite to the signs in
the preceding order. The 2" ' terms corresponding to
(2) come from the minus one terms of the preceding
order, and this minus sign together with the one from
Eq. (15) gives no net sign change so that the signs are
the same as in the preceding order. (The sign is negative
for rt=1.)

The prescription given above can be proved by
mathematical induction. It is obviously valid for v=1.
We now assume its validity for e and prove its validity
for n+1. For a term arising from an exponential, say
e'wto"s, the multiplication by et~""s in (15), and
integration, gives a factor (e'~'o"s —1)/W;o, which is
just the additional factor needed according to the above
prescription for the term arising from continuously
extending the Anal arrow of the corresponding sequence
of the eth order diagram. For a term arising from a
minus one, the multiplication by e'~'&"&, and integra-
tion, gives a factor (e'~""s—1)/W;t, which is just the
additional factor needed for the term arising from
adding an arrow to the top of the corresponding eth
order sequence. Thus (15) establishes the validity of
the procedure for re+1 if it holds for I; since it holds
for m=1, it therefore holds for all e.

7J'+Wl+yrlW1 (2o)

W"=W —W =A(to"—[M —M ]to) (21)

where co;;= (E;—E;)/A. Also we define matrix elements
3;j by

V;,= (P;,Vf,) =AA;;. (22)

Since the f; are eigenstates of Ii „the M; selection rules
are the same as in the F, M& representation, "namely,

3;j=o unless 3f;=3f;&1.
For an ordinary allowed transition, with M;= Mj+1,

the first order of perturbation theory gives for the
transition amplitude

~s(~osqWoe) t 1
(24)

COij~Q)

and therefore for the transition probability

sin'[-,' (tomato;, )t$
I'&'&(s~j) =4A;,s

(toWtott)
(25)

If E; E; and M;—3II, (—=+1) have the same sign, we
obtain a resonance for co= ~E, E; ~/h. If, on the —other
hand, E;—E; and Mi —M have opposite sign, then
there is no resonance for any positive value of co. The
physical basis of this situation is the fact that for the
positive direction of rotation of the radio-frequency
field, the absorption (emission) of a photon increases
(decreases) angular momentum as well as energy, so
that both angular momentum and energy can be con-
served in the 6rst case but not in the second. However,
in order to obtain a resonance in the second case, it is
only necessary to choose the opposite direction of
rotation.

For a two-quantum transition, ' ' insertion of Eqs.
(21) and (22) into (17) gives

5 p is diagonal in the representation determined by the
eigenstates P, of the commuting Hermitian operators
Hp and F„and we have

Wpg;= W,g;= (E; 3I;h—to)ter;,

where E; and 3f,k are the eigenvalues of Hp and F„
and W; is the eigenvalue of Wp, in the eigenstate f;.
Thus

g&(oesg+2~) t4. MULTIPLE QUANTUM TRANSITIONS IN THE
UNCERTAINTY WIDTH REGION a "isl=Q A;tAt;

(coat~2(o) (tott'~co)The time-independent transformed Hamiltonian 8'
[Eq. (11))can be split up into an unperturbed Hamil-
tonian 8'p and a perturbation V proportional to the
amplitude of the rotating magnetic field,

~i(~s&~) t

(26)

W= Wp+ V,

(to;tWto) (Cot&&to)

"E.U. Condon and G. Shortley, The Theory of Atomic Spectra
18 (Cambridge University Press, New York, 1953), p. 61.
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for M,=M,+2.The summation over I maybe restricted
to intermediate states for which M~=M;&1, as other-
wise A;~Ag; vanishes. The first term in the braces
exhibits a resonance at

co =& (E—E;)/2h. (27)

Similarly, making use of the solution developed in the
preceding section, we see that for given I and J,
multiple quantum transitions are possible of orders e= 2

up to n=2(I+J)=max(M; —M;) at resonance fre-
quencies given by the generalized Bohr condition

~=a (E;—E,)/nb. (28)

for M;=M, &m. The summations over intermediate
states l, m, , r can be restricted to states satisfying
M, =M,.&(n 1) M„=M;+(n —2), , M, =M, &1
as otherwise the product of matrix elements in the
numerator of (29) vanishes. Thus

where

p~"'(i~j)~ sin'[~on((u —(uo)t],
(co coo)

(30)

G)y=-
g l pe) ~ ~ ~ gl

A;p4i„
X (31)

[r );W(n —1)~][~„;+(n—2)~] (~„;+~)

and
ooo= Woo;j/n (32)

This result already accounts for the principal ob-
served characteristics of the multiple-quantum transi-
tions. Resonance occurs at the frequency given by the
generalized Bohr condition (28) and with an uncertainty
width of the order of 5~=2~/nt '4 It is clear t.hat the
intensity of the transition depends on the relative
locations of the intermediate states, falling ofI', as
observed by Kusch, 4 as the locations of the intermediate
states become much diferent from equally spaced
points between the terminal states of the transition.
Since the matrix elements in the numerator of (31) are
proportional to the amplitude 3C& of the rotating field,
the leading term of the transition probability for an
n-quantum transition goes as the (2n) th power of Kq.

'4 The narrowing of the uncertainty width with increasing e is
by no means in conflict with the energy-time uncertainty principle.
In fact, by (28) the uncertainty in the measured energy difference
is ek times larger than d,ao, so that b,E.t~h.

For well-separated resonance frequencies and for u in
the neighborhood of the value (28), we have

a, .(~)~( 1)~

A;)A, A„;[e'&"'+""&'—1]
(29)-" "( 't+ )[ +( —1) 1 "(.~+ )

i(jTa./gt —A . ei(cd~i ld) ta—+.A . ei(&Ah ~) &a

ida~/dt=A~, e'&"'"+""a;+'A~;e'&"' "&'a

ada /dt —A ei(ram~+co) .ta +A ei(ram/ w).ta . —
2p

~pa./gt —A . e&(& jt+w) ta +A ' ei((a)m+ra) ta

(33)

where the second subscript on the a' s, which would
denote the fixed initial state, is suppressed, and the
basis states P; are labeled as follows according to the

(F,Mr) quantum numbers of the states into which the

P; go over continuously as

3'.o—4: i—(1,1), t—(1,0), nt—(0,0), j—(1, —1).

In order to treat the two-quantum resonance transition
between states i and j, we take as initial condition
4'(0) =4" or

a;(0)=1, ag(0)=a~(0)=a, (0)=0. (34)

We are interested in the solution of (33) subject to the
initial condition (34) for ~ in the neighborhood of the
two-quantum resonance frequency

coo——(E;—8;)/2h. (35)
I

Integration by parts of the second equation of (33)
gives

Ag;
gi(roti+ot) ta.

0);i—CO M ')—CO

A~;, p da A~
8 i(o~ )i+ca) t ~i(cog)—ot) ta .j

dt ur;g+uit " 0

A
e~(~t; ~) t dt (36)

&jt+~" o

and similarly for a . We assume that the separations
of the resonance frequencies are large compared to the
widths of allowed transitions. To the lowest order in
the rotating-6. eld amplitude, we may neglect the inte-

S. EXTENSION TO HIGHER RADIO-FREQUENCY
FIELDS

As the rotating field amplitude K~ is increased, the
lowest nonvanishing order of time-dependent pertur-
bation theory ceases to be a good approximation and
higher order corrections must be taken into account.
The result that for well-separated resonance frequencies
a formula of the Rabi type holds [Eq. (53) below] was
first proved by Salwen' for multiple quantum transi-
tions in a rotating radio-frequency 6eld. We derive
this formula here under the same assumptions by a
simpler and more direct method which is also applicable
to oscillating and multiple-frequency fields.

We consider Grst the simplest case of coupled angular
momenta, I=J=—'„and afterwards treat the general
case of arbitrary I and J. In the I=J=—', case the
time-dependent Schrodinger equation becomes
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where

ida;/dt= ea, +Ve '"'a, ,

ida;/dt =ga, +t'ie+'"'a

0—2(u —(o .

(37)

(38)

grals involving da;/dt and da;/dh in (36). We may also
neglect the constant term, since on substitution of (36)
and the corresponding equation for u into the erst
and last equations of (33), it will be multiplied by
exponential factors which oscillate rapidly for co in the
neighborhood of (35). With these approximations we
obtain

equation becomes

ida;/dt= pi A;ie'&"" "&'ai (4g)

for i=1, 2, (2Ij1)X(2J+1) and where the —or
+ sign is to be taken according as M;=3IIi+1 or
3f;=j/I& —1, respectively. The summation can be re-
stricted to states satisfying M~ ——3f,&1 as otherwise
A;& vanishes. For an n-quantum transition i~j where
M;=BE;&n we obtain, integrating the preceding equa-
tions successively by parts and making the same
approximations as before,

and
2;p4i;

7—
;l — m

AaA~~
+

i+&'~q'm+~
where

ida, /dt= ea;+ye '"'aj,

ida, /dt =rta;+be+'"'a
(49)

&,u4 i; &~m~ tm
rt= +

~ti+~ ~tm+~
+

CO& ~
—

CO CO~~

0=~@co GO' '

A)2

(50)

we then have
acts. $ . espy&) 2 2) (40)

The diagonal coefficients e and q correspond to energy
level shifts due to virtual emission followed by absorp-
tion, and the opposite order, respectively. The oG-di-
agonal coefficients determine the peak intensity at low
fields and the resonance width at higher fields. In the
neighborhood of the resonance frequency (35) we can
make the approximation 5 y. In terms of

3ft M&—l. ~ ~
—~ Mi ilf a+1=Cg~i+(g

Ag' A g,
'

+
3fg=ilE& i &g&i

—~ '—Mi 3E&+i =~ji+'~

v=(—1)" '

A;p4i„A„;
X

[co4'+ (~ 1)s&X~ tT (e—2)~]. (co„,p~)

(51)

where
idb;/dh= be '""b idb;/dt=be+'"'b;,

O'=0 —e+ih. (42)

( 1)n—i
l ~PS '~ ~ ~ yl

A„g„
X

[co„+(n 1)~)—. (ram, &2a&) (a&i,+co)

where

b'(h) = (P+/d)e'" ' (P /d)e'""—-
»(t) = (p+p-/d~) e" '(e'""—e"-')

P~= ——,'0'&-', d, d = (0"+45')&.

(43)

(44)

This gives for the transition probability

The solution of (41) which satisfies the initial condition
(34) is

cv W (n —p)a) (o —[(e—p)/eg(g . .

—(oqz+ p(d. (52)

Equations (49) are of the form (37) already considered,
and we can again make the approximation y 5 in the
neighborhood of resonance since the A;; can be chosen
sym. metric and

$2

P (i~j)~4 sin2(2dt), —
d2

We can thus immediately apply the previous formula
(45) (45), where d is defined as before [Eq. (44), with &'

given by (42) and (50)j. Thus

or, if we recall the definitions of 0, 0', and d and put

Ni bq Mo= g (&djj+e I))
OPyP;, sin2 f,'e[((u —&oo)2+a)P]lt), (53)

O) —0
where

P(i &j ) —sin2[(cv —coo) +2co ji'2t. (47)—
ohio cot

(ui ——28/I, &oo
——a (1/n) ((u;,+e—e).
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