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It is pointed out that the piezoresistance phenomena in bismuth are consistent with some of the multi-
valley models of bismuth which have been proposed by various authors, and that certain features of these

models are in fact implied by the piezoresistance data.

HE electronic properties of bismuth resemble in
many ways those of the homopolar semicon-
ductors. These properties have been interpreted—¢ in
terms of multivalley” models of the type used for semi-
conductors, with the top of the valence band being
slightly higher in energy than the bottom of the
conduction band.

We have recently calculated® the elastoresistance
effects for a multivalley semiconductor with an axis
of rotational symmetry, and in this note we apply the
results of this calculation to the piezoresistance meas-
urements of Allen.?

We have not reached any conclusions which have not
already been suggested by others on the basis of other
effects. However, since study of the magnetic effects
has not yet established a complete picture of the energy
bands, it is of interest to describe the conditions which
a multivalley model of the energy bands must satisfy
in order to explain the piezoresistance effects.

Cookson!® has given the piezoresistance tensor for a
crystal with the symmetry of bismuth in a coordinate
system in which the z axis is the trigonal axis and the
x axis is the twofold axis. The tensor has eight inde-
pendent components, four linear combinations of which
can be determined from the results of Allen. These are,’
in Cookson’s notation,

913+P31+2p44= —9-3,
2 (p1at2p4)= 132,

in units of 10~ ohm-cm/ (kg/cm?).

The tensor R;;, which relates the change of resistance
to the strain, has a form like that of the piezoresistance
tensor. By combining the piezoresistance coefficients of
Allen with the measurements of resistivity at high
pressures! and the elastic constant determination’® of
Bridgman, it is possible to calculate Rg;. If one calls the
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resistivity in the z direction 7, the dimensionless ratio
R33/ Yo= 20.

This value 20 for Rjs/rs, while not as large as some
of the dimensionless elastoresistance coefficients found
by Smith®*® for germanium and silicon, is considerably
larger than one would expect for a simple model of a
metal, and suggests a multivalley semiconductor. How-
ever, even in a multivalley semiconductor Rj3/7; is not
expected to be large if there is only one band. The
reason is that a (2z) component of strain does not
destroy any of the crystal symmetry, and cannot
therefore remove the energy degeneracy between valleys
of the band. It is consequently necessary to assume that
carriers from at least two bands make contributions to
the electrical conductivity, and that the piezoresistance
effect arises from a shift of the energy extrema of one
band with respect to another when the crystal is
strained.

From Allen’s data we can estimate the rate of change
of the energy overlap with strain. The dependence of
the energy difference between the band extrema on the
strain tensor e has the form?

E= EO"I"EI (ezz—’_ eyy) +E2ezz-

E; and E, can only be found approximately because
their relation to the piezoresistance effect depends upon
the details of the model of the energy surfaces, the
scattering processes and the sample composition. If we
assume that the density of states is the same in both
bands, that the relaxation time is proportional to
(energy)—* in each band, and intrinsic material, we find
that the (33) component of the elastoresistance tensor
is:

1’2E2
25T (14-P0/2T) Jog (1 +eEo/2kT)'

In this model the Fermi level is $ E, above the bottom
of the conduction band, so that according to the result
of Shoenberg,® Eo/k=420°K. Using Shoenberg’s value
of Ey we find E;=3 ev, a value comparable to those
commonly found in semiconductors.** The value of E,
can also be estimated and appears to be somewhat
smaller in magnitude than E, and of opposite sign. The
reasonableness of these magnitudes of E; and E, lends
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some support to Shoenberg’s conclusion  that the de-
generacy temperature is very small.

The simplest two-band model will not account for all
of the observed piezoresistance effects. For if we assume
that the extrema of both bands are on the k, axis, the
energy surfaces are ellipsoids of revolution. about this
axis. It can be shown?® that for such a model the shear
coefficient combination 3 (p14+2p41) vanishes. Actually,
in bismuth this coefficient has the fairly large
value® 13.2X 10~ ohm-cm/kgem™2, corresponding to a
dimensionless elastoresistance coefficient of about 30.
In order to explain this coefficient, it is necessary to
assume that at least one of the bands has extrema
which are not on the k, axis and which, consequently,
are at least three in number and are transformed into
one another by the symmetry operations of the crystal.

We can thus conclude that a multivalley model of
bismuth which explains the piezoresistance effects must
have the following features: (1) current carriers from
two bands, and (2) one band with a multiplicity of
extrema. The magnitude of the effects suggests that the
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energy difference between the extrema of the two bands
is small. A model of bismuth in which the conduction
band has three minima and the valence band has one
extremum on the k, axis has been proposed to explain
the de Haas-van Alphen?=® and galvanomagnetic
effects.146

More extensive experimental study of the piezo-
resistance effects would be of value in the working out
of further details of the energy bands of bismuth.
Measurements which completely determine the piezo-
resistance tensor would allow the elastoresistance
coefficients to be calculated and various deformation
potential constants to be found. It is difficult to deter-
mine parameters of the individual bands from measure-
ments on pure bismuth alone, because the effects are
due to both holes and electrons. However, by doping
with elements from other columns of the periodic table,
materials with conduction by predominantly one type
of carrier can be prepared, and piezoresistance studies
on such materials would be sensitive to details of the
structure of the conduction and valence bands.
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The conduction-electron magnetic susceptibility of graphite has been calculated by using the Wallace
two-dimensional band structure. The energy levels induced by the magnetic field are calculated by the
method of Luttinger and Kohn, taking into account the large (in this case) effects of band-to-band transitions
which are not included in the Landau-Peierls treatment. Agreement with the susceptibility observed at
high temperatures is obtained with a choice of 2.6 ev for the resonance-integral parameter vo. The details
of the de Haas-van Alphen effect cannot be reproduced, indicating that a more complicated band structure
is needed to account for the low-temperature experiments.

1. INTRODUCTION

HE diamagnetic susceptibility of pure crystalline
graphite is large and anisotropic. The difference
between the susceptibility parallel to the principal axis
and that perpendicular to the principal axis is —21.5
X 10—% emu/g at room temperature, and the magnitude
increases with decreasing temperature.! The suscepti-
bility perpendicular to the principal axis? is about equal
to the free-atom susceptibility of —0.5X 10~ emu/g.
Ganguli and Krishnan! showed that the temperature
dependence of the anisotropic part of the susceptibility
is the same as that of a two-dimensional free-electron
gas with certain characteristics. Their model has been
extended by Mrozowski? However, such a model is
not in accord with recent calculations of the electron
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energy band structure of graphite.4—¢ Further, the work
of Hove” and the present paper demonstrate that the
temperature dependence of the susceptibility is princi-
pally due to the Fermi-Dirac statistics.

Several calculations of the susceptibility™® have been
made on the Wallace model, using the Landau-Peierls'
formula for the diamagnetic susceptibility of conduction
electrons. The most detailed calculation is that by
Hove. He found that though the correct dependences
of the susceptibility upon temperature and impurity
concentration were obtained, the magnitude of the
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