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completely rigorous). For T)0'K, some fairly crude
approximations, taken from Feynman's theory of the
lambda-transition, have to be introduced. This part of
the theory is therefore open to improvement —possibly
in the form of a more rigorous proof that Feynman's

implied criterion for B.E. condensation )the importance
of long cycles in the sum (40) for the partition function)
is equivalent to our criterion (4) at thermal equilibrium.
Despite these imperfections, however, our analysis
would appear to strengthen materially the case put
forward previously by London'' and Tisza' for the
importance of B.E. condensation in the theory of liquid
helium.

%e have not considered here how B.E. condensation
is related to superAuidity and to the excitation theory' '7

of liquid helium. This will be done in another paper,
where some of the results already obtained by Bogoly-
ubov" for weakly repelling S.E. particles will be ex-
tended" to the case of interacting He' atoms.
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Electron spin-spin interaction is discussed for the case of strong hyperfine broadening. The hyperfine
interaction is represented by a resonance spectrum of width Ace and the electron interactions, which are taken
to be dipolar, are treated by time-dependent perturbation theory. A characteristic relaxation time for
electron spins, &,=Aco/A~; is found, where 5 is a measure of the strength of the dipolar interaction. The
time-dependent theory suggests a modification of the Bloch equations to give a phenomenological description
of systems of this kind. Spin-spin relaxation is represented by a term which gives diffusion of spin excitation
through the resonance spectrum. Slow passage, rapid passage, and free relaxation are considered by using
the modified equations.

I. INTRODUCTION

'HE Bloch equations' have given a satisfactory de-
scription of saturation eGects involving Ii centers

in alkali halides. ' One of the reasons for this success is
that the dipolar interaction between F-center electrons
is extremely weak compared with the lattice inter-
action. ' The effects of spin-spin interaction have not
been observed in room temperature studies. Although
the interaction is quite weak, it should be detectable at
liquid helium temperatures.

The purpose of this note is to consider the form
expected for such an interaction. In the first part a
treatment of dipolar interaction is developed in terms
of time-dependent perturbation theory. The results of
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' F. Bloch, Phys. Rev. 70, 460 (1946).' A. M. Portis, Phys. Rev. 91, 1071 (1953). The identification
of T2 in this reference with the mean dipolar 6eld is in error. As
established in the present treatment, T2 should equal T& for
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this treatment are applied to a macroscopic description
of the interaction in terms of a modi6cation of the
Bloch equations. In the final section, these equations
are applied in an examination of slow passage, rapid

passage, and free relaxation.
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' Kip, Kittel, Levy, and Portis, Phys. Rev. 91, 1066 (1953).

II. MICROSCOPIC THEORY

%e consider a system suggested by the interaction
between P-center electrons in alkali halides. The inter-
action between electron spins is taken to be dipolar.
There is a contact-type hyperfine interaction between
electron and nuclear magnetic moments. ' For simplicity
electron spin-orbit coupling is neglected. The magnetic
Hamiltonian in an external field Ho is given by
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The other terms in the magnetic Hamiltonian connect
states di6ering by the order of the Zeeman energy.
As long as the external magnetic fieM is large compared
with the dipolar and hyperfine interactions, these
terms may be neglected.

The zero-order Hamiltonian is diagonal in a repre-
sentation characterized by the individual s . The local
magnetic Gelds are distributed around the magnitude
of the external 6eld with a width dependent on the
hyperfine and dipolar interaction. The wave function
of the system may be written as a linear combination of
the eigenfunctions of the zero-order Hamiltonian with
coefficients which depend on the time:

where
& (t)@ e iz Ala-

+ =II'4' (r) (&),

(2.4)

(2 5)

and 0' (s;) is the spin function of the jth electron in the
mth state. The spin function may be n, or p, corre-
sponding to s,'= +-', . We take the system to be in the
mth state at t=0. Since spin-orbit interaction is being
neglected, we may write just the spin function:

+ = 'II (~)

In order to determine the mean life of the ith spin in
the state 0., we calculate the transition probability to
all states

for which, to first order,

u. (t) =— X.„'(t')e*"--'dt',
ik~p

The perturbation connects states nz and e which have
apart from the ith spin only one other spin reversed in
the opposite sense:

Here P, (r~) is the amplitude of the wave function of
the ith electron at the 3th nucleus. A time-dependent
treatment is cast in the following way: Given that the
sth spin is in the state 5,=+-', at t=0, we wish to know
its mean life in this state. We separate the Hamiltonian
into a zero-order part:

Xs——Q, gPs,*IIs (16—7r/3)g, ( PtA( [P,(r() (
's,'I('/Ig

+-'Q Lg'p'(1 —3y, ')/r, 'Js's * (2.2)

where the s direction is the direction of Hs and y, , is the
direction cosine of r;, with the fieM. Of the remainder
of the Hamiltonian, we need consider only the nearly
secular part:

3"= —-'2' Lg'p'(1 3v—")/4r"1
)& (g;—5;++S,+5, ). (2.3)

and 0 (sA)=a„(s&) for k4i or j. The initial state is
connected to approximately -',E states in this way,
where E is the total number of spins and we have
assumed equal numbers of up and down spins. The
total initial transition probability for the ith spin:

where
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w, =—Q B,P

Odist'
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We now average the above expression over spins in
approximately the same local field. H the electron
spin concentration is sufficiently dilute, there is very
little overlap of wave functions. Then or, ;=co,—+i
= (E„E)/It,—the difference in Larmor frequencies of
the ith and jth spins, is completely uncorrelated with
r;; and p;;. The average initial transition probability,

(2 7)

where the average over +;; is a weighted average. The
appropriate weighting function is the density of states
given by the zero-order Hamiltonian. This is the same
function of co as f (co), the normalized resonance absorp-
tion spectrum. Although the spectrum is, strictly speak-
ing, discrete, the energy separation between states will
usually be small compared with the mean life of a
state and may be taken as continuous. At the other
limit, the mean life must be long compared with the
width of the spectrum. Under these conditions, we
obtain

(
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M ir'. .2
AV —oo

sin'(-', ((v, —co,)t]f((o~)d(~,
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,'7rtf((a, ) -(2.8).
The summation in Eq. (2.7) is just one-half the second
moment of the transverse dipolar interaction, (ha&')A„.

The factor of two arises because the sum is only over
down spins. Finally we may write for the initial transi-
tion probability of spins with resonant frequency or,

(w)A„——-', ~(ELM')A,j(N). (2.9)

Now that we have an expression for the average
initial transition probability, we wish to 6nd the mean
life of a spin state, In order to relate these two quanti-
ties, we must investigate the distribution in local
dipolar fields. For a regular array of dipoles, the distri-
bution in transverse dipolar fields is Gaussian and the
mean life 7, 1/(w)A„. However, if the dipoles are
randomly distributed, v, may be quite different from
1/(w)A„. The case of dipoles distributed randomly over
a regular lattice has been investigated by Kittel and
Abrahams' by the method of moments. We briefly

' C. Kittel aud E. Abrahams, Phys. Rev. 90, 238 (1953).
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review their method, which we apply to the present
problem. The fourth moment of the dipolar inter-
action is

3 2
&~~')"=—2 (Z &")'——Z &",

g si
(2.10)

We obtain 6= 7.2fA and n= 2.8A, where A =g'P'/2ka'.
We are now able to see the nature of the error intro-

duced by taking r, =1/&w) Afor randomly distributed
spins. The distribution in local dipolar fields has a
half-width corresponding to the mean separation be-
tween dipoles. The distribution drops oG slowly above
this value with contributions extending up to the order
of the nearest neighbor interaction. The transition
probability &w)A, is the average over all local dipolar
fields. The main contributions to this integral arise
from spins with local fields well out in the wings of the
distribution. These spins, few in number, undergo
transitions very rapidly. The main body of spins, how-
ever, undergo transitions at a rate associated with the
half-width in the energy distribution. Then

=~'f(~) (2.13)

In obtaining this expression for the mean life of a
spin with resonance frequency co, we have made a
number of assumptions which it may be well to sum-
marize. In order to treat the problem by time-dependent
perturbation theory, the lifetime must be long com-

' P. W, Anderson, Phys. Rev. 82, 342 (1951).

where the sums are over those lattice sites actually
occupied by magnetic dipoles. If f is the fraction of
sites occupied,

&~~')A.=f2 &", (2.11)

&A~')A =3f'(2 & ')'+f(1 3f)E—&'~' (2 12)

where the sums are now over all lattice sites. Performing
the sums in Eqs. (2.11) and (2.12) for a simple cubic
lattice with the magnetic field along a cube edge, we
obtain:

&A(o') „„/3(&&oi')A,)'= 0.796+0.068/f.

For a Gaussian distribution in local fields, the right
side should be unity. For small fractional concentra-
tions, the ratio deviates considerably from what is
expected for a Gaussian. Anderson' has argued from
the statistical theory of line broadening that the distri-
bution in local fields should in this case be Lorentz
near the center with a Gaussian falloff in the wings.
We fit the calculated second and fourth moments by
a distribution

pared with the width of the spectrum Aced,

Q2

(AG).
7 Dco

This then requires that A(her, the concentration must
be low enough that the mean dipolar 6eld is small
compared with the width of the spectrum. We have
further assumed that the electron spins are randomly
distributed and that the difference in Larmor fre-
quencies of any two spins is completely uncorrelated
with their relative positions in the lattice.

5'(oi) =Xf(~)&s')„, (3.1)

where &s')„ is the expectation value of the s component
of an individual spin at co. The transfer of spin excitation
through the resonance spectrum may be represented by
the diffusion equation:

85'((u) rl 1 85*(cu) 5*(o~) BS,'(o~)-
(3 2)

where
(Pcs' 78 ~ t9cc7 S,'((v) Bco

5,'(o~) = ,'Nf(ao) tanh[—ji(co+~,')/2kT, 7.

This equation automatically conserves angular mo-
mentum. Also, when 5'(oi) becomes proportional to
5,'(o&) there is no further diffusion of spin excitation.
The form of 5,*(o~) is indicated by the general require-
ment that the equilibrium distribution be the most
probable distribution under the existing constraints
and that spin-spin interaction cannot displace the
equilibrium distribution of spins in contact with a heat
reservoir, no matter how weak the contact. T, is called
the effective spin temperature. The spin frequency co,'
is introduced as a second parameter to fix the final spin
distribution. Conservation of both energy and angular
momentum requires two adjustable parameters. That
Eq. (3.2) is not strictly correct may be seen from the
fact that it does not automatically conserve energy in

III. MACROSCOPIC THEORY

The form of a macroscopic theory is suggested by the
arguments leading to Eq. (2.8). The main contribution
to the integral arises from o~; within 1/r, of o&,", that is
to say, when the ith spin Qips, and this happens in a
mean time r„another spin within 1/r. of the same
place in the spectrum Qips in the opposite direction.
The resonance frequency of this second spin may be
higher or lower than co; with equal probability. We may
now start over with this second spin and watch it Rip.
It will now Qip within a time 7-, against some third spin
which will be with 1/r, of its position in the spectrum.
What has been described is evidently just a one-
dimensional random walk along the resonance spectrum
of one unit of spin angular momentum. The mean free
path A=1/r, and the velocity u=1/r, '. We define a
spectral spin density at frequency co'.
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dS((u) dS(o)) d S(cd)

the same way that it does angular momentum. The
best that we can do in trying to describe the relaxation
by a diffusion-type equation is to choose T, and co,' in
such a way that energy is conserved between the initial
and final states. However, if the initial state diGers
from the equilibrium state over only a small region of
the spectrum, the diffusion equation approximately
conserves energy for the initial spread of the excitation.

We next consider the behavior of the spin system in
the presence of a small transverse radio-frequency
magnetic 6eld. The macroscopic spectral spin density
S(cv) will now depart from the instantaneous field
direction. We write the rate of change of the spin as
the sum of three terms:

where

5,*&(ar) = ,'N-f(cu) tanh(It(o, *"/2kT,).

Since all spins see the same transverse magnetic fields
there is automatic conservation of energy for di6usion
of the transverse spin components.

IV. APPLICATIONS

As applications of the modified Bloch equations, we
consider three experimental situations, slow passage,
rapid passage, and free relaxation. We first consider
what happens when a portion of the spectrum is
saturated by an intense radio-frequency field. If there
were no spin-spin interaction, we would obtain as a
steady state solution of Eq. (3.4):

~ fields - I3 - lattice

+
d S((u)

spins

1+ ((d —Mi) r p
5'(cv) = Sc(a)); (4.1)

1+(yH, r,)'+ (~ ~,)'r—,'

(3 3)
and in a frame rotating at frequency —co~ ..

The 6rst two terms are just those given by Bloch'
except for the use of spin densities here:

CO
—COi 7'l

5*'((u) =pHirc 5'(cv),
1+((u cdi)'rP—

(4 2)

d S(a))
=yS(cv) &(H,

fields

(3.4) 5&'(o)) =yHirc 5'(cd).
1+ (cd (ui) 2r c2—

(4.3)

d S(&o)

lattice

S (co) —Sc ((u)

where II,=2Hi cos~it, H„=O, and H, =a&/y; and

(3 5)

At frequencies far from co~, the transverse components
of S(cu) will be small. In looking at the variation in
5'(~) well away from the radio-frequency, we can
neglect the field term. Assuming that Sc(~) and r, are
slowly varying compared with 5, (co), we have

where for equilibrium with the lattice the spins point
along the s direction with a spectral density

Sc(a)) = ',Nf(a)) tanh(h-cd/2kTc).

dS'(cd) 5 (~)—5,(~) 1 a'5*(~)+—
7s ~GO

(4 4)

In order to discuss the form of the spin-spin interaction
in the presence of a radio-frequency field, it is useful to
requantize the Hamiltonian along the effective field

direction in the rotating frame. As long as the radio-
frequency fieM is large compared with the magnitude
of the. dipolar fields, the secular part of the transformed
Hamiltonian continues to have the form of Eq. (2.3).8
The spin-spin interaction then continues to conserve
angular momentum and we may retain Eq. (3.2) for
the s component of the angular momentum. The only
modification is that 5,*(a&) is now a function of the time
and must be evaluated from the instantaneous energy
and s component of the total angular momentum. The
equations for the transverse components of spin take
the form:

Under steady state conditions, we have

Sc((a)—S,(a)) expL+ (rd/rc) cd/yHif, (4.5)

where rq= (yH, r,)'r, is the time required for the spin
excitation to di6use a distance yII~. The approximations
made in obtaining an exponential approach of 5'(~) to
5&(~) require that the distance along the spectrum to
which energy can diffuse in a time v-l be large compared
with yH~ but small compared with the width of the
spectrum. Under steady state conditions, energy is
transferred to the lattice at a rate

Sc(a))—5*(co)I c=) A(d dc'

2gPcoiHiSc(cvi)/(r era) '. (4.6)

85* "(cd) 8 1 BS' "((v) 5* "(a)) 85,* &(a&)

J'.=k~ix" (~i) (2Hi)'.S,* &(co)~GO 7s - ~GO

The power absorbed from the radio-frequency field may

(3 6) be written as

Bco J
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Since these two powers must be equal,

X"(~i)-gP~i(~i)IHi(~«. )' (4 &)

The imaginary part of the susceptibility may be ob-
tained alternatively from the expression

gP
X (~i)=

~

~ (~)d~o.
2Bg ~

We obtain from Eqs. (4.2) and (4.3) the corresponding
result in the absence of spin diGusion

X (iol) 7rgP~l(~i)/Hl'rl. (4 g)

By comparison we see that when the diGusion time is
short compared with 7 i, X"(&ui) is increased by a factor
(r&/7d) We ex.pect from this that saturation eRects
set in for yHi 1/(rirq)'* rather than for yHi 1/7. i as
in the absence of spin diGusion. These results are very
similar to what one obtains from the Bloch equations
with a transverse relaxation time v-~. The present theory
gives a dependence of ~d on H~ which is not present in
the Bloch theory, however.

We now reduce the magnitude of the radio-frequency
field out of the saturation range rapidly compared with
the spin-lattice relaxation but slowly enough that the
decrease is adiabatic. The relaxation will now proceed
with essentially the time constant ~& even though the
diGusion time v-d may be much shorter than ~~. This
may be seen from the fact that during the steady state
period the spectrum is saturated over an interval equal
to the distance spin excitation can diffuse in a time r~.
When the radio-frequency field is reduced, the saturated
region relaxes by two mechanisms, transfer of energy
out to the unsaturated regions and transfer of energy
to the lattice. But the time for spin excitation to diffuse
out of the saturated region is just r&.

In order to observe the effect of spin diGusion on the
time dependence of the response of the spin system,
we consider rapid-passage conditions. If the frequency
is swept through the resonance spectrum of a system of
noninteracting spins so rapidly that it traverses yII~ in

a time short compared with 7 ~, the eGect of the passage
is to reverse the sign of S,(~) through the spectrum.
If we now introduce spin diffusion eGects and assume
that 7.~ is short compared with v~, we see that the
situation is modified. It is now possible for spins in
advance of the radio-frequency which have not been
inverted to exchange with spins behind which have
already been inverted. This exchange acts like the
partial saturation obtained at passage rates of the
order of v. ~. In order to avoid saturation, passage must
be rapid compared with both 7.

g and 7~. This result is
somewhat different from that of the Bloch theory. The
reason for this difference is that there is no place in the
Bloch theory for a spin-spin interaction which affects
the s spin components. Here all three spin components
are aGected symmetrically by the interaction.

We finally make an estimate of the strength of
diGusion eGects based on resonance studies of F centers
in KCl. ' Taking the resonance spectrum to be Gaussian,
we obtain f(a&) = [(2ir)'A~d] '~10 sec at the line
center. For an F-center concentration of 10"/cm',
5~10' sec ' Then v, =[5'f(co)j '~10 ' sec. In a
microwave field 2Hi 0.02 oe, 7d, (yHi~, )'——v, 30 sec.
Compared with a spin lattice time of 8)&10 ' sec, it is
clear that spin diffusion eGects are unobservable at
room temperature as long as the interactions are purely
dipolar. The condition that diGusion effects be ob-
servable under saturation conditions is simply that
~~) v-„as may be seen from the following argument.
We want ~q(ri with yHi (7«q) l. Then 1/ri(yHi(1/7'd ~ But from the expression for 7'd, we obtain rHi
(1/v. , and this establishes the condition. At liquid
helium temperatures the spin lattice time should be
longer than at room temperature by at least two
orders of magnitude. This brings the spin lattice time
into the millisecond range. Diffusion eGects arising
from pure dipolar interaction should then be observable
for F centers of moderate concentration.
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