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carbon nucleus for the production of 8 —&2m' is 0.1
mb. This cross section also applies approximately if
the observed gamma rays originate from the process
A'~n+sr'. The kinematics of the latter process are
more favorable than the kinematics of the 0' process
for observing gamma rays at 90'. This condition
compensates for the fact that only a single m' meson is
produced in the A.' decay instead of the two ~' mesons
produced in the 0' decay.

If an appreciable fraction of either h. hyperons or
8' mesons decay via m' mesons, and there is evidence
that this may be the case, ' " the relatively low cross

'Blumenfeld, Booth, Lederman, and Chinowsky, Bull. Am.
Phys. Soc. Ser. II, 1, 64 (1956); Blumenfeld, Booth, Lederman,
and Chinowsky, Phys. Rev. 102, 1184 (1956)."J. Steinberger, Proceedings of the Sixth Annttal Rochester
Conference on High Energy -Physics, 1956 (Interscience Publishers,
Inc. , New York, to be published).

section for downstream gamma-ray production in
p-carbon collisions observed here is striking compared
to the cross section of 1 mb observed by Fowler
et al." for the production of heavy unstable particles
by 1.37-Bev pions on hydrogen.
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Angular Distribution in Electron-Photon Showers without the Landau Approximation
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The track-length angular distribution of electrons in an electron-photon cascade is calculated without the
use of the Landau approximation which was invariably used in all previous work. The Tamm-Belenky model
of the cascade is used. The results are presented in the form of a series, the first term of which is of the same
form as the result yielded by the I.andau approximation but with a modified value of the parameter E,.

It is shown that the use of the Landau approximation introduces large errors not only for large values of
the argument but for small values as well. The bearing of this result on previous theoretical work on the
lateral distribution function is discussed.

1. INTRODUCTION

S EVERAL calculations of the track-length angular
distribution of the electron-photon cascade have

been made, ' ' giving results in quite good agreement
with each other especially at values of the angular
variables EP/E, less than unity, where E„ the "char-
acteristic scattering energy, " is 21 Mev and the angle 8

between the directions of motion of the cascade elec-
tron and the primary particle is measured in radians.
Several of these distributions are graphed in Figs. 1

and 2, where the essential agreement between them can
be seen. However these calculations were all made
under a common approximation, the Landau approxi-
mation, so there is as yet no check on the validity of

*Also supported by the Nuclear Research Foundation within
the University of Sydney.

G. Moliere, Naturwiss. 30, 87 (1942); Cosmic Eadiation,
edited by W. Heisenberg (Dover Publications, New York, 1946),
Chap. 3, p. 26.

2 S. Belenky, J. Phys. (U.S.S.R.) 8, 347 (1944).' J. Nishimura and K. Kamata, Progr. Theoret. Phys. (Japan)
6, 262 and 628 (1951).

4 L. Eyges and S. Fernbach, Phys. Rev. 82, 123 (1951).' M. H. Kalos and J.M. Blatt, Australian J.Phys. 7, 543 (1954).

this approximation nor upon the accuracy of these
distributions.

Now the Landau approximation is the cascade
equivalent of the well-known multiple-scattering ap-
proximation which, when applied to the elastic scatter-
ing of a particle without loss of energy, yields a Gaussian
angular distribution. It has always been appreciated
that because of the 0—4 dependence of the scattering
cross section at large angles, the multiple-scattering
approximation (in common with the Landau approxi-
mation) has no validity in the "tail" of the angular
distribution. In the theory of multiple scattering this
error in the tail can be corrected by the addition of a
component corresponding to one or a few single scatter-
ing acts each through a large angle (the "single-scatter-
ing tail" ). However the calculations of Snyder and
Scott' and of Molierev of the angular distribution re-
sulting from multiple scattering show that there is a
considerable error in the Gaussian approximation to
this distribution even at very small angles. The

~ H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
r G. Moliere, Z. Naturforsch. 3A, 78 (1948).
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FIG. 1. Theoretical calculations of the track-length angular
structure function for electrons of energy E in an electron-photon
cascade. Full line: Moliere'; broken line: Belenky2 with q= 2.289;
dotted line: Eyges and Fernbach, 4

Gaussian distribution, as yielded by the multiple-
scattering approximation, becomes accurate at small
angles only when the scattering has continued over a
path length of the order of several cascade units.

It wouM appear reasonable to think that this ap-
proximation would be of suffi. cient accuracy at small
angles when applied to an electron-photon cascade,
because such a cascade of a magnitude sufficient for its
angular distribution to be studied must have developed
over a path length of several cascade units. However,
we can show by a very simple argument that the Landau
approximation must inevitably be less accurate than is
the multiple-scattering approximation when applied to
scattering over a path length of the order of one cascade
unit.

Although we are generally interested in cascades that
have developed over a distance of several cascade units,
the major contribution to the scattering of any par-
ticular electron in such a cascade comes from the last
two or three cascade units immediately above it. This
is because the probable energy of the "ancestor" of
this particle at greater heights is much larger than
that of the particle itself. Now the energies of the
ancestors of the particle under consideration are not
Axed quantities but can vary within the limits of a
probability distribution. (If we knew this distribution
we could use it to calculate the angular distribution of
the cascade electrons, but this is by no means the
simplest way to solve this problem. ) Thus some of the

electrons of energy 8 at a given depth had ancestors
with energy very little greater than E at heights of
several cascade units above, while others have just been
produced from electrons (or photons) of energy very
much greater than E—and, of course, we also have
representatives of the infinity of gradations between
these two extremes.

Electrons of the first type have, eBectively, been
scattered over a path length of several cascade units.
Consequently the angular distribution of these par-
ticles, treated separately for the moment, will be
accurately represented by the Landau approximation.
However these same electrons are those (of the given
energy E) which are scattered the most. The latter
type of electrons, those with high-energy ancestors,
will have been scattered much less, and will therefore
make the larger contribution to the over-all distribution
at small angles. But also, as they have been scattered
over a distance small in comparison to a cascade unit,
their angular distribution will be very inaccurately
represented by the Landau approximation. Conse-
quently the Landau approximation is even more in-

accurate at small angles than one would expect from
a simple analogy with multiple scattering.

We thus see that, although the various calculations
of the track-length angular distribution mentioned
above agree well with each other at small angles, it
does not by any means follow that they bear any simi-

larity to the true distribution. The purpose of this paper
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FIG. 2. Theoretical calculations of the projected track-length
angular structure function for electrons of energy E in an electron-
photon cascade. Full line: Belenky~ with q=2. 145; broken line:
Kalos and Blatt. '



ANGULAR DISTRIBUTION IN ELECTRON —PHOTON SHOWERS

is to present a calculation of the track-length angular
distribution of the electron-photon cascade in which
the Landau approximation is not used, thus allowing
for the erst time a determination to be made of the
errors involved through its use. This is made possible
by the use of an approximation to the cascade cross
sections themselves. The approximation used is exactly
the same as that used by Belenky' in his calculation of
the angular distribution under the Landau approxima-
tion. We calculate the track-length angular distribu-
tion using the Belenky model both with and without
the Landau approximation. The "model" of the cascade
we use was invented by Tamm and Belenky8 for the
purpose of yielding an analytical solution for the track-
length average numbers when the ionization loss is
included. We, like Belenky, are using the Tamm-
Belenky model with the ionization term omitted. A
glance at Figs. 1 and 2 shows that the angular dis-
tribution of the Tamm-Belenky model is very little
different from that of other models when the Landau
approximation is used. It is reasonable to assume that
this model will be equally satisfactory when the Landau
approximation is not used.

W(E,8)dt8d8 (2)

to be the probability that an electron of energy E will,
in travelling the distance. dt, su6er an elastic scattering
collision which deQects its direction of motion through
an angle in the ran. ge 8 to 8+d8. Then

2. FORMAL SOLUTION FOR THE ANGULAR
DISTRIBUTION

We define the "track-length angular distribution"

Q(Eo, E,O) dE8d8

to be the average distance (in cascade units) travelled
by electrons of energy in, the range E to E+dE while
moving in a direction at an angle in the range 0 to
8+d0 to the direction of motion of the primary electron
of energy Ep which initiated the cascade. We also define
the elastic scattering cross section

where

8"= $82+8" —288' cosPj:, q =2.289.

The parameter q is defined as the coeKcient occurring
in the following approximate expression for the elec-
tron track-length average numbers which is accurate
when E is much smaller than Eo (see Rossi and
Greisen'):

Q(Eo; E,O)8d8=2r(Eo; E)=Eo/q—E'. (6)

One of the approximations made in the derivation of
the Tamm-Belenky model is the substitution for the
true bremsstrahlung cross section of an approximate
cross section which yields a finite total collision rate
for electrons. The value of this collision rate is q. Hence,
when we are considering also the e6ects of elastic
scattering events, the total collision rate for electrons
becomes q+ Wp.

Define the Hankel transforms

Q(Eo, EA) =
aJ p

J,(0y) Q(E, ; E,O) Od0,

W(E,P) = Jp(8&)W (E,O)0d8 Wp. —(8)
aJ p

Q;.~(Eo, EA) = Q(Ep, E',y)dE',

Then taking the Hankel transform of Eq. (4) yields

Ep

(q/E) ~ Q(Eo; E',4)dE'
J~

+I W(E,~)-qlQ(E. ; E,~)+0(E.-E)=o. (9)

This equation is easily solved by rewriting it in terms
of the Hankel transform of the "integral angular
distribution"

4 p

W(E,O)0d0
as it then becomes a simple first-order differential
equation. The solution is

is the total elastic scattering collision rate.
The equation satisfied by the angular distribution Q

in the Tamm-Belenky model is

Q;.~(Eo, E,4)

1=—V(Eo,g) exp

where

Ep

V (E',y) dE'/E' i (11)

(q/E) Q(Ep, E',0)dE' (q+Wp)Q(Ep, E,O)— W(E,@).
V(E,(f)= 1—

~ao ~2+ dP
+ 8'd8' —W(E,O')Q(Eo; E,O")

~p 2X
The angular distributions are most conveniently ex-

pressed in terms of the "angular structure function"

E)0(0)/0 O (4) F(Eo, E,O)0d0 and the "integral angular structure func-

' I. Tamm and S. Belenky, J. Phys. (U.S.S.R.) 1, 177 (1939). ' B. Rossi and K. Greisen, Revs. Modern Phys. 13, 240 (1941).
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These functions are normalized by

t22
Oo

goo
F(Eo', E,O)OdO= F;„g(Eo', E,O)Od8=1. (14)

pkp

tion" F;„o(Ep,E,O)OdO which are defined by

F (Eo,' E,O) =Q(Eo,' E,O)/2r(Eo, E),

F; i (Eo, E,O) =Q;„t(Eo, E,O)/pr;„2(Eo, E).

we find that the projected structure function can be
recovered from the Hankel transformed function E by
the inversion formula

G(Ep,' E,8) = (1/pr))r cos(8$)F(Ep,' E,p)dp. (21)
p

3. LANDAU APPROXIMATION AND ELIMINATION
OF THE PRIMARY ENERGY

~;.e(Eo, E)=Eo/qE,

The solution obtained by Belenky for the angular
For the Tamm-Belenky model we have the very simple distribution of the Tamm-Be]. enky model can now be
exact expressions for the average numbers obtained by the introduction of the Landau approxima-

tion. We simply substitute

or(Eo,' E)=Eo/qE +O(Eo E)/q— IV(E,~) = —(E.e/2E)' (22)

Then from Eq. (11) we get

F;. (Eo, E,4)
gp

= V(Eo,g) exp — L1—V(E',P) jdE'/E' . (16)

By differentiating Eq. (11) with respect to E and then
dividing by the average numbers or(Ep, E), we can also
obtain

into Kqs. (16) and (17), which then yield

F,.„,(E, E y)

1(E~l'= 1+-I I
1+-i

i , (»)
q &2Eo) q &2E)

—2

F(E.;E,q)= 1y-]
~

1+-~
(

. (24)
q E2Eo) — q E 2E )

F(Eo; E,y) = V (E,y)F;„,(Eo; E,g) for all E&Eo,
(17) We see that the Hankel transform of the angular

structure function depends upon the two variables
p/E and P/Eo. It follows that the structure function
itself is a function of the two variables EH and EpH.

Now we can show that the dependence of this function
upon the primary energy Ep is of very little physical
interest. This is because the track-length distribution
is normally used as an approximation to the actual
distribution at the depth of maximum development of
the shower, and this is an approximation which is only
valid when Ep is much greater than E. We therefore
have no a priori reason for believing that the depend-
ence of the track-length distribution upon the primary
energy bears any resemblance to the dependence of the
distribution at maximum depth upon Ep. In fact it is
easily shown that the second angular moment of our
track-length distribution has a very diGerent depend-
ence on Ep than has the second moment at maximum
depth.

The various moments of the angular structure func-
tions are easily obtained as the coeQicients of the power
series expansion of their Hankel transforms, thus:

F(Eo, EpA) = V(EoA).

It can be seen that the function V(E,P) is the Hankel
transform of the track-length angular distribution re-
sulting from pure elastic scattering together with an
absorption coefficient g.

The structure functions Ii and F;„~ can be recovered
from Eqs. (16) and (17) by application of the inverse
transformation

al
p

rG(E.; E,O) = (1/ )„F(E.; E, (8'+~')~)d~ (»).
p F(Ep ~ E y) = &o(Oy) F(Eo,' E,O) 8&8,

We thus have an analytic expression for the track-
length angular structure function of the electrons in
the Tamm-Belenky model of the electron-photon cas-
cade using a general expression for the elastic scattering
cross section.

The "projected track-length angular structure func-
tion" G(Eo, E,O)dO is defined by

It represents the angular distribution that would be
seen if all the tracks of the electrons were projected
onto a plane containing the shower axis. Using the
identity

$2tL )00
O' "F(E E 8)OdO (25).

~=p 4 (22 l)2J
~00

~

~.(~(8'+~'):)~~= -.(8~), -
0

(20) Expanding Eqs. (23) in a series of powers of P, we 6nd
that the second moment of the integral track-length
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structure function is T~LE I. Values of the parameters A and W& for several media.

1(EI'
(8;„,').,=—

I

—
I L1+ (E/E, )Pj.

2q EE)
(26)

Thus the second integral angular moment decreases
with increasing primary energy approaching, as Ep
tends to infinity, a value half of its value when Ep
equals E. On the other hand, the calculation by
Chartres and Messel" of the second integral angular
moment as a function of depth indicates that the value
of the moment at the depth of maximum cascade de-
velopment shows an increase with increasing primary
energy.

This reasoning will still apply when we do not use
the Landau approximation, for the second moment is
not altered by the use of this approximation. We shall,
therefore, for the remainder of this paper deal only
with the angular structure function for infinite primary
energy. We define

F(E,O) = liinitF (Ep ', E,O),
gp —woo

(27)

with a similar expression for the integral angular
structure function. The inversion integral, Eq. (18),
can now be evaluated analytically under the Landau
approximation, yielding

Jp(84)add
F(E 8) =

"o I:1+(1/q)(EA/2E)']'

Medium

Carbon
Water
Air
Aluminum
Iron
Copper
Lead

6
7.2
7.4

13
26
29
82

A (Mev) '

123
115
114
93.8
71.4
68.0
34.8

1.60X10'
1.43 X10'
1.41X10'
9.85 X104
5.98X104
5.44X 104
1.41X104

where
1.13Z'mt"

I
1.13+3.76 (Z/137)']'

137E
(32)

137'-(mc')'
H/ o~o'= L1+0.12 (Z/82)'j '

E' ln(183Z ')

F (E8)E8d (E8)= 1, (34)

and m is the electronic mass. For the value of the angle
Oo, we have used the result of a more accurate estima-
tion by Moliere. 7

This cross section yields a simple Hankel transform,
namely

W(E,P) =Wp[8+Ei(8+) —1j, (33)

where Iti(x) is the inodified Bessel function of the
second kind. " Substituting this expression into Eqs.
(17), (18), and (27) we find that the angular structure
function becomes a function of E8 only, so renormalizing
it by

=4q(E/E, )' expI —2 ~qE/8E], (28)
we have

u = 2q~E8/E,

and renormalize it accordingly. We then have

F(I)= e
—"; F;„,(si) = e—"/si.

4. CALCULATION OF THE ANGULAR
STRUCTURE FUNCTION

(30)

(31)

To obtain a more accurate angular distribution than
that given by the Landau approximation, we use for
the elastic scattering cross section the simple analytic
expression due to Goudsmit and Saunderson, "vis. ,

W (E,8) = 2Wp8ps/(8'+8ps)',

J(py8)gory
F;„t,(E,8) =

I:1+(1/q) (EA/2E)'3'*

expL —2 &qE/8'=4q(E/E )' . (29)
2q'E8/E,

These expressions are greatly simplified if we express
the structure function as a function of the single

.variable

Jp(AE8x) xdx
F(E8)=A' I

& p 1yW, I1—xlt, (x)$

Xexp &X/~, (35)
1+W L1 —~& (~)3-

3 '=Eep (35a)

is a parameter, with the dimensions of energy, depend-
ing upon Z only; and

Wi= Wp/q, (35b)

which is simply the ratio of the electron collision rates
against elastic scattering and bremsstrahlung respec-
tively, is also a function of the atomic number Z.
Values of the parameters A and 8 ~ are entered in
Table I for several media.

Owing to its dependence on the parameter W~, the
angular structure function is no longer a universal
function valid for all media, as it was under the Landau
approximation, but instead has to be recalculated for

"B.A. Chartres and H. Messel, Proc. Phys. Soc. (London)
A67, 158 (1954). G. N. Watson, Bessel I'Nections (Cambridge University Press,

"' S. Goudsmit and j.L. Saunderson, Phys. Rev. 57, 24 (1940). Cambridge, 1952), second edition, p. 78.
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0.03 larity of the type 1/8 from F (E8). We now investigate
this singularity.

The behavior of F(E8) at small values of E8 depends
upon the behavior of its Hankel transform at large
values of the variable. Now xEi(x) is a monotonically
decreasing function of x with the asymptotic behavior

002 xEi(x) P x)le—. (36)

F(se)

where
gx—wt/(1+wzi C/x (37)

Hence for large values of x the exponential term in
Eq. (35) behaves like

0Oi C= limit exp-
+~00

0

g 1
1——

1+W t1 —&&i(X)j X

+ —lnx =1X10 ' in air. (37a)
1+Wi

Again, for sufficiently large values of x, the factor
00 4 6

ge
io

FIG. 3. Calculations of the track-length angular structure
function F(E8)Egd(EO) for electrons of energy E Mev in the
Tamm-Belenky model of the electron-photon cascade in air. Full
line: exact calculation; broken line: calculation based on the
Landau approximation with E,=21 Mev; dotted line: calculation
based on the modified Landau approximation with Eg =18.9 Mev.

1/(1+Wi[1—xKi(x)j}
in Eq. (35) can be replaced by

1/(1+Wi) =7.1)&10 ' in air.

0.06

(38)

(38a)

each medium. The full line in Fig. 3 is the result of a
calculation of the angular structure function from Eq.
(35) for air. The broken line in the same figure is the
same function calculated under the Landau approxima-
tion. It can be seen that the Landau approximation is
indeed very inaccurate at small angles. A comparison
of Figs. 1 and 3 also shows that the error due to the
use of the Landau approximation is very much greater
than the differences between. the structure functions
derived from diferent models of the cascade. This
justifies our use of the Tamm-Belenky model in order to
eliminate the Landau approximation.

The projected angular structure function G(E8)d(E8)
is given by a similar expression to Eq. (35) with the
kernel

005~

004

003

|(se)

002

replaced by
A'Jp(AE8x)x

(1/p/)A cos(AE8x).
0Ol

The full line in Fig. 4 is the projected angular structure
function in air. The broken line is the same function
calculated under the Landau approximation. It is
apparent that the projected distribution is less sensitive
than the unprojected one to the error involved in the
Landau approximation.

5. SINGULARITY AT THE ORIGIN

In our numerical calculation of the angular structure
function from Eq. (35), we have eliminated a singu-

00
Eg

FIG. 4. Calculations of the projected track-length angular
structure function G{EO)d{EO) for electrons of energy E Mev in
the Yamm-Belenky model of the electron-photon cascade in air.
Full line: exact calculation; broken line: calculation based on the
Landau approximation with E,=21 Mev; dotted line; calculation
based on the modified Landau approximation with Eg =18.9 Mev.
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So the behavior of F(E8) at very small E8 is, if we write
F,(E8) for the singular part of F(E8),

F (E8)=A X7X10 Jo(AE8x)dx
Jo

=SX10 '/E8.

(39)

In our calculation of the angular structure function we
eliminated this singular part, that is, we calculated

F =F—F' (40)

3X10 5XSX10 =2X10 " (41)

Thus we see that a shower would have to contain
SX10"electrons in order that just one electron could
be observed which would verify the existence of this
singularity in the angular distribution. We are therefore
completely justified in neglecting the function F,(E8),

The relative insignificance of the singular component
F, is made obvious when we note that it exceeds F„in
magnitude only for EH less than 3X10—' Mev; thus it
would be completely invisible on the graph (Fig. 3) we
have drawn. Furthermore, the proportion of the elec-
trons which are represented by this singular component,
which is obtained by integrating F, from EH=0 to
3X10 ', is

proximation is justified in our case by the fact that in
our numerical evaluation of the expression (35) we
found that, for all values of E8 used excepting only
EH=0, the values of x that contributed to the integral
were so small that the first term of Eq. (42) was suK-
ciently accurate to yield the integral to 6ve significant
figures.

Substituting this approximate expression for xEi(x)
and yIC&(y) into Eq. (35) gives an expression for F(E8)
which can be considerably simplified by the use of the
new angular variable,

u= 2q'*E8/E& 3.026 (E——8/Ee), (43)

A'Eg' (A~Ey2 )
-=W& 1 —2&+lnl

g q )
We also define

8=A'E /eqWi.

Then Eq. (35) becomes

J0(ux) xdx
F(u) =

1+x' (x'/8) ln(—x')

(44)

(45)

where Eg, our new characteristic scattering energy
which replaces E, [compare Eq. (30)j, is defined by

6. ANGULAR STRUCTURE FUNCTION
AS A SERIES

S 1X-,I-
1+y'—(y'/&)1 (y')- y

(46)

The calculation we have performed of the angular
structure function is one which must be repeated for
each different medium as the parameter t/t/~, which
varies from one medium to another, plays an important
role in the expression. We can get around this difficulty
by expanding the function in a manner analogous to
that used by Moliere' in his calculation of the angular
distribution resulting from pure elastic scattering.

Expanding xEi(x) in a power series gives

P„(u)
F(u)= P

n=O
(47)

we obtain

Po(u) =e—",

We now expand this expression in a series of powers
of 1/B. Writing

x' ~ (x'/4)"
1—xEi(x) =—Q

4 ~=o e!(I+1)! where

F„(u)= Jo(ux)f.(x') xdx, (48)

1 (1 1 1
X +2~ -+-+" +—V ~

—»(x'/4), (42)
n+1 (1 2 I

r

where y=0.5772157 . The approximation inherent
in the Moliere method essentially consists of taking
only the first term in this series. Bethe" has justified
this (in the case of multiple scattering) by showing
that it is equivalent to using the multiple-scattering
approximation for all scattering events that give de-
Aections through angles small enough that the value of
the angle Oo is significant. This argument is not su%-
cient here because, as we have seen, the Landau ap-
proximation is inherently less accurate than the
multiple-scattering approximation. However, this ap-

"H. A. Bethe, Phys. Rev. 89, 1256 (1953).

(3x/2) lnx —-', (1+x) ln(1+x)
i(x =

7(1+x)'i'
(49)

15 (x lux~ ' 3 (x lnxq
f (x) = (1+*) ' —

I I
—-I

I »(1+x)
8 &1+xI 4 41+x)

1 (x inx)
+-', [ln (1+x)]'+—

]

2 «+x)
1 p* in/—-', ln(1+x) —— dy . (50)
2~, 1+y

We now have a solution in terms of the two parameters
Eg and 8 which is of such a form that a change of these
parameters is easily made without computing the in-
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Medium

Carbon
Water
Air
Aluminum
Copper
Lead

6
7.2
7.4

13
29
82

ZO (Mev)

18.8
18.9
18.9
19.0
19.1
17.9

TABLE IZ. Typical values of 8 and E&.

14.58
14.46
14.44
14.06
13.42
11.96

solution given by the Landau approximation but with
the modified value of E,. The dotted line in Fig. 4 is the
result given by the use of the modified Landau approxi-
mation. Owing to the relative insensitivity of the pro-
jected function to errors in the scattering cross section,
only the two terms Gp and G& are necessary to give a
distribution indistinguishable from the one given by
the more exact calculation.

'7. DISCUSSIONtegrals over again. Typical values of 8 and Ey are
given in Table II, while values of Fs(e), F&(m), and
Fs(N) are given in Table III—The values of Fs(u) are
not very accurate and should be treated as order-of-
magnitude estimates only.

A very interesting point which arises from this ex-
pansion of the structure function is that the first term
in the series is of the same form as the solution given
by the Landau approximation. Hence, for applications
in which a high degree of accuracy is not required, we
can still use the Landau approximation as long as we
replace the characteristic scattering energy E, by the
value of Eg appropriate to the medium. This procedure
is then equivalent to using the exact scattering cross
section but taking only the 6rst term of the series in
Eq. (47). The dotted line in Fig. 3 is the angular struc-
ture function found for air when this "modified Landau
approximation" is used. It can be seen that the modi-
fication of the value of E, greatly improves the accuracy
of the distribution at small angles, although it still does
not reproduce the rather sharp peak of the more exact
function.

When a higher accuracy is required, more terms of
the series equation (47) must be used. The three curves
in Fig. 5 give the percentage error involved in the use
of 1, 2, or 3 terms respectively of this series. These
errors were found by comparing the results of this
calculation with that of the exact expression, Eq. (35).

The projected structure function G(N) can be ex-
panded in exactly the same way, yielding

We have presented here the results of a calculation
of the track-length angular structure function and the
projected track-length angular structure function of
electrons in an electron-photon cascade. These functions

20

IO

0

"S
0 IO

Fia. 5. The percentage error involved in the calculation of the
track-length angular structure function of electrons in the Tamm-
Belenky model of the electron-photon cascade using 1, 2, or 3
terms, respectively, of the series equation (47).

Gs(si) = (si/7r)Ei(u),

1
G„(N) =-

m~p
cos(six)f (x')dx

Fo (u) F2 (u)

1.386
0.302
0.154
0.005—0.081—0.046
0.004
0.001

are a very good approximation to the analogous dis-
tributions at the depth of maximum development of a

Values of Gs(N) and Gi(e) are given in Table IV. Once cascade —the approximation improving with increasing
again the first term, Gs(u), is identical in form to the values of Fs/F.

The results of this calculation are expressed in the
TABLE III. Values of Fo(N), F&(e), and F2(N). form of values of five universal functions Iip, Iiy, Ii2,

Gp, and G&. Using the values of the two parameters E&
FI(u) and 8 appropriate to the medium under consideration,

0 1.0000 7 the angular structure functions can be obtained very
easily from these functions by the use of Eqs. (43) and

0.6065 0.2 (47). The error involved in this estimation is less than
1 0.3679 —0.08 1% for all angles except, in the case of the unprojected

4 0.0183
2 0.1353

function, values of Ee less than 1 Mev where the error
8 0.0003 never exceeds 3 percent.

The only remaining source of error in this calculation
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is that which arises from the use of the Tamm-Se1enky
model to represent the electron-photon cascade. We
can estimate this error by comparing the angular dis-
tributions yielded by this and other models under the
Landau approximation. This is done in Figs. 1 and 2.
When we note that the calculations of Moliere and of
Kalos and Blatt also used an approximate model of the
cascade and that the angular distribution of Eyges and
Fernbach was obtained from the angular moments by
a graphical method, and when we compare the very
small differences between the results given by these
different methods with the larger error due to the use
of the Landau approximation, we see that our calcula-
tion is, indeed, the most accurate estimation of the
track-length angular distribution yet made.

However, we must point out three limitations on the
range of validity of our calculation.

(1) The first is that due to the use of the "small
angle approximation. " The derivation of Eq. (4) is
based upon the assumption that all angles 8 are so
small that the angle can be equated to its sine or tan-
gent. As the mean angle is of the order of E,/E Lsee

TABLE IV. Values of Go(u) and Gi(u).

Go(u)

0.3183
0.3116
0.2982
0.2636
0.1916
0.1324
0.0890

G1 (u)

0.0000—0,0092—0.0202—0.0359—0.0415—0.0295—0.0143

Eq. (26)j, this limits the range of validity to energies
much greater than 21 Mev.

(2) The second limitation is that due to the n.eglect
of ionization loss. This limits the range of validity to
energies much greater than the critical energy whose
value decreases with increasing atomic number, rang-

ing from 84 Mev in air to '7.6 Mev in lead. Thus whether
restriction (1) or (2) is the more important depends
upon the medium.

(3) The third restriction is due to the neglect of the
6nite size of the scattering nuclei in the derivation of
the elastic scattering cross section, Eq. (32). This
results in the cross section, and hence the final angular
distribution, being inaccurate for all angles 0 of the
order of magnitude of or greater than 8», where

Ee»—-100Z ' Mev. (52)

This limitation is most restrictive in the heaviest media;
in lead we have Ee»—-E,=20 Mev.

The results of our calculation settle for once and for
all the question of the validity of the Landau approxi-
mation at both small and large angles. It has been
realized in the past that the Landau approximation
could not possibly yield correct results for large values
of 8, but, by using physical arguments, it was strongly
argued that the approximation could have little or no
effect on calculations for small values of 0. The results
presented in Fig. 3 show how wrong such physical argu-
ments were and that the use of the Landau approxima-
tion yields incorrect results for both large and small
8. Incidentally, it also shows the danger of using
purely physical arguments to justify mathematical
approximations.

The present result also shows that all previous calcu-
lations on the radial distribution function which used
the Landau approximation contain large inaccuracies
at small and large distances from the shower axis.
Agreement between theory and experiment may be
due to the inability of experiments to yield su%ciently
accurate results.
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