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some support to Shoenberg's conclusion that the de-
generacy temperature is very small.

The simplest two-band model will not account for all
of the observed piezoresistance eGects. For if we assume
that the extrema of both bands are on the k, axis, the
energy surfaces are ellipsoids of revolution. about this
axis. It can be shown' that for such a model the shear
coeflicient combination s (pte+2p4t) vanishes. Actually,
in bismuth this coeKcient has the fairly large
value 13.2X10 ohm-cm/kgcm ', corresponding to a
dimensionless elastoresistance coefficient of about 30.
In order to explain this coeKcient, it is necessary to
assume that at least one of the bands has extrema
which are not on the k, axis and which, consequently,
are at least three in number and are transformed into
one another by the symmetry operations of the crystal.

%e can thus conclude that a multivalley model of
bismuth which explains the piezoresistance eGects must
have the following features: (1) current carriers from
two bands, and (2) one band with a multiplicity of
extrema. The magnitude of the effects suggests that the

energy difference between the extrema of the two bands
is small. A model of bismuth in which the conduction
band has three minima and the valence band has one
extremum on the k, axis has been proposed to explain
the de Haas-van Alphen' ' and galvanomagnetic
eGects. '4'

More extensive experimental study of the piezo-
resistance eGects would be of value in the working out
of further details of the energy bands of bismuth.
Measurements which completely determine the piezo-
resistance tensor would allow the elastoresistance
coeKcients to be calculated and various deformation
potential constants to be found. It is difficult to deter-
mine parameters of the individual bands from measure-
ments on pure bismuth alone, because the effects are
due to both holes and electrons. However, by doping
with elements from other columns of the periodic table,
materials with conduction by predominantly one type
of carrier can be prepared, and piezoresistance studies
on such materials would be sensitive to details of the
structure of the conduction and valence bands.
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The conduction-electron magnetic susceptibility of graphite has been calculated by using the Wallace
two-dimensional band structure. The energy levels induced by the magnetic held are calculated by the
method of Luttinger and Kohn, taking into account the large (in this case) eiiects of band-to-band transitions
which are not included in the Landau-Peierls treatment. Agreement with the susceptibility observed at
high temperatures is obtained with a choice of 2.6 ev for the resonance-integral parameter p0. The details
of the de Haas-van Alphen e8ect cannot be reproduced, indicating that a more complicated band structure
is needed to account for the low-temperature experiments.

1. INTRODUCTION

'HE diamagnetic susceptibility of pure crystalline
graphite is large and anisotropic. The diGerence

between the susceptibility parallel to the principal axis
and that perpendicular to the principal axis is —21.5
X10 ' emu/g at room temperature, and the magnitude
increases with decreasing temperature. ' The suscepti-
bility perpendicular to the principal axis' is about equal
to the free-atom susceptibility of —0.5X10 ' emu/g.

Ganguli and Krishnan' showed that the temperature
dependence of the anisotropic part of the susceptibility
is the same as that of a two-dimensional free-electron
gas with certain characteristics. Their model has been
extended by Mrozowski. ' However, such a model is
not in accord with recent calculations of the electron

N. Ganguli and K. S. Krishnan. , Proc. Roy. Soc. (London)
A117, 168 (1941).' K. S. Krishnan, Nature 133, 174 (1934).' S. Mrozowski, Phys. Rev. 85, 609 (1952).

energy band structure of graphite. ' ' Further, the work
of Hove' and the present paper demonstrate that the
temperature dependence of the susceptibility is princi-
pally due to the Fermi-Dirac statistics.

Several calculations of the susceptibility' ' have been
made on the Wallace model, using the Landau-Peierls"
formula for the diamagnetic susceptibility of conduction
electrons. The most detailed calculation is that by
Hove. He found that though the correct dependences
of the susceptibility upon temperature and impurity
concentration were obtained, the magnitude of the

' P. R. Wallace, Phys. Rev. 71, 622 (1947).' C. A. Coulson and R. Taylor, Proc. Phys. Soc. (London)
A65, 815 (1952).' D. F. Johnston, Proc. Roy. Soc. (London) A227, 349 (l955).

~ J. K. Hove, Phys. Rev. 100, 645 (1955).' R. Smoluchowski, Revs. Modern Phys. 25, 178 (1953).
9 W. P. Eatherly, see discussion following reference 8."R.Peierls, Z. Physik 80, 763 (1933). See also A. H. Wilson,

Proc. Cambridge Phil. Soc. 49, 292 (1953),
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theoretical susceptibility was about forty times too
small. Adams" has critized the use of the Landau-
Peierls formula in cases where two or more bands are
near in energy at the same point in Jt-space (as is the
case in graphite). In such cases, he argued, the band-to-
band transitions caused by the magnetic 6eld may
make large contributions to the susceptibility.

In this paper the energy levels in the presence of a
magnetic field are calculated for the simpler (two-
dimensional) Wallace band structure; using the formal-
ism of Luttinger and Kohn, " which is especially de-
signed to treat the effects of perturbations on degenerate
and nearly-degenerate bands. The susceptibility is
obtained by calculating the free energy and taking the
appropriate derivative. It will be seen that the correct
order of magnitude and temperature dependence are
obtained for high temperatures.

A = srx '= (st+-', ) (2sre/hc)H. (2.2)

"E.N. Adams II, Phys. Rev. 89, 633 (1953)."J.M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
"L. Onsager, Phil. Mag. 43, 1006 (1952). Note that our

definition of k space differs from his by a factor 221-.

2. MAGNETIC ENERGY LEVELS

The reduced Brillouin zone for graphite (see Fig. 1)
is in the form of a hexagonal pill-box of height 2sr/cr„
where c~ is the spacing between identical layer planes.
In Wallace's "two-dimensional" tight-binding calcu-
lation, 4 the valence and conduction bands are degenerate
along the six vertical edges of the zone (HH and H'H').
The energy is independent of the vertical coordinate
and, near a zone edge, is proportional to the distance
from the zone edge. Following Wallace, we write

e(K) = &sV3ypQK= + JtvlC, (2.1)

where e is the energy (relative to the energy at the
zone edge), tt is the distance in k space from the zone

edge, u is the spacing between identical atoms in a
layer plane, and &0 is a parameter which is estimated to
be between 0.9 and 3 ev. Expression (2.1) neglects
higher order terms in a~, but we are concerned only
with the band structure near the zone edge where aK

is small. The plus sign refers to the conduction band
and the minus sign refers to the valence band. In the
far right side of (2.1), we have used the fact that the
velocity is given by the derivative of the energy with
respect to kk, so that v is the common magnitude of the
velocities of the carriers near the zone edge.

It is interesting to find the energy spectrum in the
presence of a magnetic 6eld, using semiclassical theory.
The semiclassical spectrum differs slightly from the
exact spectrum, and the diGerence is important for the
magnetic susceptibility. In the presence of a magnetic
field (H) parallel to the principal axis, the carriers
precess around the zone edge in circular orbits. Accord-
ing to onsager, " the area of an orbit in k space is
quantized by

FiG. 1. The reduced Brillouin zone for graphite. Equivalent
points in k space are labeled with the same letter. Note that the
origin of coordinates illustrated is not at the origin of h space (0).

Using the abbreviation s= eH/Itc, we may then write

x„=[(2rt+1)s)', s„=&he[(2rt+1)sj&. (2.3)

The same result can also be derived by a physical
argument similar to one given for free electrons by
Mott and Jones." As the behavior in k space is the
same as for a two-dimensional free electron gas, the
counting of states is also the same. Thus the degener-
acies of the levels are all equal and proportional to the
magnetic 6eld strength.

We now proceed to the exact calculation of the energy
spectrum, using the method of Luttinger and Kohn.
The details of their method can be found in the original
paper (hereafter referred to as LK). In brief their
procedure is: the total Hamiltonian is written down in
terms of base functions which are the unperturbed
solutions at a degeneracy point in k space times plane-
wave factors expt t'x r); the coupling between the
degenerate states and all others is removed to first
order by a canonical transformation, yielding a set of
coupled differential equations. The equations which we
use are a slightly generalized version of Eq. (IV.13)
of LK""
Qt L(x —5, isB/Bx„)D,;.at'(tttt hatt, ssit/Btt„)—

+ (Jt/ttt) (tt 5, is8/Btt—„)P;;.)8;.(tt) = eB;(tt). (2.4)

The quantity e is an energy eigenvalue in the 6eld,
Bt(tt) is the wave function in k space, j and j refer to
the degenerate states, Ptt is the rrth Cartesian compo-
nent of a momentum matrix element, and the numbers
D;; tt )defined by Eq. (IV.9) in LK) are analogous to
e6ective-mass components. The repeated indices e and
P are summed over x, y, s. The Bt(tt) are required by
the boundary conditions to be periodic functions of k

"N. F. Mott and H. Jones, The Theory of the Propertses of
Metals and Alloys (Oxford University Press, London, 1936),p. 202.

"The equations have been rewritten so as to correct the error
in (IV.13) due to violation of the commutation rules (see the
discussion in reference 16). The sign difference is due to the fact
that LK write e for the electron charge and we write j,t —e,
Note also that we do not use the convention 5=1."J.M. Luttinger, Phys. Rev. 102, 1030 (1956).
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I"ro. 2. A graphite layer plane.

(with the periodicity of the reciprocal lattice). However,
as we will be interested in wave functions which are
highly localized in the Brillouin zone, we may substitute
the requirement that the B,(ir) vanish for large values
of a. The generalization of Eq. (IV.13) to cover the
case in which there are matrix elements of momentum
between the degenerate states is easily performed but
is important for the present work.

For the purpose of calculating the low-field suscepti-
bility, all terms in the energy up to order s' are potenti-
ally important. In this regard (2.4) is incomplete as
it is only correct to second order in the quantities
(K 8, s$8/Bit„) For .example, in the extreme tight
binding limit, the atomic diamagnetism comes from a
term which is second order in s and second order in ~,
or fourth order in (a 8, i$8—/Ba„) Howev. er, we shall
neglect the effects of terms not included in (2.4) on
the grounds that such eBects are probably of the order
of the atomic susceptibility, which is small compared
to the total susceptibility. We shall also neglect the
terms involving D;; t'. There are two kinds of terms
involved, those due to the part of D;; t' which is
symmetric with respect to interchange of n and P, and
those due to the antisymmetric part. We assume that
the symmetric part of D;; & is zero, as otherwise there
would be terms in the unperturbed energy proportional
to ~'. The antisymmetric part gives a term linear in s
which, in the extreme tight binding limit, reduces to
the coupling between the atomic orbital angular Ino-

mentum and the magnetic field."We shall neglect the
contribution of this term to the susceptibility as it is
zero for free carbon atoms, and it seems plausible that
for the solid it should not exceed the atomic suscepti-
bility. Finally, we neglect the Pauli spin paramagnetism.
In addition to the fact that the neglected parts of the
susceptibility are judged to be small, they should also
be very nearly isotropic. We compare the calculated
susceptibility with tlie anisotropy 1n the Observed

J
d'rX~ (r)p,Xs(r) = ——;ipp, (2.5)

where X~ and Xit are the orbitals (which we have
chosen to be real). The momentum matrix elements
between the normalized Bloch wave functions are now
given by

pts*= (1 spp s—~') ( —
s&pp) =— spp, —

p,ps=( ,'V3 tp ,'-VS t)p—( —sipp)=—p—p

(2.6a)

(2.6b)

The diagonal matrix elements vanish. Slonczewski' has
shown by use of group theory that the form (2.6) for
the matrix elements holds in general for the two-
dimensional lattice. Thus we shall make use of the
form of (2.6), but not depend upon Eq. (2.5). In fact,
we shall replace pp by mv, for then Eq. (2.4) yields the
result (2.1) for the unperturbed energies.

When we use the momentum matrix elements calcu-
lated above and neglect the D,; &, the system of Kqs.
(2.4) becomes

kv( zK~ $8/BKs+ Ks)Bs = eBt&

kv(sK~+Sci/BKp+Ky)B1 eB2 ~

(2.7a)

(2.7b)

'~ J. C. Slonczewski, Ph. D. thesis, Rutgers University, 1955
(unpublished). The work aiso contains an estimate of po using
the tight-binding method but taking into account all overlap
integrals. The result corresponds to a yo of 2.3 ev.

susceptibility so that the error due to the neglected
terms should be quite small.

In. order to use Eq. (2.4) to find the energy spectrum,
we must know the momentum matrix elements p;;
We shall calculate the matrix elements directly from
Wallace's wave functions, though the form of the result
obtained is more general. The structure of a single layer
plane of graphite is shown in Fig. 2. Note that there
are two atoms (A and B) in the basic unit cell. Wallace' s
tight-binding wave functions for the valence and con-
duction bands are linear combinations of Bloch waves
made up of 2p, orbitals on A and B atoms. Because of
the degeneracy, any linear combination of the two
Bloch waves corresponding to a point on the edge of
the zone is an eigenfunction. We choose a wave function
Pt based solely on A atoms and another Ps based solely
on 8 atoms. The coeKcients of the orbitals in the
Bloch sums (for a specific choice of phases) are indicated
in Fig. 2, where pp=expL2vi/3). The case illustrated
corresponds to a k vector on an IIH edge.

We assume that the momentum matrix element
between atomic orbitals based on different atoms
vanishes unless the atoms are nearest neighbors in the
same plane. By symmetry, the only nonzero component
of such a matrix element is that directed along the line
joining the two atoms. %e write the matrix element
between the A and 8 atoms labeled in Fig. 2 as
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The solution to the set of equations is

B~ 2——~u„( K/sl) expL i—K,K„/s)B(K, —K,'), (2.8a)

Bp——a2—'*I„ t(KK/s ) expL —$KgKv/sfb(Ke K~ )) (2.8b)

e= a hv(2tes)'= +v(ls) &. (2.8c)

3. CALCULATION OF THE SUSCEPTIBILITY

Before making a rigorous calculation of the suscepti-
bility, we shall present a rough calculation which gives
some insight into the origin of the large diamagnetism.
The reason for the diamagnetism is qualitatively this":
when the magnetic field is turned on, groups of states,
which were originally distributed in energy, coalesce to

"F.Seitz, The ModerN Theory of SoHd's (McGraw-Hill Book
Company, Inc., ¹wYork, 1940), p. 584.

The N„are normalized harmonic oscillator wave func-
tions and n takes on all positive integer values. For
the case of m=0, I ~ is interpreted to be zero, and
the normalizing factor 2 ' on 82 should be removed.
The solutions can easily be checked by noting that the
left sides of (2.7a) and (2.7b) contain the raising and
lowering operators, respectively. The apparent lack of
symmetry between A and 8 atoms is due to the choice
of phase and choice of gauge for the vector potential.
The momentum matrix for states belonging to points
on the H'H' edge is the complex conjugate of the one
for HH. This fact causes the solutions for the H'H'
edge to be asymmetric in the opposite sense from (2.8),
so that there is symmetry in the complete set of
solutions. Note that the exact energy spectrum is the
same as the semiclassical spectrum except that te+-,'
is replaced by e.

The degeneracies of the levels can be found in the
following manner. The Fourier transforms of the 8's
are factors in the direct-space wave function. The
complex exponential factor in 8 causes the center of
the direct-space wave function to be at y'=K, '/s.
Limiting y' to be within a normalization volume then
limits ~,', and the counting of states proceeds exactly
as in the free-electron case."The number of states per
volume associated with a single value of e and a single
choice of sign in (2.8) is given by

w=8(2w) '(2w/cz, )(2vrs) =qs. (2.9)

The factor 8 in (2.9) is the product of three factors 2,
representing: (1) the spin degeneracy, (2) the site
degeneracy (the Brillouin zone can be cut up and
reassembled so there are two lines of degeneracy, HH
and H'H'), and (3) the twofold degeneracy due to the
stacking of two kinds of planes in the graphite lattice
(Wallace uses a double-height Brillouin zone instead).
It is important to note that there are the same number
of states belonging to e=0 as to any other single value
of m and single choice of sign. We may think of the
@=0 levels as being shared between the valence and
conduction bands.

the original average energy of the group. In the absence
of the field the lower energy states in each group were
preferentially occupied, so that creating the field raises
the total energy of the electrons. Thus the system is
diamagnetic. We now calculate the contribution to the
susceptibility due to the condensation into the m=0
level. The total energy in the absence of the field of the
group of electrons which condense to the level is given
by

gp(e) f(e) e«, (3 1)

As the total energy of the group in the magnetic 6eld
is zero, the increase in energy is —E. Neglecting the
diGerence between the free energy and the total energy,
the contribution to the susceptibility is given by
(BE/BH)/H, yielding

xp——(qv'/8) (e/hc)' sech'Q'/2ET)/ET, (3.3)

where K is Boltzmann's constant and f is the energy
of the Fermi level. Similar calculations show that the
contribution to the susceptibility from the other levels
is negligible. The quantity yo is about three times
larger than the susceptibility calculated below, the
overestimate being due to the neglect of the increase
in entropy with magnetic field. As might be expected,
the same type of calculation using the semiclassical
spectrum yields a negligible susceptibility. The existence
of the m=0 levels which are shared by the bands
depends upon the matrix elements connecting bands.
Thus all the conduction electron diamagnetism of the
two-dimensional model is due to band-to-band transi-
tions. The reason that the diamagnetism is large is
that fast-moving electrons are involved (i.e., yp is large),
a situation which is analogous to the existence of a
small effective mass.

We now proceed to the more rigorous calculation
using the following expression (derived in Appendix A)
for the Helmholtz free energy:

P=Eg+Ep+ de&(e) ( Bf/Be)— (3 4)

The energy ~ is measured from the degeneracy point
(zone edge) and the limits of integration are from —~
to ~. The quantity E is the excess of the number of
electrons per volume over the number which would
just 611 the valence bands. Thus X could have either

where X= v(s/2)& and gp
——2qe/v' is the density of states

in energy in the absence of the field and f is the Fermi-
Dirac distribution function. For small magnetic fields
the level splitting is small compared to the thermal
energy. In that case we have

~X

E~4) (qe/v') e'(Bf/Be), p ,'qv='s'——(B—f/Be), p (3.=2).
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the magnetic 6eld is

A(I~ X—i) =
~ de ( B—f/Be), (3 1o)

where
lb= $+-s'q I'e

I
s/v'+0. 209qvsl. (3.11)

FrG. 3. A plot of the functions p and P eersls the energy. Note
that P is magni6ed by a factor 100 relative to p.

sign and is equal to zero for pure graphite. The quantity
Ep is the total energy, in the presence of a magnetic
6eld, that the completely 6lled valence bands would
have. The quantity P(e), which is related to what the
free energy at absolute zero would be if e were the
Fermi energy, is given by

@(e)= ' dk(x —e)g(x).
Jp

(3.5)

The quantity g (e) is the density of states in the presence
of the field, and may be expressed as

The quantities P and f are sketched in Fig. 3. Note
that f oscillates about zero, with an amplitude which
decreases with increasing e.

The calculation of the susceptibility in the high-
temperature —low-6eld limit is now easily carried out.
Speci6cally, we assume that the level splitting is small
compared to the thermal energy, ET)&vs&. The deriva-
tive of the Fermi function then does not vary much
over one oscillation of f. As the average value of f is
negligible except for the first few oscillations, we may
evaluate Bf/Be at e=0 and factor it out of the integral.
The integral over lb then yields

A(F cVl )=0—088qv's s.ech'(l/2ET)/4ET. (3.12)

Now f is actually a function of s, obtained by mini-
mizing F with respect to l . However the explicit
derivative of l with respect to s does not contribute to
the susceptibility and as we are interested in the low
field limit, we may use the zero-field value for i. The
susceptibility per unit volume is obtained from g= —(BF/BH)/H, so that

g= —0.044gv'(e/jtc)' sech'g'/2ET)/ET. (3.13)

Converting to the susceptibility per gram, and substi-
tuting from (2.8) and (2.7c) for q and t, we have

g(z) =ps P BLz—p(n/in') (elis)lg, (3 6) g = —0.044 (4/orcus) s (yea)'(e/hc)'

Xsech'(f/2ET)/pET, (3.14)

where 8 is the Dirac delta function. Let m be the largest
integer such that m ~& (e/o)'/s. Then p is

P=qs P v(es)' (m+ —',)—I el
n=1

(3.7)

We perform the sum using Euler's formula, "obtaining

m 2 1 1
P it*——m'*+—m'+=sit &—0.209.

3 2 24
(3.8)

For large values of e, we have

p= ——', q I
e

I
s/o' —0.209gos'. (3.9)

"See, for example, J.Pierpont, Ftsttctsols of a Comp/ee Varsable
(Ginn and Company, Boston, 1914), p. 320.

The first term in (3.9) is the value of P if there were no
magnetic field. The second term, when integrated in
(3.4), cancels the part of Es which depends upon the
magnetic 6eld strength. Thus the interesting quantity
to us is the difference between (3.7) and (3.9). We may
write that the change in the quantity F Xi due to—

where p=2.22 g/cm' is the density of graphite. Putting
a= 2.46 A and cl, =6.74 A, we obtain

g = —0.0014syss sech'Q'/2ET)/T emu/g, (3.15)

where yp is in ev and T in degrees Kelvin. The experi-
mentally determined anisotropic susceptibility for pure
material and at high temperatures is' —0.010/T emu/g.
The experimental data can be reproduced by making a
choice of pp=2. 6 ev, which is within the range of
theoretical estimates)

When the energy level spacing is larger than the
thermal energy, (3.10) gives the de Haas-van Alphen
efFect. Instead of making a complete calculation here,
we shall show by simple arguments that the two-
dimensional model cannot 6t the observed data""
The frequency of oscillation of the susceptibility is the
frequency with which magnetic energy levels are swept
through the Fermi surface. The condition that at
absolute zero the electrons just occupy the first m levels
is A = (is+ ,)res The va-lues .of H for which this situation

~ D. Shoenberg, Trans. Roy. Soc. (London) 245, 1 (1952).
s' T. G. Berlinconrt and M. C. Steele, Phys. Rev. 98, 956 (1955).
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occurs are given by 1/H„=(ri+ ', )-qe/kcN .Thus the
susceptibility is periodic in 1/H with a period of
qe/AcN=2e/heirs'=ev'/hei's, where ir» stands for the
values of ~ at the Fermi surface. The result is a special
case of the general formula derived by Onsager. "

If one uses the value of yo estimated above, and the
experimental period of 2.15X10 ' gauss ', if I

becomes
0.065 ev. Thus f/2ET is so large that the zero-field
susceptibility is negligible. Also, as the average value
of f is zero for large e, it follows that the susceptibility
oscillates about zero. This prediction disagrees with
the experimentally observed average of about —30
)&10 ' emu/g.

We may estimate the amplitude of oscillation of the
susceptibility by taking the maximum derivative of f
with respect to s at e=f'. Such an estimate neglects
temperature damping of the oscillations, which sup-
presses the oscillations at fields below which the level
splitting is equal to the thermal energy. The maximum
derivative is approximately qi', which yields an esti-
mate of 0.01yo'ME/f for the amplitude. The integer
M= (|'/i)'/s is the index of the maximum, counting
from the high 6eld end (the estimate does not hold
for M(1).Thus at 10 kilogauss (M~2) the theoretical
amplitude would be about 100&(10 ' emu/g, which is
a factor 50 too large. However, any deviation of the
energy surfaces from the cylindrical form would tend
to reduce the amplitude, " as the total susceptibility
would be a sum of contributions with a distribution of
frequencies. It is interesting to note that Shoenberg's
analysis of his data" disclosed another weaker contri-
bution with a period of ~ of that of the main contribu-
tion.

'.4. SUMMARY AND CONCLUSIONS

Perhaps the chief accomplishment of the present
paper is the demonstration that the large magnitude
of the susceptibility of graphite can be accounted for,
at least as well as other electronic properties, by the
current type of band structure calculations. Though
we have calculated for the simplest model, all models
have in common the degeneracy of bands at the zone
edge; and it is this feature which causes the large
diamagnetism. The two-dimensional model seems ade-
quate at high temperatures, giving the correct depend-
ence on temperature and impurity concentration, "'
as well as the right magnitude. Presumably, use of a
more sophisticated model would give a satisfactory
account of the low-temperat. ure data.

The results should also be of interest in regard to
the general theory of conduction-electron diamagnet-
ism."""We have found a sizable susceptibility for a
case in which the Landau-Peierls formula give zero

"P.G. Harper, Proc. Phys. Soc. (London) A68, 879 (1955).

t the energy surfaces (2.1) have zero Gaussian curva-
ture], thus justifying the ideas of Adams. "Note that,
as should be expected, the Landau-Peierls result holds
when the Fermi level is several XT away from the
degeneracy point; for then x—0.

The author is indebted to Dr. D. B. Bowen and Dr.
J. L. Powell for helpful conversations on the subject of
this paper.

where

F N, f.= —dey, (e) ( af/rle—), (A.2)

4r(e) =—II
~ Z

dk) dyg(y) = dx(x —e)g(x). (A.3)
6(0) 0 6(o)

The second form in (A.3) has been obtained by another
partial integration. From the second form it can be
seen that Pz (e) represents the value that the quantity
F Nrt wou—ld have at absolute zero if e=i At finit. e
temperature, F Nri is th—en given by the sum of a
distribution of its possible zero-temperature values,
weighted by the function —r)f/r)e Equation. (A.2) has
been used by several authors. "" Sondheimer and
Wilson" have shown that pr is the Laplace transform
of the classical partition function.

We wish to obtain a form for F which involves
integrals from the zero of energy (chosen at the zone
edge) instead of integrals from e(0). Thus we write

where
yr(e) =y(e)+So—eNo,

po

Eo —— dxg(a) z,
~ e(0)

po

No= d&g(&)
~(o)

(A.4)

(A.5)

(A.6)

and p is given by (3.5). We also write Nr=N+No.
Then substitution of (A.4) into (A.3) gives (3.4), with
the additional assumption that t' e(0)))ET.—

s' M. Blackman, Proc. Roy. Soc. (London) A166, 1 (1938).
~ D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939).
~5 E.H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)

A210, 173 (1951).

APPENDIX A

The free energy per volume of a system of electrons
is given by

F N rf—= 'ET —dog 1n(1+exp/(f —e)/ET1), (A.1)
~ 6(0)

where Sz is the total number of electrons per unit
volume and e(0) is the energy of the lowest state.
Two partial integrations yield


