MAGNETIC DOMAINS

ized state by the alternating field technique. Figure
5(D) shows such an occurrence. Moreover, the film
can be carried through a step-by-step magnetization
reversal if the coercing field is controlled with extreme
care, and the change of the magnetization pattern pro-
ceeds in a fashion unlike any that we have seen
reported. This film, evaporated under the same field con-
ditions as the thicker specimens, retains the same longi-
tudinal anisotropy. However, in the reversal process, a
small island of altered magnetization edged by jagged
“grassy” walls first appears across the center area.
With increasing longitudinal field the irregular walls
move along the field direction toward the two edges of
the film. Figure 8 depicts four steps in this type of re-
versal. The poorer quality of the photographs results
from the fact that this film is semitransparent and re-
flections from the unmetalized surface of the glass
substrate are appreciable. There is also some evidence
to suggest that the dark and lighter regions in these
pictures may represent something other than strictly
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antiparallel directions of magnetization, but only photo-
graphs taken under controlled photometric conditions
and analyzed by quantitative photometric methods can
accurately decide this point. The observations further
showed that this type of magnetization reversal also
occurs in the 1500 A specimen but not in any of the
thicker ones, and thus may well be a characteristic
associated with small thickness.

It should be mentioned that the 10 000 A and 20 000
A films failed to show a domain structure. It is possible
that these two specimens exceed in thickness Kittel’s
critical value for this alloy, provided that there exists
a preferred direction of magnetization normal to the
film surface induced by stress or other causes. On the
other hand, investigation of evaporated films thinner
than 500 A becomes increasingly difficult by the re-
flection method. Observation of very thin specimens by
transmission appears promising, and we are at present
undertaking a study of the practicability of such a
technique.
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The lattice-scattering mobility of holes in germanium is calculated by using the transition probabilities
for scattering by acoustical and optical phonons derived in an earlier paper, in which both the rigid- and
deformable-ion models were used to determine the interaction between holes and the lattice. Coupled Boltz-
mann equations are considered, describing the distribution of carriers under the influence of an electric and
phonon field in the two valence bands of germanium, degenerate at 2=0. The results involve two previously
described constants C; and Cy which are treated as arbitrary parameters. Results are presented for several
sets of these parameters and also for values of the temperature ® =300°K and 500°K which might correspond
to the fundamental optical frequency of the germanium lattice. The curves, logu vs log T', closely resemble
straight lines over the lattice-scattering range. It is possible to find values of C, and Cj for both rigid- and
deformable-ion models which agree well with the observed mobility if ®=2300°K but not if ®=500°K. The
question as to whether these values of C; and Cj are correct is not considered in this paper.

1. INTRODUCTION

HE transition probabilities for scattering of holes

by acoustical and optical phonons in the two
germanium valence bands degenerate at k=0 have been
calculated in an earlier paper.! In this treatment, the
electron-phonon interaction Hamiltonian was seen to
be separable into two parts: the first arises from the
vibrations of the unit cell as a whole, and the second
from the relative motion of the two atoms in the unit
cell of the germanium lattice. The matrix elements for
scattering were expressible in terms of two constants,
C; and Cy, associated, respectively, with the two parts of

1 H. Ehrenreich and A. W. Overhauser, Phys. Rev. 104, 331
(1956) ; hereafter referred toas I.

the interaction Hamiltonian. The terms in C; describe
the interaction of holes with acoustical vibrations; the
terms in C4 describe the interaction with optical and
acoustical vibrations. The wave functions used to
calculate the matrix elements were determined from the
k-p and spin-orbit perturbations, the valence bands
near k=0 being described by spherical surfaces of con-
stant energy and a parabolic relationship between
energy and wave number, E,= (%/2m,)k?, where m,
is the cyclotron resonance effective mass corresponding
to one of the two degenerate bands.

For the terms in C; the scattering was treated using
both deformable and rigid-ion models. The transition
probabilities were seen to have a pronounced angular
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distribution for the scattering processes caused by ab-
sorption and emission of longitudinal and transverse
phonons. These angular distributions are quite differ-
ent for the two models. For the deformable-ion model,
the heavy holes are scattered predominantly in the
forward direction and the light holes in the backward
direction, whereas the opposite is true for the rigid-ion
model. In the former case, the scattering resulting from
transverse and longitudinal modes is about equally
important, in the latter case scattering by transverse
modes is less important. The angular distribution as-
sociated with the terms in Cy is simpler : the scattering is
symmetric about the angle 90°. This simplicity results
from the fact that an initial state along a [100] direc-
tion was assumed in calculating the matrix elements,
an approximation that could be circumvented in treating
the terms in C; by choosing the atomic cells spherical.
This approximation could not be used in calculating the
remaining terms since the constant C4 vanishes in this
approximation. The interference between the acoustical
terms in Cy and C4 was not considered.

In the present paper, the preceding results will be
used to calculate the mobility for a temperature range
extending roughly between 100°K and 300°K where
lattice scattering is the predominant scattering mech-
ansim. Section 2 will be concerned with the transport
calculations necessary to obtain the mobility. The re-
sults will be analyzed and discussed in Sec. 3.

2. TRANSPORT CALCULATIONS

The central problem of this section is the calculation
of the current density,

== (e/A)S f Vofu(k) ik, (1)

arising from carriers in both bands s=1,2 under -the
influence of the electric field § and the various kinds of
phonon scattering considered in the earlier paper. The
carriers have a velocity

v,= (gradi;E,)/%. (2)

Their distribution in %k space is described by the func-
tion fs(ks), which is obtained as a solution of the Boltz-
mann equation. From Eq. (1) the mobility can be com-
puted by use of the relationship

u=j/neé, (3)

where # is the density of current carriers.

Since in the present problem we are concerned with
two interacting bands, we shall have to treat two
coupled Boltzmann equations. Each equation states
that the total rate of change with respect to time of the
distribution function describing that band, due to the
applied electric field and phonon scattering for all
modes and polarizations, is zero.

Let (8 f5/0t),, L= (fs)s, £ be the rate of change of the
distribution of electrons in band s due to holes in this
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band, having wave number k,, being scattered into
some state £, in band 7, and in addition that due to
electrons in band 7, being scattered into the state k;
by a process of type » involving phonons having polar-
ization P, as defined by Eq. (4.34) of I. In addition,
define (f,)r as the rate of change of the distribution of
holes in band s produced by the applied field §. Then
the Boltzmann equation for band s can be written in
the form

Pt BT Y (=0 (s=1,2). ()

v=1 P r=l

We postulate a solution of the form
fs(kr)= f(E.)+[df(E,)/dE:]as(E,)cosb,, 5

which will be shown to satisfy Eq. (4) for the scattering
terms considered here. In Eq. (5), f° is the equilibrium
distribution describing the carriers when no external
field is applied, and 6, is the angle between the direction
of &, and the field. The equilibrium distribution is the
same in both bands. The current carriers obey Boltz-
mann statistics so that

JU(E)=be #IXT, (6)

b=4%*n,(z/2m,KT)* (s=1,2). O]

Here #, is the density of carriers in band s. Since & in
Eq. (6) must be the same for both bands, it follows that
n1/mit=mns/mo}. With this relationship and Eq. (4.20),
we can express b in terms of n=n:+n, and a=ms/m,
as follows:

where

b=4%n(x/2m. K T)}/ (1+a?). (8)

We suppose that the electric field is applied along the
z direction. Substitution of the group velocity (2) and
Eq. (5) into (1) yields

7=[2%ne/3r*m}(KT)%?(14+a)]
X stf Ee BIETq (E)AE. (9)
s Yy

The main part of the calculation will consist of deter-
mining the coefficients a,(E) from Eqgs. (4). If there
were but one band, a,(E) would be proportional to the
relaxation time 7 as can be shown by a comparison of
(5) with the solution of the Boltzmann equation in the
relaxation time approximation, which gives

7(E)= (m1/2E) a1 (E)/e8. (10)

‘We shall now turn to the problem of evaluating the
(fs)» +F. For this purpose, we use the polar coordinate
system of Fig. 1, and the relationship

(11)

In terms of this coordinate system, the density of final
states in a small region about &, is given by

pdE= (V/$7%)dk,' = — (Vim.k,' /852)dw do dE,

cosf,= cosfs cosB— sinf, sinB cose.

(12)
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where we have written x=cosB. An approximate
mathematical statement of the definition for (f,),,, is
obtained with the aid of the transition probabilities
defined by Eq. (4.34) of I:

27 +1
(f)u L= (21r/h)(Vm,kT’/87r3h2)f dd)f dx

X{ e (k)W (s, nt-1; r,m)+W,L (s, n—1;7,m) ]
—fs(k-?)[:WVP(r7 n+1 5 S;’”’)+WVP(T: n—1; s,n)]}. (13)

The approximation in Eq. (13) consists of having re-
placed factors (1—f;), giving the probability that a
given state is unoccupied, by unity. The final state &,/
can lie along all possible directions without violating
either of the principles of conservation of momentum or
energy, since for acoustical phonons of polarization P
we neglect the phonon energy in comparison to the
hole energy whereas for optical phonons %w is constant
and independent of g.

The specialization to specific vibrational modes
may be deferred if k,” is expressed in terms of 7w,
which at a later time can be set equal to zero for
acoustical modes and K © for optical modes, where © is
the temperature corresponding to the fundamental
optical frequency. For the transitions from k, to k,’ by
phonon absorption and from k,’ to k, by emission, we
have, from conservation of energy, that

k2= (my/ms) k2 (1+-70/E,). (14)

For the transition from k; to k,” by phonon emission
and k,’ to k; by absorption, on the other hand,

B,2= (my/mo) k2 (1—Tio/ Es). (15)

A given emission process, of course, can only take place
if the energy of the hole in the initial state exceeds the
phonon energy #iw.

Correspondingly, by use of Eq. (6), we may write (5)
in the form
fo(k,)=ex®IKD{ fo(E,)

+[df°(E,)/dE;Jas(EsFhw)cosh,}, (16)
where the upper and lower signs correspond to %, as
given by Egs. (14) and (15), respectively.

In order to treat all phonon scattering terms at
once, it is convenient to write the quantities ‘W,?
defined in Sec. 4 of the preceding paper in the form

W, (rn'; sn)= Qahd/Vimks)n'w, (r,5)GF (r,s). (17)
Comparison with Egs. (4.18), (4.40), and (4.37) shows
that
wiP(7,5)=C2K Tm.ks/dmupiohi’n

= (kse&/ms) (ms/my) (m./m1) (ur/up)*(81/2n),
wo (7,5) =Cm,ks/TK Ohipay?

= (hkseE/ms) (ms/my) (mr/m1)Be,
w3P (r,5) = C2K T'm.ks/dnh*aon

=5 (hke8/ms) (ms/ma) (mr/m1) (TA/ ©) B2/ 2m).

(18)
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Fic. 1. Polar coordinate system used in transport calculations.
The electric field is along the z direction; %k, and k, are wave
numbers of holes in bands s and » before and after scattering.

In these definitions, we have used the fact that n=n--1
for acoustical modes. In addition, we have taken the
opportunity to define the quantities 81, 82, and A which
will prove useful in the calculations to follow. The sub-
stitution of the preceding equations into (13) yields

(F)o 7= (mr/m)t (w,T/ 2) (4 1/ AES)

+1 2
X f 4587 (r,5) | n(1+-Tico/ By)} f dé
—1 0

X [ar(Es+Hw)cosh.— as(Es)coshs |
(1) (1 — o/ B} f i
X[a,(E;—Fiw)cost,—as(Es)cosds ] l . (19)

The integration over ¢ is readily performed with the
help of Eq. (11). With the notation

+1
R (s,0) = (ma/ma)} f 5GP (r,5)
—1

(20)
+1
S5 =mefmdt [ gr)n
we obtain -
(fo), L =w,P(r,5) (df°/dE,)cosh,
X{n(14+hw/E)} a,(Es+hw)RL (s,r)
—as(Es)SF(s,7) ]+ (n+1) (1 —hw/E,)}
X [ar (Es - hw)R,P (577) —as (ES)S,.P (S;r)]} . (21)

At this point, it becomes useful to distinguish between
the rigid-ion (RI) and deformable-ion (DI) models
for the terms »=1 and P= L where the two models give
different results in our treatment. In I, we introduced
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TABLE 1. Values of the integrals R,/F (s,7) and S,F (s,7).

RiE(1,1; 1) =—44/225

RiE(22: 1)=4/25

R¥(1.2; 1) =<4/25)aé[(7/3 —a)A1—ads].
RE(11: 0)=76/2

R%(2,2: 0 =—28/75

RiE(125 0)= (4/25)a9[(4a 8/3)4,—ads].
RIWD)=RT(2,2) =

R (122) = (4/25)d[ — l(a-l—l)Al-I-aAg]

W (s,7) = or v=23;rs=12; P=L,
SiE(1,1; 1)=164/225

SlL(22 1)=28/75

SIL(12 1)= (4/25)a9[7/3+(7/3—a)B1—aBg:l
S1%(1,1;5 0)=344/22

S;L(ZZ 0)=56/25

S;L(IZ 0)= (4/25)a§[32/3+(4a 8/3)B1—aBs].
ST(11)=S.T(2,2) =415

Si17(1,2)= (4/25)0:9[4/3 3 (e+1)By+aB;].
SeL(l 1)=S5:L(2,2)=%

SoF(1,2) =1ad.

Sof (5,7) =285 (s,7)

S3F (s,7) =4S (s7)-

a parameter n having values in the range 0<9<1
which distinguishes between the two models. In the
limits n=0 and 1, the results correspond to the RI and
DI models, respectively. The dependence on 7 will be
introduced explicitly by writing the quantities defined
by Eq. (20) as R/®(r,s;9) and S,P(r,s; 7). In con-
siderations involving the RI model, we shall take C,
to have the value given by Eq. (4.41) which is ad-
mittedly rough, but will serve to indicate the effects on
the mobility.

The results of evaluating Eq. (20) are given in Table
I. Some of these are most easily expressed in terms of
the integrals:

+1
A= f (1—22) (/) dw= (126 (3— 20+ 302)
+ (8?1 (1—a)*(1+40) log| (—1)/(e*+1)],
1
Apm f (1= )2 (/o) o= (3208)

X[(A—a)*(5+6a+5e?) log| (a?—1)/(e?+1)| 2)
" +at(14a) (10— 44a/3+106) ],
B,= f (1—a)o lda= (4a?)" (1 —a)?
. Xlog|(@=1)/(@+1)|+(1+a)/2,
B,= f (1—a®)2%2dx=20"%4,,
-1
where ¢ is defined by Eq. (4.25) of I. It is evident from

Eq. (20) that
R2(1,2)=aRF(2,1),
SF(1,2)=aS,F(2,1).
The explicit expressions of the (f.),,. for the various

» can now be obtained from Eq. (15). For acoustical
modes, corresponding to »=1and 3, Zw=0and n=n+41.
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Thus

(f 21,8 = (hke8/ms) (mr/ 'ml) (ms/ my)
X (ur/up)?B1(df°/dE;)cosh,

X [a’f (Es)RlP (S,f) —as (ES)SIP (S,?’):I, (23)
and
(fo)s. P = () (hke8/ms) (m,/my)
X (ms/m1) (T/ ©)BoA (df°/dE,)cosb,
Xas(E)SsP(s;r). (24)
In the case of the optical modes (»v=2),
(f3)2, = (hkseg/WS) (mr/'ml)
X (ms/m1)B2(df°/dE,)cosh (K@)/Es)
Xas(E)SE(s,r), (25)
where , Dy § -
o) = n(14+2) -+ (n4+1)(1—=x)* forx 26)

n(1+x)? for x>1.

It should be noted that the terms R,P(sy)(»=2,3)
vanish and thus do not appear in Eqgs. (24) and (25).
This comes about because the angular distributions
associated with the absolute squares of the matrix
elements for scattering are symmetric about 8=90°.
This circumstance simplifies our problem greatly, since
the terms @,(E.%#w), associated with optical modes,
which would ordinarily appear in the Boltzmann
equation are absent, and we avoid thereby having to
solve a functional equation.
Finally, the field term (f,)r is

(f)r=—(e&/n)(3f/0k.)
= (hkse8/ms) cosb,(df°/dE;). (27)
It is to be emphasized that the dependence on the
electric field 8 of Eqgs. (23)-(25) is a result of the
definition of B, and is purely fictitious. The reason for
using this notation becomes apparent when these ex-
pressions, together with (27) are substituted into the
Boltzmann equation and common nonzero terms are
canceled. The results of this operation are most simply
expressed in terms of the quantities

’Y=’ML/MT, 4= ®/T7 (28)

and
u(m)=—[R*(1,1;n)—S:%(1,1;9)]
—Y[R:"(1,159)—S:"(1,1;9)]
+a[SlL(1:2; 77)‘,’“72511'(172; 77):])
Qz(ﬂ)= _a2[R1L(272; ”)—SIL(272; 77):]
- = [RiT(2,2;m)—8:7(2,2;m)]
+[S15(1,2; 7)+42517 (1,25 9) ],
R =Ri=(1,2; n)+7y*Ri"(1,2; ),
81=[S5:%(1,1)+S.7(1,1)]
+a[S2L(1’2)+SZT(1)2)])
Sa=a’[S2%(2,2)+ 557 (2,2)]
+[S2L(1)2)+S2T(1,2)]

(29)
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The Boltzmann equations (4) then become, upon
writing E,=E,
{812+B:[¢(KO/E)+A/9]81}
Xa1(E)—BaRas(E)=1,
{812:+B:[¢(KO/E)+A/9]85}
Xa:(E)—B1Rai(E)=1.

(30)

These are coupled algebraic equations in ¢;(E) and
a2(E). The fact that the coefficients (df°/dE;) cosf,
have canceled out demonstrates that as a result of our
approximations involving the surfaces of constant
energy and matrix elements for scattering, the postu-
lated solution (5) is exact.

The special case in which 8,=0 will prove interesting.
This means that we neglect optical modes as well as
that portion of the acoustical modes arising from the
vibrational phase difference between the two atoms
of the unit cell. It is then seen from:Eqgs. (30) that

a1(E)=B1"[2:(n)+a®(n)]/
[2:(n) Q2(n) —a®?(n) ],
as(E)=B:"L () +&R (1) 1/[(2:(n) 2:(n) —a®?(n) ],

which are independent of energy. Equation (10) then
indicates that the relaxation time for each of the bands
varies as E—% The current integral (9) can be given in
closed form since the a’s are removed from the integral.
Substitution of Eq. (31) into (9) and use of (3) gives

p=po(Qotait+2a®)/(212—a®)=uQ, (32)

where
po=[4Q2w)}ept*ur?]/[3m:¥2(KT)}C2(1+a?)].

Equation (33), apart from a numerical constant in-
volving the ratio of the effective masses «, is the same
expression as that obtained by Seitz and Bardeen and
Shockley? for a single s-band. The mobility (32) thus
exhibits the same 7! temperature dependence
characteristic of the simpler theories. The factor
multiplying uo in Eq. (32) will differ for the RI and DI
models.

From the values of the constants to be evaluated in
the next section, we shall see that the ratios a®/9,,
and ®/9, are both less than 0.1 for the DI and less
than 0.03 for the RI model. Under these circumstances,
the terms coupling Eqgs. (30) can be neglected reason-
ably. With this approximation, we obtain the results

as(E)={B12.+B:L6(KO/E)+A/8]8:} s=1,2 (34)

when B,5%0. The neglect of the coupling terms greatly
simplifies the last integration (9) and permits the
formulation of approximate analytical techniques. In
order to make absolutely sure of the resulting tempera-

(31)

(33)

2 F. Seitz, Phys. Rev. 73, 549 (1948); J. Bardeen and W.
Shockley, Phys. Rev. 80, 72 (1950).

653

ture dependence of the mobility we shall perform the
integration numerically. We define

Ps= Q,s‘l‘ (62/ﬁ1) (A/l?)ss,

(35)
7e= (B2/B1)Ss-
The integral to be done may then be written
1
To= f dalxe9°]/[potizs (1-Fa1)!]
0
+ f da 6957 [potrios (1-Fa1)b
1
+(m+1)o,(1—x)¥]. (36)
The resulting expression for the mobility is
p=pe(J1t+at ), @7

and the ratio of currents carried by the two bands,
(41/j2) = (J1/aJ2).

3. RESULTS AND DISCUSSION

(38)

To obtain the final numerical results, we shall now
proceed to collect a set of values for the constants ap-
pearing in these calculations, some of which will re-
flect the approximations that have been made. For
instance, we shall have to define appropriate sound
velocities and elastic constants, in accordance with the
assumption that the germanium lattice is a homo-
geneous, isotropic medium. This is done by considering
the measured values of the longitudinal and transverse
velocities in the [1007], [1107, and [111] directions
and taking an average in which these directions are
weighted in the ratios 3:6:4, respectively. The values
#r,=5.3X10° cm/sec and #ur=3.3%X10°® cm/sec are
thereby obtained. Using these values, we may deter-
mine a set of elastic constants that describe the hypo-
thetical lattice under consideration. We obtain, with
the density of germanium, p=35.35 g/cm?,

cu=pur2=1.5X102 dynes/ cm?,
cu=pur?=0.58X 10 dynes/cm?.

The third elastic constant, ¢y, is gotten from the
relationship cip=c¢11—2css, which describes an elastic-
ally isotropic medium. We find

€12=0.34X 102 dynes/cm?.

Substitution of these values into the expression for &
defined by Eq. (4.5) of I yields 6=0.7. It will be re-
called that the assumption of interaction with nearest
and next-nearest neighbors was used in calculating 4.
In this connection, it should be noted that the use of
only nearest neighbors produces results that- are
fundamentally incompatible with the assumption of
an elastically isotropic medium, since in that case the
elastic constants satisfy the additional constraint
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4¢11(c11—cas) = (c11+c12)2. Combination of the two
conditions yields the following two rather absurd sets
of relationships between the elastic constants: ¢s4=0,
C12=c11, and 2¢11=ca4, ¢12=—3¢11. The question, how-
ever, remains as to whether the value of ¢ obtained by
the inclusion of next nearest neighbors is reliable, since
no calculations of measurable quantities like the
specific heat have yet been done for germanium using
this approximation. The calculations of Hsieh® have
considered only nearest neighbor interactions, but have
obtained agreement with the experimental specific heat
within about 109,

The same sort of difficulty arises in the determina-
tion of the fundamental optical frequency w=K@0/A.
This quantity is directly measurable as the fundamental
Raman frequency. The value 1332 cm™ has been ob-
tained in diamond. On the other hand, the infrared
lattice absorption spectrum occurs in the range 2892
to 3612 cm™! which is roughly twice the optical fre-
quency. According to Lax and Burstein, this spec-
trum may be associated with two-phonon processes
which produce second-order electric moments. Turning
now to germanium, we find the Raman frequency as
yet undetermined experimentally. The calculations of
Smith® as applied to germanium, however, yield the
value ®w=390 cm™! (®=>560°K). This value falls into
the spectral range associated with the infrared lattice
absorption, extending between 345 and 640 cm™. This
spectrum contains an apparently impurity-insensitive
peak at 345 cm~! whose intensity is much greater than
the remaining structure and which is without analog
in the diamond spectrum. The temptation is therefore
strong to interpret this as the fundamental optical
frequency. If we argue, however, that the gross features
of the spectra should be alike for diamond and ger-
manium because of their similar atomic structure, then
we are led to the conclusion that the fundamental
optical frequency should occur somewhere around
©=300°K and that Smith’s calculations do not give
accurate results when applied to the optical modes of
germanium. Since we are unable to resolve this dilemma,
we shall present results for two optical mode tempera-
tures, ®=300 and 500°K and contrast the behavior
of the mobility so obtained with temperature.

Only two further numerical constants are required.
These are the edge-length of the fundamental face-
centered cube, 2ao=5.62X 1078 cm, and the value of @,
defined by Eq. (4.27) of I, which is 4.1X10° cm/sec.

We shall first discuss the results for the mobility
and current density in the case when C3=C4=0. This
case is of interest since it does not involve optical modes,
nor the acoustical term representing phase differences
- between the two atoms in a unit cell. It has been

3Y. C. Hsieh, Phys. Rev. 85, 730 (1952).

4M. Lax and E. Burstein, Phys Rev. 97, 39 (195

5H;elen M. J. Smith, Trans. Roy. Soc. (London) A241 105
(1948
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thought unlikely that the introduction of optical modes
could explain the behavior of the mobility because the
strong temperature dependence associated with the
component terms (3.2) of I would not give a straight
line on a plot of logu vs log T'. This argument is refuted
by the present calculations. Furthermore, as pointed
out by Brooks,® it is hard to reconcile the galvano-
magnetic effects with a relaxation time having an
energy dependence that is very different from E-%.
This means that a,(E) should be nearly independent of
energy. The relaxation time obtained here depends on
energy in a rather more complicated way. The question
as to whether this variation is too rapid to explain the
magnetoresistance requires detailed treatment and will
not be considered in this paper.

In discussing these results, it will also be of interest to
compare the values obtained on the basis of the RI and
DI models. We can already see from Eq. (32) that both
models must give a mobility having a 7-5 dependence.
To obtain values for Q defined by that equation for the
two models, we use the numbers giving 9;, 92, and R in
the two cases, as obtained from Eq. (29). These are
62.1, 178, 0.200, respectively for the RT model and 11.9,
22.9, —0.184 for the DI model. It is now seen that the
ratios a®/9; and ®/ 9, are small, as maintained in the
preceding section. Substituting the values of 9i, 9,
and Q into Eq. (32) gives

u(cm?/volt-sec) =4.6X10%/T1-°C2(ev) DI (39
39
=7.0X108/T+5C2(ev) RI

for the two models. The kinetic energy C, is to be ex-
pressed in electron volts and the mobility in the con-
ventional units of cm?/volt-sec. For the same Cyand T,
the mobility obtained from the DI model is always
greater than that obtained from the RI model, as is to
be expected from the larger amount of scattering as-
sociated with the RI model shown in Fig. 2 of I. It is
interesting that for roughly the same value of Cj, the
DI and RI models represent upper and lower bounds
respectively for the mobility in the lattice-scattering
range. One finds that C;=10.6 ev matches the theore-
tical and experimental mobilities at 50°K for the DI
model, and 8.7 ev matches the mobilities at 300°K for
the RI model. The magnitude C;~10 ev is reasonable,
for the first ionization potential of atomic germanium
is about 8 ev and from the virial theorem for a Coulomb
potential, it follows that the corresponding kinetic
energy is about 8 ev. It is thus possible to obtain the
correct value of the mobility at any temperature in
the lattice-scattering range for a reasonable C;, pro-
vided we pick an appropriate value of 5. The magnitude
of the mobility at any temperature in the lattice-

scattering range therefore can be understood. The

¢ H. Brooks, in Advances in Electronics (Academic Press, Inc.,
New York, 1956), Vol. 7.
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problem is to explain the observed temperature de-
pendence, since # cannot vary with temperature.

The mobilities obtained from the two models using
the values of C; given above are plotted in Fig. 2.
The experimental mobility is shown for comparison.
In addition, we have plotted the mobilities resulting
from both models when either longitudinal or trans-
verse phonons alone contribute to the scattering. Tt is
seen that transverse phonons influence the mobility
only slightly in the case of the RI model, whereas both
types of phonons are roughly equally effective in the
case of the DI model, with the longitudinal phonons
dominating somewhat.

The mobility ratios for the two bands are given by

uy/pa=ola,/as. (40)

We find the values ui/u;=38.1 for the RI model and
5.2 for the DI model. In the simple situation where
the wave functions of both bands have s-symmetry and
the only scattering mechanisms are intraband scattering
for carriers in the heavy-mass band and interband
scattering for carriers initially in the light-mass band,
the mobility ratio should equal the inverse ratio of the
effective masses, that is, ui/us=a. This result follows
from the fact that the relaxation times for carriers of
both bands are the same in this case. It is seen that the
RI result agrees closely with the preceding mobility
ratio, whereas the DI result is rather different. The con-
clusions obtained from the RI model concerning the
importance of transverse modes and the ratio ui/us
agree rather well with those of Brooks® whose treatment
is based on the deformation potential theory without
including optical modes.

Let us next consider the relative importance of the
two bands in the conduction process by computing the
current ratio ji/ .. This quantity is given by

(41)

One might expect the lighter holes to be more effective
current carriers than the heavier holes, since, if the
bands were independent, and the matrix elements for
scattering in each band the same, one would have
71/ joa= (n1/n3) (u1/ue)=a=~8. In fact, however, the
matrix elements for the different scattering mechanisms
are considerably different, as has already been seen
from Figs. 1 and 2 of I. One notes in particular that for
intraband scattering in the DI model the light holes are
predominantly scattered backwards, whereas the heavy
holes are scattered forward. The opposite is true of
the RI model. If interband scattering is turned off by
setting ®=.S."(r,5)=0, we find the current ratio to be
71/72=2.6 for the DI model and 16 for the RI model.
These values reflect the fact that in the first case the
importance of the light holes is diminished and in the
second case it is enhanced. The presence. of interband
scattering will affect chiefly the holes of light mass by
tending to scatter them into the other band with its

71/ j2=a:/oas.
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Fic. 2. The hole mobility versus temperature obtained from the
DI and RI models for C4=0. The dashed curve represents the
experimental mobility. The curves labeled DI:L and T and RI:L
and T represent the calculated mobility, resulting from scattering
by longitudinal (L) and transverse (T) phonons, matched at
50°K for the DI model and at 300°K for the RI model. The values
of C; used are 10.6 ev for the DI and 8.7 ev for the RI model. The
remaining curves show the mobilities, using these values of Cy,
when either longitudinal or transverse phonons alone produce the
scattering.

associated large density of states. For interband scatter-
ing alone, we find 7:/72~0.001 and 0.02 for the DI and
RI models, respectively. The total current ratios are
0.23 and 0.37, the larger value pertaining to the RI
model.

We shall now give the final results for the mobility
and current ratios when the terms involving C3 and C,
are included. These results were calculated numerically
from Eqs. (37)-and (38). The theory contains two con-
stants, Cy and C4, which are not related to each other in
any simple way. Both depend on the germanium wave
functions and potential and must be computed directly
from these quantities. Since this has not been done, we
shall give the results for various values of the ratio
C,/C. For purposes of comparison, the computed values
of the mobility were matched with the experimental
value? at 50°K. For a given ratio C,/C;, the matching
thus determines both constants. The results are shown
in Figs. 4-7 for the RI and DI models, assuming that

7F. J. Morin, Phys. Rev. 93, 62 (1953); M. B. Prince, Phys.

Rev. 92, 681 (1953). F. J. Morin and J. P. Maita, Phys. Rev. 94,
1525 (1954).
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®=300°K or 500°K in each case. The values of C;
corresponding to the various ratios C4/C; are given in
the figure captions. We have chosen the ratios C4/C;=0,
1,2, 5,and « as representive of the effect produced by
varying the magnitude of optical modes. The value
C4/C1=0 corresponds to the curve having the 71
dependence; the value « corresponds to having set
C1=0. We have represented the experimental mobility
and the curve obeying a 7 dependence by dashed
lines.

One observes that the ratio C4/C1= o will correspond
to the most rapid possible temperature dependence
provided that the neglected interference terms in C1Cj
and C,C; of I, Eq. (4.17), are small. We have estimated
the importance of these terms by calculating the matrix
elements for scattering from a [100] direction to a final
state in a plane containing all three principal direc-
tions for which k,’=k, . These results depend only on
the angle of scattering 8. If we regard these scattering
cross sections as typical of the scattering into any other
direction, we may then compute the mobility. It should
be remembered, however, that these interference terms
may be either positive or negative since the relative
signs of C; and C; are unknown. Figure 3 shows the cor-
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Fi1c. 3. Modification of the mobility as a function of temperature
produced by the interference terms. The dot-dashed curves repre-
sent upper and lower bounds when the interference terms are in-
cluded. The solid line represents the mobility when the inter-
ference terms are neglected. All three curves coincide on the scale
of this graph for the RI model.
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rections involved for interference terms of either sign
in the case of both DI and RI models when Cs/C1=2
and ©=>500°K. As before, the experimental and cal-
culated mobilities have been matched at 50°K. The
effect of the interference terms is seen to be fairly small
for the DI model and negligible for the RI model. The
following conclusions thus are unaffected in any essen-
tial way by the neglect of the interference terms.

The most striking feature of Figs. 4-7 is that even
if Co>C4, the observed mobility cannot be explained
for ®=>500°K. This is due to the fact that the terms in-
volving C, alone include an acoustical term whose
magnitude is proportional to 6%, so that optical modes
are always accompanied by a term having a T-1%
dependence. Optical modes, acting alone, give rise to a
more rapidly varying temperature dependence as we
shall see later. It should be noted that in our treatment
there is no difference between the curves labeled C,/C:
= oo pertaining to the RI and DI models since we have
treated the terms in the electron-phonon interaction in-
volving C3 and C4 only in the RI approximation. There is
a difference, however, for C,/C1=1, 2, 5. For any given
ratio the DI model always produces the more rapid
temperature variation. This can be understood if one
remembers that the matrix elements involving C, were
larger for the RI model. For ©=300°K there are values

D. I
© = 300°K
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Fi1c. 4. The hole mobility versus temperature for the DI model,
©®=300°K, matched with the experimental curve, labeled g,
at 50°K, for Cs/C1=1,2,5=. The values of C in ev corresponding
to these ratios are 9.1, 6.6, 3.2, 0.
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Fi1c. 5. The hole mobility versus temperature for the DI model,
®=>500°K, matched with the experimental curve, labeled ,
at 50°K, for C4/C1=1,2,5,%. The values of C; in ev correspond-
ing to these ratiosare 9.2, 6.9, 3.4, 0.

C4/C1 for both models which will fit the experimental
mobility quite satisfactorily. The best fit, however,
requires a smaller value of the ratio C4/C; if the DI
model has been used. C4/C; is then between 2 and 5,
whereas the ratio is greater than 5 in the other case.
We note that the curvature of the lines drawn through
the computed points in Figs. 4-7 is rather small. This
fact is illustrated somewhat more dramatically in
Fig. 8, where the results for the DI model with C4/C;
=2 (C1=6.6 ev, C;=13.3 ev) and ©=300°K are
analyzed in some detail. We have taken the computed
points and passed the best straight line, having slope
—2.25, through them. The points are seen to fit a
straight line quite well.* To show the relative import-
ance of the terms involving Cs and Cy, curves have been
drawn for C;=0, C4=13.3 ev, and C;=6.6 ev, and
C4=0. The curve having C;=0 and 6=0.7 provides a
reasonable approximation to the resultant curve be-
tween 100°K and 300°K, thus showing that the term
involving C, in the mobility is rather more important
than that in C; for these particular values of the con-
stants. The influence of the optical modes in the C;
term is illustrated by a further curve for which C1=0,

* Qualitatively similar conclusions concerning the combination
of acoustical and optical mode scattering have been obtained by
W. A. Harrison [Phys. Rev. (to be published)].
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F16. 6. The hole mobility versus temperature for the RI model,
©®=300°K, matched with the experimental curve, labeled g, for
Ci/C1=1,2,5x. The values of C; in ev corresponding to these
ratiosare 3.9, 3.6, 2.6, 0.

C:s=13.3 ev, and =0, representing the contribution of
optical modes alone. The curvature is rather large,
but is seen to be reduced considerably when C; and C;
are as before and §=0.7.

Since the calculated mobility for the ratio Cy/Cy1=2
agrees rather well with the observed mobility, the ques-
tion arises whether the magnitude of C4/C} is reasonable.
This question can be answered unambiguously only by a
detailed calculation of these constants. Qualitatively
speaking, however, one might think on the one hand
that C4 should be smaller than C; since for a spherical
atomic cell and a potential having spherical symmetry,
C4 vanishes whereas C; does not. On the other hand,
the integration of functions over a tetrahedral cell
that, losely speaking, might be considered prototypes
for the germanjum wave functions and potential
suggest that ratios C,/C: having the magnitude
required to explain the mobility temperature depend-
ence can be obtained.® The values of C; that arise in

Figs. 4-7 appear reasonable.

8 We have calculated C; and C,, defined respectively by Egs.
(4.10) and (4.11) of I, putting |e&)=w, v, z for =1, 2, 3, V
= —sin?(wx/2) sin2(wy/2) sin?(wz/2), and ao=2. The coordinate
axes coincide with the cubic axes of the crystal, and the origin
coincides with the atom at the center of the atomic cell forming the
region of integration which was chosen to be tetrahedral. Assuming
that Co=—2C1, we found that Cs/Ci=+43.5.
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Fic. 7. The hole mobility versus temperature for the RI model,
©®=500°K, matched with the experimental curve, labeled g,
for C4/C1=1,2,5,0. The values of C; in ev corresponding to
those ratios are 4.0, 3.7, 2.7, 0.

The numerical integrations that were necessary to
calculate the mobility, also permit the determination of
the current ratios 7i/7s. Since a; and as are functions
of energy, the current ratio will depend on temperature.
The variation with temperature of ji/7., however, is
small. Asymptotically the high- and low-temperature
current ratios are given by Eq. (41) with

as (E) = [ﬂlg.s_l—be (0) 83/19']_1;

F#)=A for 9>>1,
=24A fordK1.

(42)
where

For the DI model, the ratio 71/ increases by less
than 159, over the entire range of temperatures,
whereas for the RI model it decreases by less than 39.
The contrasting behavior with temperature of the two
models may not be significant since the difference
between the high- and low-temperature limits of 71/72
is caused entirely by optical modes which have been
treated in the RI approximation only. The results
concerning the current ratios may be summarized
with the observation that the values of ji/j.=0.37
and 0.23 obtained on the basis of the RI and DI models
when C4=0, respectively, represent the maximum
and minimum possible values.

H. EHRENREICH AND A. W. OVERHAUSER

If one believes that the contribution of optical modes
required to produce agreement between the theoretical
and experimentally observed hole mobility is unreason-
ably large, then one must ask what other processes,
not treated in these calculations, could account for
the temperature dependence. It has already been
pointed out that %* terms in the energy are too small
to affect the mobility appreciably. We shall consider
briefly some further possibilities.

The first possibility is an explicit variation of the
effective mass with temperature. This can occur by
means of the interaction with the phonon field: a hole
emits and reabsorbs the same phonon. Physically, this
implies that the motion of the hole through the crystal
is retarded by a cloud of virtual phonons surrounding it.
The effective mass is thereby increased from a value
ms to ms*. It is this renormalized effective mass m,*
which should appear in the calculated expression for
the mobility in place of m,. The mass m,* will increase
with temperature, since the probability of emitting
and reabsorbing a phonon is proportional to the number
of phonons in the field. The mobility thus decreases
more rapidly with increasing temperature. However,
calculations using second-order perturbation theory?
show that the change of effective mass is insignificantly
small. The fractional change of mass is of order 10~5
between 0°K and room temperature. The possibility
that higher order terms may be important in the
perturbation series has been examined by Fulton,
who finds them negligible. He has shown that the
coupling constant characterizing the electron-phonon
interaction in semiconductors is 105, thus demonstrat-
ing the validity of perturbation theory in treating this
interaction.

Another effect producing a variation of the effective
mass is the change of band gap with temperature.
The effective mass is theoretically determined from the
quantities L, M, and N defined by Eq. (2.4) of I, and
the temperature dependence arises from variation of
the energy denominators (Eo—FEx,). It might be
pointed out that, in addition, the shift of the band
edges with temperature should cause the coupling
constants Cy,- - -,C4 to change. A rough estimate shows
that these two effects are small and seem to change
the temperature dependence of the mobility in a
direction which would worsen the agreement between
theory and experiment.

A still further possibility that has been considered is
the change in the temperature dependence of the
mobility produced by nonlinear vibrations of the
lattice. In this case, the electron-phonon interaction
Hamiltonian contains terms proportional to the square
and higher powers of the displacement whose effect
would be to create or annihilate two or more phonons

9 H. Ehrenreich, Ph.D. thesis, Cornell University, 1955 (un-
published).
10 T, Fulton (private communication).
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at a time. This problem has been considered by Enz!
who finds that the exponent of the temperature depend-
ence is shifted in the right direction if these terms are
important.

In this connection, it should be noted that the
interaction Hamiltonian (3.4) which is linear in the
atomic displacements, can also give rise to higher order
terms in the electron-phonon interaction. The operator
HT may act several times leading to the simultaneous
creation or annihilation of more than one phonon.
These higher order terms must not be considered since
the recoil of a hole during a given scattering mechanism
can be neglected. It has been shown® that in this case
first-order perturbation theory gives the probability
that at least one phonon is emitted or absorbed during
a scattering process, and not exactly one, as is generally
supposed. A first-order perturbation calculation thus
includes automatically the effects of such processes on
transport theory.

In conclusion, we shall comment briefly on the
careful, but unsuccessful efforts'? to observe light holes
independently of the heavy holes by means of the drift
technique.’® It would be possible to effect a spatial or
time separation between the two pulses in a drift
experiment if the relaxation time due to all interband
processes were less than the drift time, which was
5X107% sec in Harrick’s experiment. However, since
for the light holes the interband scattering is dominant,
a relaxation time of the order of 10~ sec is to be
associated with this process for the light holes, thus
demonstrating the impossibility of observing them
experimentally by this technique. One should not be
misled by the fact that it was possible to neglect the
terms in Eq. (30) which couple the two bands
mathematically, to the conclusion that the carriers
remain in one band. The quantities @, defined in
Eq. (38) contain very important contributions from
interband scattering. These terms in 9, can be inter-
preted in the steady state as representing scattering
within band s in the sense that a carrier scattered into
the other band is immediately replaced by a carrier
resulting from an inverse interband transition. If now
the two pulses were spatially separated, then the
pulse corresponding to carriers in band s could not be
so replenished. Therefore, both the interband terms in
9, as well as the coupling term ® must be negligible if

11 Ch. Enz, Physica 20, 983 (1954) ; Helv. Phys. Acta 27, 199
(1954).

12 N. J. Harrick, Phys. Rev. 98, 1131 (1955).

13 See also E. S. Rittner, Phys. Rev. 101, 1291 (1956).

659

500000 -

200000 [~ .

100 000 f— -

@
¥ 50000f~ ]
- (C,.Cq.8)
= e
o
>
<
o
=
o
2 20000 [— 16.6,0,=) -
>
|4
3
@
H
10000 f— -
$ 000 f— —
(0, 13.3,0)
(0,13.3,07)
2000 |~ (66, 133,0.7)
1 i | 1 [l
30 50 100 300 500

TEMPERATURE IN °K

F1c. 8. Analysis of the curve, appearing in Fig. 4, for C4/C1=2
(C1=6.6, C4=13.3, §=0.7). A straight line has been passed
through the computed points shown in the figure. The remaining
curves show the effects of setting one or more of the quantities
Ci, C4, and & equal to zero.

the two kinds of holes are to be observed independ-
ently in a drift experiment."
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