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Now e, -0 when k—+~, probably like V/k. To see this,
we must note that' gp Va when k~~, and the number
of q& which are appreciably different from zero is of the

quite likely that similar relationships can be found for
particles of higher spin.

APPENDIX A

Here, we will derive Eq. (3.8) from Eq. (3.7). Let
ei ——rtt+r —rtt. Then we can write Eq. (3.8) as

order of ku. Thus et is probably of the order of (Vrt/ka)
= V/k. It follows from Eq. (A.1) that 8&

—
s) i is small, of

the same order as c~. If we expand the exponentials and
drop the square terms, we get

s (rtl+'go+1)1

with an error of the order of e~' which is probably of the
order (V/k)'. The exact power of 1/k involved in the
error here is not entirely certain, but that is not essential
in our derivation, as the error in our cross-section
relationship is already uncertain for other reasons.

PH YSI CAL REVIEW VOLUME i04, NUMBER 3 NOVEM BER 1, 1956

Adiabatic Approximation for Scattering processes*f
DAVM M. CHASE)

Ios A/amos Scientifi Laboratory, University of California, res ,gtantos, Qero bt eaeco

(Received April 18, 1956)

The adiabatic approximation, frequently utilized in treating bound states of quantum-mechanica
systems, is shown to be applicable also to scattering processes in cases for which the number of excite
states of the target contributing significantly to the wave function is limited, and for which the time of
traversal of the scattered particle through the region of interaction is small compared with the period of the
target motion excitable in the collision. In this approximation, calculation of partial inelastic cross sections
is reduced to two steps: (1) determination of the elastic scattering amplitude for fixed target coordinates
and (2) subsequent evaluation of scalar products in the space of the target. The method is illustrated by
means of a simple one-dimensional example. Calculation of cross sections for nuclear rotational. excitation
by neutrons is formulated.

1. INTRODUCTION

HE use of the adiabatic approximation in treating
bound states of quantum-mechanical systems in

which the characteristic periods of certain diferent
degrees of. freedom are highly disparate has long been

well known. ' ' The adiabatic point of view has been

of great value in molecular physics' and, with the
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' M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).
The term "adiabatic approximation" is to be understood here as
that approximation which (1) regards certain relatively slowly-
varying coordinates of the system as hxed for the purpose of
dehning a "partial adiabatic wave function" for the remaining
degrees of freedom which depends parametrically upon the slowly-
varying coordinates, then (2) assumes as an approximate wave
function for the entire system (which may be called the "complete
adiabatic wave function") the product of the partial adiabatic
wave function and a function of the slowly-varying coordinates
only. The latter function is determined from the Schrodinger
equation for the system by application of the Ritz variational
principle with the parametric dependence of the partial adiabatic
wave function neglected. '

' David M. Chase (to be published). This paper will be referred
to hereafter as B.' See, for example, G. Herzberg, Spectra of Diatomic 3Eolecules
(D. Van Nostrand Company, Inc. , New York, 1950).

development of the collective or unified model, also in
nuclear physics. 4 It does not appear to be generally
known, however, that the adiabatic approximation is
applicable also to scattering processes in some cases
where the time required for the scattered particle to
cross the region of interacti. on is small compared with
the period of the target motion which may be excited
in the collision. The approximation reduces the problem
of obtaining the various partial cross sections for
inelastic and elastic scattering to one of finding the
elastic scattering amplitude as a function of the target
coordinates, regarded as 6xed, and subsequently evalu-
ating appropriate scalar products in the space of the
target.

In Sec. 2 below is given a formal derivation of the
adiabatic approximation for scattering amplitudes with
a discussion of its limitations. In Sec. 3, by way of
example, this method is formulated for a one-dimen-
sional scattering problem which will be treated. more
fully in a subsequent paper. ' In Sec. 4 the calculation
of cross sections for rotational excitation of strongly
deformed nuclei by neutron impact is formulated in the
adiabatic approximation.

4 A. Bohr, Kgl. Danske Videnskab. Selskab Mat. -fys. Medd. 26,
No. 14 (1952) and, with B.R. Mottelson, Kgl. Danske Videnskab.
Selskab Mat. -fys. Medd. 27, No. 16 (1953); D. L. Hill and J. A.
Wheeler, Phys. Rev. 89, 1102 (1953).
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2. DERIVATION OF THE ADIABATIC APPROXIMATION
FOR TRANSITION AMPLITUDES

The Hamiltonian for the system of incident particle
and target is assumed to be of the form

H = T~+ V (r,$)+7(Hr($), (1)

in which T„ is the kinetic energy operator for the rela-
tive motion of particle and target, V(r, )) is an inter-
action potential, and XH r($) is the target Hamiltonian,
with ) a perturbation parameter to be regarded as
small. s The relative coordinates of the particle and. the
internal coordinates of the target are denoted, respec-
tively, by rL=(r,e,&)$ and $. Hr defines a series of
eigenenergies and wave functions for the target:

Hr+r(&) = &r+r(&)~ (2)

where 1' is regarded as specifying the eigenvalues of a
complete set of commuting observables including Bz.

A partial adiabatic wave function corresponding to a
particle of energy h with incident wave vector k is
dedned by

LT +V(r k)1((&k'+'(r 5) = h~~'+'(r 5) (3)

just as in the case of a bound state except that here,
of course, 8 is independent of f The a. pproximate,
adiabatic wave function, &o,r(+)(r,P), for the process
initiated by the incident particle with wave vector k
in channel 1' is then given by

The asymptotic form of w), (+) defines a $-modulated
adiabatic elastic scatterir)g ar&)plitmde f(0,@,$):

~],(+) (r $) ~e("~yf(g y $)r-iei»

If P),r(+)(r,$) is the exact wave function for the
process, therefore satisfying Hf& r'+'= (h+&(er)Ar+',
then the amplitude for scattering from channel I' to 1",
fr r(0,4), is given exactly by'

fr r= (m/2~t't')Q~ r ~
V~Ar(+'), (5)

where Q),r(r, $)=—e'"'& ($r) in the r, P representation
and conservation of energy requires h'= 6+X(er—er ).
The corresponding differential cross section is then

(E&r r=&r &r '~ fr r(&,4) ~
(E&,

where ki and ki are the channel wave numbers denoted
also by k and k'.

If one sets

fr r(&)y)= (A r'I Vl&or+)+Oi(&)
2mb'

(10)

~ (ter *(5)
27rI)2

«e '""V(r,&)~~(+) (r,g) +r(&)+Oi(&()

The inhomogeneous source function which constitutes
the right member of Eq. (7) will be designated by
U),r(r, g). Since the 4r(P) form a complete set of func-
tions with respect to $, tIi&,r(+& can be expanded as

&) r+ (r,$)=Jr Brr (r)+r ($), (8)

in which an index k on Brr is suppressed. Substitution
of (8) and the additional expansions

V(r.f)@r ($)=Jr ~ &r r (r)+r ($),
&) r(r, $)=Jr Nrr (r)+r ($),

into Eq. (7) and use of (1) and (2) yields the following
set of coupled differential equations for the Bii .

[6+7 (~r—er )—T,)Brr (r)—gr (tr r (r)Brr (r) =Nrr (r). (9)

Equations (9) show clearly that the Brr are of order
zero in ). It does not follow, however, that Ai, i'+' is of
order zero, because the sum in (8) contains an infinite
number of terms. In fact, if it is necessary to include in
that sum all component states up to some I" for which
hei divers from hei by a fixed energy, sensibly inde-
pendent of X, then the number of terms in the sum will
be of order &( ', and the correction term &(h),r(+) in (6)
of order ) '. In this event the true values of the quantities
in which we are interested will not, as X—+0, approach
the corresponding values calculated from the adiabatic
wave function x~i t+). However, there do exist problems
such that the number of terms which need be included
in (8) as &i—+0 is not the number falling within a fixed
energy interval, but rather some fixed, finite number,
effectively independent of X. This will be the case, for
example, if the orbital angular momentum required to
excite a state I" increases indefinitely as the quantum
number of excitation (included in the specification I")
increases indefinitely (see Sec. 4). If consideration is
restricted to such cases, h~i&+' can be regarded as of
order 70. From (5) and (6) one then obtains

(+)—
&(~ r

(+)+&(Q~r(+) (6)

then the correction h~i &+& satisfies the equation

(8+'her —H) h),r + =H r (w&, +%r)—w),'+'Hr@r. (7)

5 In the present derivation the incident particle is considered
to possess no internal degrees of freedom and in particular, for
simplicity, no spin.

'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1953).

at

where J'd$ denotes a scalar product in the space of the
coordinates $ and O(X) a quantity of the order of X.
The adiabatic approximation consists in neglecting the
term Og(X) in (11).

In the passage from (10) to (11) kr and kr, which
differ by O(X), have been set equal in the first term;
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hence a requirement for validity of the approximation
is that

X(er —er)
(Ak)R= &1,

Do(kr +kr)R
(12)

where Do h'/——2mR' and R is an effective radius of the
region of interaction. This condition, for processes in-
volving exchange of only a small number of quanta
with the target, is equivalent to the condition that the
average level spacing of the target be much less than
the single-particle width at the average (of incident and
emergent) particle energy or, classically stated, that the
period of the target motion be much greater than the
time required for the particle to cross the region of
interaction at its average outside velocity. %hen
kr R«1, a more stringent requirement than (12),
namely,

(Zk)R X(er —er)

3. FORMULATION FOR ONE-DIMENSIONAL MODEL
FOR SCATTERING OF NUCLEONS BY A

NUCLEAR WALL

For the purpose of fixing ideas, the adiabatic formu-
lation will be given here for a simple idealized example,
even though the restriction on the sum in (8) required
for validity of the approximation is unjustified in the
example to be considered. The present problem will be
studied in another context in B.

The one-dimensional system of interacting "nucleon"
and dynamic "nuclear" wall is defined as follows.
A particle is scattered by a potential well whose wall
is variable in position and bound by a quantum-
mechanical harmonic-oscillator potential. The degrees

krIR Do(kr~+kr)R ' kr R

must be satisfied for the approximation to be valid.
Precisely at threshold (kr R=O), therefore, the approxi-
mation fails; in particular, if some kind of average of
kr and kr is used in calculating f(e,&,$), then the cross
section calculated from (11) does not vanish as it
should when kr R~. That calculated from (10) Lwith
omission of Oi(X)), however, does vanish as kr R—4,
provided that the true kr is used in g~.r .

In certain problems may occur resonances due to the
particle-target coupling and corresponding to temporary
capture of the particle into a quasi-bound. state by the
target. Such resonances evidently will not be given by
the adiabatic method, and to the extent that these
resonances remain important for small X the condition
on the number of terms which must be retained in the
sum in (8), a condition for validity of the adiabatic
approximation, is necessarily violated; a resonance
through an intermediate state i:n which the particle is
captured into a quasi-bound state of (negative) par-
ticle-energy ~—8, say, can appear only via terms I"
in (8) for which X(er —er) & 8+8, an energy difference
independent of 'A.

of freedom are the position coordinate, r, of the par-
ticle and the "deformation" coordinate, u, of the wall,
defined by R=Ro(1+n), where R is the position coordi-
nate of the wall and Ro its equilibrium value in the
absence of interaction. For simplicity the nucleonic
potential is taken to be —Vo for r&R and zero for
r&R. An infinite wall is supposed to be placed at r=0,
so that the wave function vanishes there and need be
defined only for r& 0. The Hamiltonian is written

H=2'.+V(r, )+Hp(n),

~P
25$8t'

k k'
wi, i+'(r, n) =&2—e'r~ cos'KR+

K E2
sin'XR

~
sinKr

where

=V2e*'r sin(kr+i),

pk
l.=t.(n) = —kR+tan-'~ —tanKR ~,

&E

R=R(n) =Ro(1+n),

and K is the inside wave number: K'= k+( Vo/D)o
with Do=A'/2mRo', w~i+' being normalized to one par-
ticle per unit distance in r. It is the phase shift f' rather
than the energy b which depends on e for adiabatic
wave functions in the particle continuum. For r&R,
xI,&(+' may also be written

x~, i+' (r,n) =q4, (r,n)+&2e'ri & sing(n) e'~'h (n)

where Pi, ~(r,n) =&2 sinkr hi(n), the incident wave. The
limit in which we are interested may be expressed in
terms of parameters of the wall Hamiltonian: ~—+0,

8
Hp(n) = —— +~n',

28' Bn2 2

~
Bo(1+ai

V(r,n) = —Vo 5(r—p)dp,
0

where m and 8 are, respectively, the mass of the particle
and the product of the mass of the wall by Ro', and C is
the stiRness constant for the wall vibration. The normal-
ized harmonic-oscillator eigenfunctions of H~ are de-
noted by hi(n) and the corresponding eigenvalues by
ei ——(t+-,')hei (t=0, 1, 2, ), where oi= (C/d)l. Thus
the h, (n) are to be identified with the 4'r(P) of Sec. 2.
The adiabatic wave function xi„&+i(r,n) for the process
initiated by the particle with energy 8 incident on the
wall in state t may be written explicitly as

x.«+i (r,-)=~.i+i (;-)h (-),
with zo&(+', the partial adiabatic wave function, given by
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8=)i i8p, C=)tCo, Ao&='AAo&o, the dp, Co, Ao&p, being fixed
and finite. The zero-point oscillation amplitude of the
wall, (Ace/2C), remains constant during the limiting
process.

Corresponding to Eq. (11), the adiabatic amplitude
for the process t~t' is

goo

fe )=2 dnhe *{cr)e'&& & sini'(n)hi(n). (15)

In terms of f«, the probability for the process (number
of transitions t~t per unit time —'. number of particles
incident per unit time) is sr, i——l fi i~ . /If 8'& sint' is
expanded to first degree in n, the result for m« is
identical with that based on a first-order expansion of
the original interaction (13),

"0
8 (r p) dp —VpRpiri—l (r—Ep), (16)

when the second term in (16) is treated to 6rst order in

a distorted-wave Born approximation and k' is set
equal to k.f

Numerical calculations of the probabilities x«by
another method (to be given in 3) show that resonance
structure associated. with formation of quasi-bound
intermediate states dominates the energy dependence
of these quantities, except when the coupling is very
weak and the resonances consequently very narrow.
Furthermore, there appears no reason to believe that
the results calculated from the adiabatic approximation
(15) are more nearly correct than those obtained from
a simple distorted-wave Born approximation. As already
stated, therefore, the above formulation for this example
is intended only to illustrate the concepts of the
adiabatic method.

4. FORMULATION FOR NUCLEAR ROTATIONAL
EXCITATION BY NEUTRON SCATTERING

It is reasonable to apply the adiabatic treatment to
the inelastic scattering of neutrons with excitation of
rotational levels in strongly deformed target nuclei.
This process is visualized as occurring by way of the
interaction of the neutrons with the deformed potential
well presented by such nuclei accoi'ding to the unified

model. ' The adiabatic formulation and a brief discussion

of this problem will be given here.
The target nucleus is regarded as describable by the

usual strong-coupling wave function of the unified
model' and is assumed to be axially symmetric. It is
assumed that the coupling of the incident particle with
the intrinsic modes of excitation of the target at
moderate energies may be neglected: only the collective
rotational excitations are considered. Then, apart from
symmetrization, the target wave function is just
D jsx{8c), 8; being the Euler angles of the principal
axes of the nucleus relative to space-Axed axes. The
Dr&krrc{8;) are therefore to be identified with the 4'r($)
of Sec. 2. The adiabatic elastic scattering amplitude,

f{8,@,8;), that appears in Eq. (11) is the amplitude for
scattering by the deformed potential well (perhaps
complex) with orientation 8; relative to the direction of
the incident beam. '

An incident wave e'k' can be written in terms of
coordinates (r,8',P') measured relative to the principal
axes as

'"D'-(8)j (k )I'.(8',~'),
Ok

where

a&
—2~$(2)+ 1))il Di, (8 ) =8-&(m8s+m'es&Di, (8.)

and use is made of the relation

l

V-(8,~) = 2 D'- (8')I'- (8',~').
kg=i

(17)

Correspondingly, outside the maximum radius of inter-
action the adiabatic wave function for the scattered
particle may be written

tgk&+&(r, 8;)=Q Q 8'k"t'aiD'ok(8t)gi(ks')
l=0 k=l

idik—(8i)hi&'&(kr) jP&k(8',y'), (1g)

where h~~') is an ONtgoilg spherical Hankel function.
The orientation-dependent coefFicients dik(8t) are ob-
tained from the solution of the elastic scattering
problem most naturally in the form

dlk (81) 2 A ik D ok (8l)
&'=lkl

(19)

The A p,
' depend only upon the incident energy and

the form and spatial shape of the potential well. They
vanish when l—/' is odd. These important coefFicients

may be calculated by integrating through the region
of interaction the set of coupled diGerential equations
for the radial components in the expansion of the wave
function in terms of spherical harmonics relative to the
nuclear axes. From (19) one can rewrite (18):

wk&+&(r8~)=p p p 8'kee[ai8„.j,(kr}
l 0 k=l l'~JkJ

—iA „'hi&'& (kr) )D'pk {8i)Vik {8',@').

Transforming back to space-Axed axes by the relation
inverse to (17), one then obtains for the scattering
amplitude

oo l l oo

f{8,8, ~ 8)= k'Z-2 -Z-
& &'-lkl

xi-'A ik'8' k*(8t)D'pk(8 ) V& (8,4)8-'~'.

r Because of the assumed axial symmetry f(8&8;)=f(8,8i, p gs), —
where (8,,8,,8,)= (g,y,&f ) in the notation, for example, of H. Gold-
stein, Classical Meckassics (Addison-Wesley Press, Cambridge,
1950). (8&, in particular, is the angle between the symmetry axis
and the direction Of the incident bema. )
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The amplitude (11) for the transition I, M—+I', M'
within a rotational band characterized by a projection
E of angular momentum along the nuclear symmetry
axis becomes

f r sr;rsr(g, rts) = k—(2I'+1)'(2I+1)'
)I g I+)I

l ~l~ 2lf( k=$ I=lIt—$ l l=lIcl

Xi-t'(2Ly1)-r(I'i'M' M M'~—IM)

X (IVKki I, K+k) (I/MOi IM)

X(I/ KkiL, K+k)At s! Yt, tr tr (8,$), (20)

where (abner
~
cy) denotes a Clebsch-Gordan coeKcient

[(abnP
~
abc&) in the notation of Condon and Shortley].

In obtaining (20), the integration formula~

D sttr*(gt)D bnrar(gt)D asks(gg) singrdgsdgs

2 (27I.)2

(ll~strtlrtt2
~
LM) (lrlskrks

~
I.K)

2L+1

was used. Finally, the differential cross section for the
process I~I' with an unpolarized beam is

I l~

d~xrr(8)=(2Iy1) ' Q
M I M' Ii

X
~ f r tr', rtr(8A) I

'dQ. (21)

Equations (20) and (21) express the desired cross
sections directly and algebraically in terms of the
elastic scattering coefficients A ~ ~'.

One will expect that the lowest few rotationally
excited states all contribute significantly to the wave
function for the scattering, due to the relatively strong
coupling between the rotational motion and the incident
wave for the large deformations envisaged. However,
one will also expect that the contributions tail oG
rapidly with increasing spin (and hence excitation)
when the corresponding lowest requisite neutron orbital
angular momentum is such that the classically com-
puted distance of nearest approach at the energy in
question is approximately equal to the (maximum)
nuclear radius. Further, the lower rotational levels are
relatively closely spaced. These circumstances, in accord
with the discussion of Sec. 2, indicate the adequacy and,
suggest the appropriateness of the adiabatic approxi-

'K. P. Wigner, Grmppentheorie Nnd ihre Anmendung usaf die
Qttarttelmeehattttt der Atorrtspetttrett (Friedrich Vieweg and Son,
Braunschweig, 1931).

mation in this problem. Its advantage consists in the
greater simplicity of the sets of coupled diGerential
and algebraic equations which arise in the problem of
elastic scattering by a deformed well relative to those
which arise in the problem obtained without use of the
adiabatic approximation. In this latter (nonadiabatic)
formulation one must consider the nucleonic and rota-
tional motions simultaneously. A disadvantage of the
adiabatic approximation is that it cannot be carried
through in a representation in which the total angular
momentum and its s projection are diagonal; the
number of channels requiring separate treatment is
correspondingly larger.

In connection with the adiabatic approximation, one
may consider the semiclassical limit, in which the
parameters $ of Sec. 2, following classical equations of
motion, modulate the scattering amplitude f(8,&,$(t)).
Such a description may be appropriate when, in addition
to the conditions for validity of the adiabatic approxi-
mation, is satisfied also the condition that the motion
of the target be only negligibly aGected by the transition
induced by the scattering, a condition which requires,
in particular, that

~
er —er

~
((er (if er, ——0 for the lowest

level Fe). This modulation. is the same in principle as
that involved in the description of the Raman eGect at
the lowest level of approximation. ' There the amplitude,
f, of the scattered light depends upon the molecular
orientation, $; this orientation is calculated from the
classical equation of motion for the rotation. In the
present problem of neutron-induced nuclear rotational
Raman eGect, as it may be called, the expression given
for the partial cross sections in terms of Clebsch-Gordan
coefficients must likewise reduce in the semiclassical
limit to a simple form clearly related to the idea of
modulation. To eGect this reduction directly one must
derive a suitable limiting formula for the Clebsch-
Gordan coeKcients, an interesting project in itself.
However, one can by-pass this analysis and write
down the semiclassical result at once. For this purpose
one has only to Fourier analyze the scattering amplitude
with respect to the time-dependence of the angles that
specify the nuclear orientation.

A numerical calculation of neutron-induced nuclear
rotational excitation for targets of spin zero is now
being carried out in the nonadiabatic formulation with
cutoff at a 6nite maximum spin ("Tamm-Dancoff
approximation") by Dr. L. Wilets and the author.
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