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TABLE III. Comparison of experimental and theoretical values of
average secondary asymmetry for zenith angle 45' at Echo Lake.

Channel Theoretical asymmetry Experimental asymmetry

0.162
0.208

0.141~0.023
0.153&0.088

C. Comparison with Experiment

Numerical computations were carried out for a
zenith angle of 45' at Echo Lake (geomagnetic latitude
) =48.4'N, geomagnetic longitude co= 112.7'%, atmos-
pheric depth H= 705 g cm '). The temperature varia-
tion with atmospheric depth was taken from the curve
given by Olbert' for 40' geographic latitude. The hori-

' S. Olbert, Phys. Rev. 92, 454 (1953).

zontal magnetic field of the earth was taken to be 0.22
gauss ' the corresponding value of y being 3.9X10 '.

The critical rigidity at Echo Lake is 2.7 Bv at the
vertical, and 2.3 and 4.2 Bv at 45' west and east
respectively. These figures were obtained from curves
given by Vallarta, 4 corrected according to the procedure
given in reference 1. The corresponding values of a are
522 g cm ' for the vertical direction, and 519 and 538
g cm ' for west and east.

The theoretical value of the average secondary
asymmetry has been compared with the experimental
value in Table III. It is seen that the theory is wholly
adequate to explain the observed asymmetry.

F. E. Fowle, Smithsoniul Physical Tables (Smithsonian
Institution, Washington, 1934), eighth revised edition, p. 593.' M. S. Vallarta, Phys. Rev. 74, 1837 (1948).
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The Friedmann solutio'n of the field equations of general relativity predict the expansion of the universe
from a singular instant in time. This paper considers the behavior of universes which are less symmetric
than the Friedmann model, and which have more general fields that carry stress and energy and produce
gravitation. We treat the nonsymmetric problem as one treats the symmetric problem, via a "co-moving
coordinate system" such that in it free infinitesimal test particles once at rest remain at rest. In such a
coordinate system and with standard assumptions about the stress energy tensor we establish that the
solutions of the field equations of the general theory of relativity necessarily have. singularities at finite
time. The considerations are independent of the symmetry, topology or boundary conditions assumed for
the space-like three-dimensional hypersurfaces.

INTRODUCTION

~ ~

PRINCIPAL success of the general theory of
relativity in the realm of cosmology is given by

the Friedmann solution' of the field equations. This
solution, which employs the assumptions that the uni-
verse is spacially isotropic and that the state of matter
may be represented by incoherent dust, yields the result
that the universe is not stationary, but is rather in a
state either of expansion from a singular point in time
(which would correspond to creation), or of contraction
toward a singular point in time (which would corre-
spond to annihilation). The question naturally arises
whether such singular points are a consequence of the
particular symmetry presupposed in Friedmann's model,
or whether perhaps for more general distributions of
matter one need not expect instants of creation or
annihilation of the universe. The purpose of this paper

*Based on one section of a thesis submitted to Princeton
University in partial fulfillment of the requirements for the Ph.D.
degree, April, 1956.

A. Einstein, The 3Eeaeing of Relativity (Princeton Uruversity
Press, Princeton, 1953).

is to show that singularities in the solution of the field
equations of general relativity are to be expected under
very general hypotheses (enumerated specifically be-
low), and in particular that the singular instant of
creation (or annihilation) necessarily would occur at a
finite time in the past (or future, respectively).

ENUMERATION OF HYPOTHESES

We make the following assumptions:
(A) The universe is a topological product of a three-

dimensional hypersurface and a line. The line represents
the direction of time, while the hypersurface represents
space.

(B) We may select a set of these space-like hyper-
surfaces which are geodesically parallel for all time.
(Physically, this corresponds to the assumption that
the average motion of matter throughout the universe
is sufficiently uniform that a coordinate system can be
chosen so that at each point free infinitesimal test
particles are 6xed relative to this coordinate frame.
For the case when the distribution of matter in the
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universe may be represented as incoherent dust, such a
frame is frequently referred to as a "co-moving coordi-
nate system. " We should note, however, that this
situation of being able to select a set of space-like
geodesically parallel hypersurfaces for all times is not
as general as one might at first glance expect. For even
such a highly symmetric solution of the Einstein 6eld
equations as that of Wheeler's geon' does not have
this property. )

(C) The Einstein field equations

R;,——',Rg;; =ET;;

hold (where E is a positive constant, equal to SprG/c4).
We do not consider the possibility of a cosmological
term.

(D) The energy momentum tensor T;; is to have the
properties that T44 and the trace T is non-negative, and
that T44= 0 implies T;,=0. These properties are in fact
true of all classical energy momentum tensors if we
reject the possibility of negative pressure terms. (A con-
stant negative pressure term in the energy-momentum
tensor is evidently an alternative way of interpreting
or introducing a positive cosmological term. However,
Einstein, the introducer of this cosmological term, has
since given strong reasons against it.)

(E) The metric tensor on the space-like hypersurfaces
is assumed to be positive-definite.

(F) The metric tensor g;; of the four-space is assumed
to have the Minkowski signature (1, 1, 1, —1).

FORM OF THE METRIC, RICCI, AND
RIEMANN TRNSORS

we 6nd that we can write the Ricci and Riemann
tensors thus:

R p=P p+terms in x p,

R 4= terms in x p,

~44= —
p (~x- /»') —~x.px',

R p„p= P p,p+terms in x.p,

R 4p~
——terms in x p,

R 4p4=terms in x p.

(6)

I' p» and I'
p are respectively the Riemann and Ricci

tensors constructed from the metric g p of the hyper-
surfaces of Eq. (2). All raising and lowering of Greek
indices is understood to be done with respect to this
metric.

If we transform momentarily to a normal coordinate
system' at a point on the space-like hypersurface, we
see by an application of the Schwarz inequality

l~- I
=~»+»p+»p&~3Lh»'+»p'+»p')3' (9)

PROOF OF THE EXISTENCE OF SINGULARITIES

We may rewrite the Einstein field equations (1) in the
form

R;,=E(T,; ,'g, ,T). ——

We thus obtain from assumption (D) and Eq. (5)

If we select the coordinate system such that the
geodesically parallel hypersurfaces hypothesized in (B)
have the equations

and therefore

(x- )'&3(xii'+x»'+»p') &3x-px' (10)

Since this is a scalar relationship it holds in general,
independent of the choice of coordinate system. Com-
bining Eqs. (10) and (8) we obtain

@4=const, (2)

ds'= g.pdx dxP (dx4)'. —

(A summation convention from 1 to 3 is understood on
Greek indices. ) As is well known, such a coordinate
system can always be chosen, but it will in general
become singular after a finite time interval. To avoid.
this eventuality, we postulate hypothesis (B). The g p

is evidently the metric tensor on the hypersurfaces given
by Eq. (2) and via hypothesis (E) it is positive-definite.
If in addition we define on each of these hypersurfaces
the symmetric tensor

X0'p= ~g~p/~x ~

' J. A. Wheeler, Phys. Rev. 97, 511—536 (1955).
L. P. Eisenhart, Eg'emaleian Geometry (Princeton University

Press, Princeton, 1949).

where the constant is taken equal to the geodesic dis-
tance of the surface from a 6xed base surface, the metric
assumes the form' —~(x. ) (x. )'

)0.
Bx' 6

Let us consider now an instant when I &0. For
simplicity of notation we define

f= X..; —x4——= t, (12)

If we integrate this we find

1/f—1/fo & p (t—to)

and note that if fp—=f(tp)) 0 at some time tp, then for
all subsequent times f)fp)0, due to the monotonic
character of the solutions of Eq. (11). We can now
write Eq. (11)

d(1/f)

dt 6
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We now observe that as t increases, the right-hand
side of (14) becomes increasingly negative. However,
since we are assuming for the moment fp) 0 (and there-
fore f)0), the left-hand side can never become more
negative than —1/fp, and in particular this occurs
when f= oo. If we call the corresponding time at which
this occurs l„, we see from Eq. (14) that

6
lp&t„(—+3p(oo. (15)

x p=0,

T44 ——0; T=0.

From assumption (D) we then have

T;j=0,
and thus, from Eq. (7),

(16a)

(16b)

(17)

For the case when fp&0, we observe that for all
earlier times f& fp&0. Therefore if we define a new
function g—= f=—x ~, and a new time variable r= t„—
we see that we revert to the previous case. (I am in-
debted to Professor V. Bargmann for indicating the
above considerations. )

We may therefore conclude that unless x is identi-
cally zero it will already diverge at a finite time (either
in the past or future according to whether x )0 or

&0). We should note that one cannot easily deter-
mine whether the singularity is in the coordinate system
or whether the space itself is singular. Taub4 has
pointed out that there is as yet no well-de6ned way of
determining what constitutes an essential singularity
within the general theory of relativity.

If, however, we take x —=0, we see from Eq. (8)
and the fact that g p is positive-definite that

have

Thus from Eq. (6) we find

and therefore the space is flat. LThere are many other
sets of postulates under which one can show that the
Einstein field equations (1) imply that the space is flat. '
Furthermore, no nontrivial, nonsingular solution of
Eq. (1) has yet been found. However, the possibility
that such a solution may exist still remains open. ]

CONCLUSION

We therefore find that if we want a nontrivial (i.e.,
nonflat) solution of the field equations of general rela-
tivity we must be prepared either: (A) to allow for
singularities (as for example in the Schwarzschild' or
the Friedmann' solutions); (B) to permit the possibility
of a cosmological term or a negative pressure term (as
for example in the Einstein cylinder universe'); or
(C) to consider spaces which do not have the simplifying
property of containing a set of geodesically parallel
space-like hypersurfaces for all times. It is of particular
interest that, in the case which we considered, of a co-
moving coordinate system, a singularity necessarily
occurs at a finite time independent of any choice of
symmetry, topology or boundary conditions for the
space-like hypersurfaces. For, if we reject the possi-
bility of representing 6nite distributions of matter by
means of singularities, and if the only singularity which
we are prepared to admit is one which corresponds to
a creation of the universe, we have as a necessary
consequence of the considerations (and assumptions) of
this paper that the creation occurred at a 6nite time in
the past.

E;;=0. (18) ACKNOWLEDGMENTS

Combining Eqs. (5), (16a), and (18) we find

P 0=0. (19)

For a three-dimensional manifold the Ricci tensor is
equivalent to the Riemann tensor. ' Consequently we

' A. H. Taub, Ann. Math. 53, 4/2-490 (1951).

I would like to express my appreciation to Professor
J. A. Wheeler and to Professor V. Bargmann for their
many helpful discussions and suggestions which enabled
me to prepare this paper.

A. Lichnerowicz, Theories Relativistes de la Gravitation et de
l'Electromagnetisme (Masson et Cie, Paris, 1955).

'L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Press, Cambridge, 1951).


