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Possible Interference Phenomena between Parity Doublets*
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Possible interference phenomena between parity doublets are discussed. In particular, the decay particle
distributions of Z+ and A' produced in E +p capture and in x +p collision are analyzed. These distribu-
tions may have interference terms with odd parity. Experimental detection of such terms would constitute
an unambiguous proof of the existence of parity doublets. It is further pointed out that such interference
terms have a rather interesting time dependence.

~ '0 explain the apparent equality of masses of
r+(=Ks+)—and 8+(=Ks+) it—has been proposed'

that there is a symmetry of all strong interactions
called parity conjugation. All strange particles with odd
strangeness would then exist as parity doublets, i.e.,
two states of opposite parity.

We wish to point out in this note that for parity
doublets with extremely close mass values (e.g. , if case
8 of reference I prevails) there are possible experi-
ments to determine unambiguously the parity doublet
structure through the observation of interference phe-
nomena between the two parities. These interferences
characteristically produce in the observed quantities
terms that have an odd parity. In Secs. I, II, and III,
one such possible experiment —the E capture in
hydrogen —is analyzed in detail. In Sec. IV a discussion
of the general description of a beam of particles with a
parity doublet structure is given. The remaining two
sections, V and VI, are concerned with the production
of such a beam and the angular distributions in its
decay. In particular, the distribution of the decay pion
of a hyperon produced in. a collision between pions and
nucleons is discussed in some detail (cases 8 and C
of Sec. VI).

Irt this Note pari ty is assumed to be absolutely cortserved

The assumption of parity nonconservation in weak
interactions has been discussed elsewhere. ' It leads to
angular distributions qualitatively different from those
discussed in this note. A summary of these diGerences is
given in the appendix. 4-:=a4-:(&i)—V-:(&s) (4)

which has been observed in emulsions and in a bubble
chamber. (Entirely similar considerations can also be
applied to the Z+ and A' produced. ) We want to discuss
the distribution of the decay process with respect to the
angle 0 between the direction of motion of the Z and
that of the decay neutron in the rest system of the Z .
This distribution has been discussed by Treiman. '

We shall show that with the existence of parity
doublet states for the 2, odd powers of cosa may ap-
pear in this distribution as a result of interference be-
tween the two states of the parity doublet: Z& and Z& .

To simplify the discussion let us first assume that
the spin of the 2 is —,'. Also assume for the time being
that the incoming E is a particle of definite parity,
say 8 . Take the s axis to be parallel to the direction of
motion of Z, and resolve all angular momenta along
the s axis. The Z travelling along the s axis can have
an angular momentum m=+tsor m= ——', along the
s axis. It is clear that there is no interference between
these two states of different m. Each of them, however,
is a mixture of Zi and Zs . The wave function

gati

for
Z with m=-', at the time that it is produced (defined
to be t= 0) can be written as4

4".=alt'(&i)+ i':(&s)

By a reQection with respect to a plane containing the
s axis, one obtains the wave function P 1 for the pro
diced 2 with m= —~, at t=0:

The minus sign comes from the fact that the Z1 and
Z~ have opposite parities. At time t after the produc-
tion of the Z, the wave functions of ZI and Z2 ac-
quire, respectively, the factors exp( ——,'Xtt —imit) and

exp( —s)tet —inst), where Xi ', Xs ' are the lifetimes of
the ZI and Z2, and m1 and m2 are their masses. Thus if

5

I.et us consider the production and the subsequent
decay of a Z in the capture of E by protons at rest,

(2)

ork supported in part by the U S Atomic Energy Com- the decay occurs at time t, the wave function for the
mission.
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decay neutrori is are four processes:
ZI +Ir+,

(1) f cos8
0:(~I)~A (l) I ) 0:(&s)~B«)I

&Oi sin8e+tt')
and

8 +p~
Zs +Ir+,

(10)

(11)

(Oy sin8e 'tt)
0-:(~ )~A(&) I I, 0-;@)~B(~)(

&1) (—cos8 )
Z;+Ir+,

+p
ZI +Ir+.

(10')

(11')

where

and
A (f) —A e

—ittttt —ixtt

B(tI)—B e ittttt —txtt— (6)

faA+bB cos8)

k bB sin8ett'
(7a)

and for m — 2 ~

Here 0 and q are the spherical coordinates of the neu-
tron. Its wave function is, therefore, for m=-,':

lt- =a4",(~2)+b4-:(&I)

4- =a4-:(&s)—4-:(&I)

(3')

I

The processes (10) and (11) were studied in the above
discussion. Process (10') is related to process (10) by
the operation of parity conjugation CI. LWe adopt
the convention CI ~8 )= [r ) and Cp[r )= [8 ), and
similarly for ZI and Z&.) The two processes therefore
have equal amplitudes. The same holds true for (11')
and (11). The capture of r therefore produces the
parity-conjugate wave functions for Z at t=0; i.e.,
the parity-conjugate states of Eqs. (3) and (4):

( bB sin8e —'tt)

l aA+bB cos8 ) (7b)
If the original E particle is a coherent mixture of 8 and
v with amplitudes ng and n, , the wave functions for Z
become:

Squaring and adding, one obtains the angular distribu-
tion of the decay neutron. It is proportional to

W;(8) =f+g cos8,

f= [aA [+ [bB(,

g = 2 Ret aA b*B*j.

netP;+n, tP = (nea —n, b)IP i(ZI)
+ (—neb+n, a)IP;(Zs). (13)

In the subsequent decay process, Z& and Z& may inter-
fere (but not the m= tsand m= ——', states, as remarked
before). It is evident from (12) and (13) that a summa-
tion over no=&2' results in the cancellation of all
interference terms ega, between 0 and 7. The particles
8 and z therefore behave in this process always as
i rI,cohererlt states.

From (3') and (4') the angular distribution W(8) for
the case of r capture can be readily written down.
One then obtains for the general. case of the capture of
a coherent mixture of 8 and 7 with amplitudes O.y

and e, the angular distribution:

where

and

The odd term cose gives rise to a forward-backward
asymmetry. Its presence would constitute an unambigu-
ous proof of the existence of the parity doublet struc-
ture of the Z .

From (6) one concludes that the even part of the
angular distribution varies with time as (constant) e ""
+(constant) e "". The odd part of the distribution
varieswithtimease '*I t+"tI' cosr (mt —ms)t'+constant].
The presence of similar mixed time constant terms has
been discussed by Treiman and Sachs' in another
connection.

The foregoing considerations should be applied only
if the mass difference ~mt —m&~ is less than the energy
uncertainty in the E +p system. For mass differences

~
mI —m&

~

& 10 ' ev this is certainly correct. In the case
of large mass differences, these two parity doublets
would undergo y transition; e.g. , ZI~Zs+y. Such cases
will not be discussed here.

(14)W;(8) = f+g cos8,

where

f= one[ (/aA f + (bB [ )+ [n [ (/bA (s+ /aB] ) (15)

g=2 Re(AB*(fnef'ah*+ /n, t'ba*)) (16)

where A and B are functions of time given by Eq. (6).
The constants

~
ne ~, ~

n, ~, a, b, A n, and Be that go into
formulas (14) and (15) all have direct physical mean-
ings. The constants Ao and Bo satisfy the following
conditions:

The actual situation is more involved because the
captured E may exist in two parities; i.e., one must
consider also the capture of r by p. Altogether there (17)

(18)[B,['=X„' S. B.Treiman and R. G. Sachs (to be published).

net&;+n, tP = (nea+n, b)IPi(ZI)+ (neb+n, a)IPi(Zs), (12)

(g)
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and.
I3e (X&q '

Ao &Xi~ ~1/2

Fels= 1+3 cos 8,

Fsis (9/——4) (5 cos'8
—2 cos'8+1)

where 8(Zs) and 8(Zi) are, respectively, the phase
shifts in the m +re system in the spin-parity states
resulting from the decay of Zs and Zi. Equations (17)
and (18) express the conservation of probability.
(Other decay modes of Z are neglected. ) Equation
(19) followsr from the principle of invariance under
time reversal.

By measuring the time and angular dependence of
W(8) one could thus, through Eqs. (14)—(19), in prin-
ciple not only establish the possible existence of the
parity doublet structure for Z, but possibly also its
spin' (see the next section), the lifetimes for Zi and Zs,
their mass difference, the mixing proportions ~ne~ and

~
ce,

~
of the captured E, and the magnitudes and rela-

tive phase of the amplitudes u and b of Z~ and Z2 pro-
duced in the capture of 8 .

It is seen that the functions GJ are large near 8=0 or m. ,
so that the asymmetry is large in the forward-backward
direction along the direction of motion of the Z.

IV.

In this section we shall discuss the general problem
of the polarization of a beam of particles of spin ~ with

a parity doublet structure. A wave function describing
such a particle has four components:

8)
8)
b)

.b).

The functions Fq (8) have been tabulated by Adair' and
Treiman. ' We tabulate them here, together with GJ (8),

(19)
Gy/2 =COSH,

63/2= 9 cos'8 —5 cos8,

Gals ——(9/4) (25 cos'8
—26 cos'8+5 cos8).

The only assumption made in deriving Eqs. (14)—
(16) is that the spin of the Z is 1s. and that the p and
the E are unpolarized. If the spin of the Z is not —,',
similar considerations lead to an angular distribution
containing a part odd in cos0, coming from the inter-
ference of Z~ and Z2. The experiment could thus still
serve to test the parity doublet structure of the Z,
but the angular dependence of the even and odd parts
would not in general be uniquely determined by the
spin of the Z.

If, however, the capture is from a state with total
angular momentum —,', the even and odd parts of the
angular distribution would be dependent only on the
spin J of the Z:

WJ (8) = fFg(8)+gGg(8). (2O)

The coeKcients f and g are the same as in (15) and

(16); their time dependence can be obtained by using

(6). The functions Fg and G~ are given by

Fq(8) = (I+is)'[Pg i(x)]s+sin'8t Pq i'(x)]', (21)

G~(8) = (I+a)'P~ ;(x)P~+.(*)-
—sin'8PJ 1'(x)Pg+i'(x), (x=cos8). (22)

Here Pi(x) is the Legendre polynomial:

Pi(x) = (x'—1)',
2'l t dx'

P,'(x) = (d/dx)Pi

7 The decay interactions is treated as a perturbation. See, e.g. ,
K. M. Watson, Phys. Rev. 95, 228 (1954};K. Aizu, Proceedings of
the International Conference on Theoretical Physics, Kyoto and
Tokyo, Japan, 1953 (Science Council of Japan, Tokyo, 1954).

The upper two components represent the amplitudes
of the odd-parity particle with up and down s-com-

ponent of spin, while the lower two components repre-
sent the amplitudes of the even-parity particle. The
density matrix' D for a coherent collection of such
particles is defined to be Z~t and is a 4X4 Hermitian
matrix (f means Hermitian conjugate). It is convenient
to write this matrix in the following form:

(23)

Z=Z),+i'2;,
'7) t=Z,—iZ, ,

(24)

where '7), and Z; are both 2X2 Hermitian matrices.
To characterize the matrices Di, Ds, Z„, and X); it is

most convenient to represent them by four real vectors
Pi, Ps, '$„,Q, , and four real intensities Ii, Is, ~„and g;:

Di= Pi e+Ii,
Ds= Ps tr+Is,
z,='$, e+g„.
X);=; o+g, ,

where 0 represents the Pauli spin matrices.

(25)

8 R. K. Adair, Phys, Rev. 100, j.540 (1955).' N. Mott and H. Massey, Theory of Atomic Collision (Oxford
University Press, Oxford, 1949), second edition, Chap. 4. For
other references, see e.g. , L. Wolfenstein, Annual Rehem of En-
clear Science (to he published).

where D~ and D2 are 2)&2 Hermitian matrices repre-
senting, respectively, the density matrices of the even
and the odd parity particles, and P is a 2X2 matrix
which characterizes the interference between the two
particles. The matrix Z will be called the mixed density
matrix. It can be split into the form
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These sixteen real parameters must satisfy the condi-
tion that D is a positive Hermitian matrix. This is
equivalent to the following conditions:

It&
I Ptl, Is&

I Psl, 2ItIs&33*+$ $*,
It(Is' —Ps')+Is(It' —Pts) & (It+Is) (33*+/.'@*)
—(P +P ) .(3%*+3%)—g(P —P ) . ('4&&%*) (26)

and detD~O. We have here used the notations,

3=3.+'3', %=%.+'0' (27)

The physical meanings of I& and I2 are quite clear:
they represent the intensities of these two kinds of
particles. The vectors Pr/Ir and Ps/Is are the usual
polarization vectors for the two particles. Q„and ;
characterize the polarization of the interference eGects
between the two particles.

Under a space inversion, one has

Dt~+D, ,

Ds~+Ds,
while

Thus Ir, Is are scalars; Pr, Ps are pseudovectors; 3„,3;
are pseudoscalars, and '$„g; are vectors.

In general, because of the decay of these parity
doublets and because of their possible mass difference
the density matrix would vary with time at a rate
given by

Dt(t) =Dr(0)e ""
Ds(t) =Ds(0)s—"",

and
g (]) g(0) s—$(xl+)Lg) g i(whr —ms) t—

where X&
' and X2 ' are, respectively, the lifetimes of

the two particles with opposite parities and m~ —m~ is
their mass diGerence. The state of a collection of such
particles is completely specified by its density matrix.
All probabilities that can be measured must be linearly
dependent on the matrix elements of the density matrix.

The foregoing discussions can be applied to particles
of any spin. In particular, for zero-spin particles, the
density matrix is specified by the (real) intensities It
and Is, and the mixed (complex) intensity 3,

matrix D(t) given by Eqs. (23)-(25). If in the decay
the momentum k of a single decay particle in the rest
system of the decaying particle is observed, the dis-
tribution of this momentum k is given by the proba-
bility function:

where
8"(k)=$+rf k,

$= (const) It+ (const) Is,

rf = (const)Q„+ (const)'g;.

(31)

The constants in these equations are real quantities
that may depend on k', but are independent of time.
This follows from the fact that S" is linear in the ele-
ments of D and is a scalar. "

The quantities It, Is, Q„, and , are functions of
time, as implied by (28). If „and Q; are not parallel,
the vector gI Lwhich describes the average direction of
kj will rotate with time with a frequency equal to
(1/2gr) (gggt —gggs) .

It may be instructive, as an example, to construct
explicitly the density matrix for the case of a Z pro-
duced in E +p capture discussed in Secs. I and II.
Consider the general case in which the incoming K is
a coherent mixture of 0 and v with amplitudes o.g and 0.„
respectively. By using Eqs. (3), (3'), (4), (4') one can
readily verify that at the time of production (i.e., 3 =0)
the density matrix D(0) is described by the parameters":

I,(O) =—I,(f) I, ,= l~glsl~lsy l~, Isla ls,

I,(o) = l~glslbls+ l~ lsl ~Is

3(o)=-,*l I'+-,-*ill',
Pr(0) = Rel ngo. ,*ab*j(kx/kx),

(32)

Ps(0) =ReLngn, eba*j(kx/kx),

Q (0) =
L I

rrg
I
'ah*+

I
o.„I

'bc*](kx/l'gx),

where kx is the momentum of the Z. At a later time
these parameters would vary with time according to
Eq. (28).

Assume that at time t the Z decays into gg+gr . One
can show that, by using Eqs. (5) and (6), the angular
distribution W (8) of the decay neutron is related linearly
to D(f) by

(It
D=

&3* I) (29)
( Ag*

W= Trace (Ag Bsgr e„)D(f)l I, (33)
&a,*e e„)

'

The inequalities

It&0, Is&0, and IsIs& I3I' (30)

are equivalent to the condition that D is positive.
Just as before, It and Is are scalars, 3 is a (complex)
pseudoscalar.

We shall now consider the decay of a spin-~~ particle
with a parity doublet structure described by the density

where Ag and Bg are defined in Eq. (6) and e is a unit
vector along the direction of motion of the neutron.
This gives the angular distribution (14) derived previ-

' By the same reasoning, one can show that in a similar case
involving the decay of a spin-0 particle with a parity doublet
structure the corresponding distribution function is of the form:
W(k)=nIr+PIg, where Ir, Ig are defined by Eci. (29). Here a and
P are functions of k~.

"It is of interest to notice that under an inversion, O.g
—+ntt

while n, -+—a,. Therefore, Q is a (complex) vector while Pr and
Pg are (real) pseudovectors. Similarly, Q is a (complex) pseudo-
scalar while Ir and Ig are (real) scalars.
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ously. It is of the general form (31) as expected. In
this case '$„and Q; are both parallel to the direction
of motion of the Z . The asymmetry is thus at all
times a forward-backward asymmetry.

fD(t),Cpji p 0——

Thus, D(t) is given by

(34)

The K+ beam is therefore an incoherent mixture of even

and odd parity states w-ith intensities that decrease as
simp/e exponentiais: le "" and Ie ~", where Xi ' and
P2 ' are the lifetimes of these two parity states.

B. The same consideration can be applied to a beam
of hyperons, e.g., Ao, produced in

A+8-+A'+ others. (35)

Assume that the A' has spin 2. After summation over
the states of the "other" particles the parameters de-

TABLE I. Symmetry and possible asymmetries in the angular
distribution of the decay pion from Z+ or A.0.

VI.

The density matrix of a particle produced in the
strong interaction between pions and nucleons must
display certain symmetries resulting from the invari-
ance of strong interactions under parity conjugation
C~ and under space rotations and inversion. We dis-
cuss here a few special cases:

A. In the collision of two nucleons or a nucleon and
a pion:

A+ 8~K++others,

consider the E+ beam produced in a particular direc-
tion. Assume the E+ to have spin zero. After summation
over the states of the "other" particles the density
matrix D(t) of K+, defined by Eq. (29), cannot have
mixed intensities. This follows from the fact that the
mixed intensity ~ is a pseudoscalar. It therefore cannot
be formed out of the two observed momenta in the
process, the incoming momentum, and the momentum
of E+. Furthermore, the invariance of the production
process under C~ requires that at the time of produc-
tion (/=0)

W(k.)=$+g k.. (31)

The direction g is thus the average direction of k . If
the distribution (31) is indeed experimentally found
with a nonvanishing g, one would have a proof of the
existence of a parity doublet structure for h.'.

The exact direction of q in the production plane de-
pends on the detailed dynamics of the production proc-
ess. It is in general a function of the production angle
and energy of the h.' beam. This makes it quite dificult
(at least at the present time) to check experimentally
the validity of Eq. (31).It should be remarked that the
direction of p is determined by the strengths of the
various angular momentum states participating in the
production process. E.g. , in the reaction

~++n~h'+K+, . (37)

if the initial state has a dednite total angular momentum
J and a definite parity and if the spins of E+ and A.' are
0 and ~, then one can show that at the time of pro-
duction (3=0)

and

V.=li(k~/I k~ I),
Q=O,

fined in Eq. (25) must satisfy" the following conditions
at the time of production (t=0):

I1=I2,
Pi ——P2 ——(constant) (k; X4)

0, (36)

Q;=0,
@,= (constant) k; +(constant) kq.

Here k; and k+ are, respectively, the momenta of the
incoming particle and the A in the center-of-mass
system of the process (35). At a later time they vary
in accordance with Eq. (28). Thus the ordinary po-
larization vectors Pi and P2 remain perpendicular to
the production plane, while the mixed polarization
vector Q, and '@, are always parallel to each other and
remain in a fixed direction g in the production plane
independent of the time.

The direction q has a direct physical meaning in the
decay of a cV. According to Eq. (31), the momentum k
of the decay pion in the rest system of A.' has an angular
distribution:

Z+, Ao produced in

(K +P) at rest Forward-backward
asymmetry b

Forward-backward
symmetry b

Assumption (1): Assumption (2):
Parity doublet with small Parity nonconservation

mass difference in decay Thus
Pi= P2=g;=0.

vg/gkii/( hg(.

(38)

(pion+nucleon) or Asym, with respect to p.& Sym. with respect to p.&

(nucleon+nucleon) Up-down symmetry d Up-down asymmetryd

a See reference 2.
b Forward and backward refer to directions parallel and antiparallel to

the direction of motion of the hyperon.
o p is a rotation through 180 around the normal to the production plane.

(See reference 2.)
~ Up and down here refer to the production plane. The direction of

kin )&khyperon (right-handed convention) is defined to be up. (See refer-
ence 2.)

The asymmetry in the distribution (31) for the decay
pion is in this case a forward-backward asymmetry
with respect to the direction of motion of the A.'.

~~ All of these conditions except g;=0, I1——I2, P1——P2 follow from
the transformation properties of I, P, etc. , under rotation and
inversion. The conditions Q;=0, II——I2, P1——P2 follow from the
fact that in this case the density matrix commutes with Cz at the
time of production.
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TAnzz II. Properties of'p and sI defined in Zq. (A.1).

Z+, h.o produced in

(E +P) at rest

(pion+nucleon)
or

(nucleon+ nucleon)

Assumption (1):
Parity doublet with small

mass difference

1. yt//khyperon
Z. 'g=(const)e ""+(const)e ""

yt oo exp L
——,

' (li&+Xo) t —o (m& —mo) t7

g =gI&in+g2'hyperon
2. time dependence of ( and g same

as above
2L

3. o g1= Z A cosncx

2L-1
Z B„cos"o.

nW

RL

P= Z C cos"o.
nM

Assumption (2):
Parity nonconservation

in decay

i. g=O
Z. ' e= (const)e

1 ~ rt =ito(kinX ksyporon)
2. pand g both 0-e "'

2I -1
3. 'g0 ——Z A 'cos"n

n 0

2L
Z C 'cos"a

0

& In the case of parity doublets, ) I ', X2 1 and mI, m2 refer to the lifetimes and masses of the two doublets. In the case of parity nonconservation &-~ is
the lifetime of the hyperon.

kin and khyperon are the momenta of the incoming particle and the outgoing hyperon measured in the c.m. system of the production process.
e a denotes the angle between kin and hhyperon, and I is the maximum orbital angular momentum of the outgoing hyPeron in the Production Process.

C. Finally, let us study cases where one does not The generalization of the considerations of these
sum over all the states of the other particles. To be three sections to particles of higher spin than ~ is

specific, we consider the reaction straightforward but complicated.

rr++ rt~A'+ y+) (39) APPENDIX

where the E meson is observed to be 7+—=E 3+. The
density matrix of the A in this case does not commute"
with C~ at the time of production. Assume the A.' spin
to be ~2. Invariance with respect to space rotation and
inversion requires that:

(i) 3=o,
(ii) Pr and Ps are both parallel to k;„)&kii,

and

(iii) g„and Q; must both lie in the plane of produc-
tion (i.e., the plane containing k; and kq). Unlike
the previous case (8), g„and Q; are now, in general,
not parallel to each other. This has some curious
consequences as remarked before in Sec. V. If at time t,
Ae decays into P+or, the angular distribution W of the
decay pion would still be given by (31).The direction
of yt now is a.time dependent mixture of Q„and Q; and
would rotate in the production plane with the fre-
quency (1/2or) (ttt& —ttt&).

W(k )=P+yt k, (A.1)

where g and sI are independent of k . They have quali-
tatively diferent properties under diGerent assumptions
which are summarized in Table II.

We summarize in Table I the various symmetries
and possible asymmetries in the angular distribution of
the decay pion from Z, Z+, or A.' produced in various
processes under two diferent assumptions: (1) Each
of these hyperons can exist in two degenerate states of
opposite parities, with parity rigorously conserved in
their decays. (2) Each of these hyperons can exist only
in a single state of a definite parity (defined by the
strong interactions). Parity is not conserved' in the
decay processes.

If the hyperon has spin -'„ the distribution of the
decay pion momentum k in the rest system of the
hyperon is given by the weight function Lsee Eq. (31)
and reference 2):


