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greater than 2. If the ground state spin is assumed to be
2, then these two excited levels can be used to calcu-
late a decoupling parameter u= —0.071, and the next
rotational level is predicted at 134.5 kev. The vibration-
rotation interaction correction, which is proportional
to P(I+1)', for this 7/2 level amounts to about —2

kev, bringing the energy of the expected level into good
agreement with the one observed at 132 kev. This
apparent sequence of rotational levels seems to be
fortuitous, however, since it is not supported by the

TABLE III. The resolution of the beta spectrum of Tb'6'.

Maximum
energy, kev

531~10
447+10
405&10

Percent
abundance

22Po
10%

Log ft

6.7
6.9
7.2

/t I, parity

Oor 1, yes
Oor 1, yes
0 or 1, yes

observed ground state spin, Coulomb excitation
studies, ' or character of the beta transitions.
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The Quctuations of the neutron reduced widths from the resonance region of intermediate and heavy
nuclei have been analyzed by a statistical procedure which is based on the method of maximum likelihood.
It is found that a chi-squared distribution with one degree of freedom is quite consistent with the data while

a chi-squared distribution with two degrees of freedom (an exponential distribution) is not. The former
distribution corresponds to a Gaussian distribution for the reduced-width amplitude, and a plausibility
argument is given for it which is based on the consideration of the matrix elements for neutron emission from
the compound nucleus and of the central limit theorem of statistics. This argument also suggests that within
the framework of the compound-nucleus theory all reduced-width amplitudes have Gaussian distributions,
and that many of the distributions for the various channels may be independent. One consequence of the
latter suggestion is that the total radiation width for a given spin state which is formed in neutron capture
will be essentially constant, in agreement with some observations, because it is the sum of many partial
radiation widths. The fluctuations of the provisional fission widths of U'" are best described by a chi-
squared distribution with about 22 degrees of freedom, indicating that there are effectively only a few

independently contributing 6ssion channels.

I. GENERAL REMARKS

S EVERAL hundred resonances have been observed
in the Brookhaven fast chopper work on total

neutron cross sections of intermediate and heavy nuclei
in the neutron energy range up to several hundred
electron volts. ' For many of these resonances it has been
possible to deduce the neutron width F„and the velo-
city-independent reduced width 1'„e=F„/Ee&, where Ee
is the resonance energy. ' ' In. a typical sample of from
ten to fifteen resonances the reduced widths are observed
to fluctuate violently, the ratio of the largest to the
smallest being as high as several hundred. Indeed,
Hughes and Harvey' have recently shown that the
aggregate of the reduced-width data for fourteen nu-

clides is reasonably consistent with exponential-like

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'Seidl, Hughes, Palevsky, Levin, Kato, and Sjostrand, Phys.
Rev. 95, 476 (1954).

e Harvey, Hughes, Carter, and Pilcher, Phys. Rev. 99, 10 (1955).
3D. J. Hughes and J. A. Harvey, neutron Cross Sections,

Brookhaven National Laboratory Report BNL-325 (Superin-
tendent of Documents, U. S. Government Printing Once,
Washington, D. C., 1955).

e D. J. Hughes and J. A. Harvey, Phys. Rev. 99, 1032 (1955).

distributions, one of the form x ' exp( —
st@) and another

of the form exp( —x), where @=I'„'/(1'„')A„. In view of
the importance to nuclear reaction theory and to nuclear
engineering of knowing which of the two distributions is
more likely to be the correct one, we have made a more
quantitative statistical analysis of the data. This
analysis shows that the former distribution is quite
consistent with the data, whereas to the latter orie it
assigns a very small probability of being correct. The
most significant consideration of our analysis which

enables this distinction to be made is the accounting for
the possibility that levels with small widths, of which

there are predicted to be a relatively large number in

the former distribution, will not be observed. A second
consideration which also enhances this distinction is the
accounting for the errors introduced when finite-

sample averages are used as estimates for the infinite-

sample (population) averages (F„')A, .

'The existence of a reasonably well-defined average neutron
reduced width is assumed here. The existence of such an average
is suggested by the work of Feshbach, Porter, and Weisskopf,
Phys. Rev. 96, 448 (1954) and of Lane, Thomas, and Wigner,
Phys. Rev. 98, 693 (1955).
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The x l exp( ——',a) distribution is also more reasonable
on theoretical grounds. It corresponds to a Gaussian
distribution for the reduced-width amplitude (that is,
for gl) for neutron emission from the compound nucleus
while the exp( —x) reduced-width distribution corre-
sponds to an amplitude distribution which assigns a
zero probability for a zero amplitude. The reduced-
width amplitude is proportional to an integral (matrix
element) of the product of a wave function for the state
of the compound nucleus and a wave function for the
neutron channel, the integral being over the nuclear
configuration space of many dimensions (essentially
3A, where A is the number of nucleons). ' In the spirit of
the compound-nucleus theory, the former wave function
is presumed to be very complex as a result of the strong
nuclear interactions, and the wave functions for the
various states are presumed to be essentially unrelated
to each other. One may regard the matrix element as
composed of contributions from many "cells" of the
configuration space, the sign of the contribution from a
particular cell being positive with the same probability
that it is negative, and the sign and magnitude of a
particular contribution being random from level to level
and independent of the signs and magnitudes of the
contributions from the other cells. The over-all size of
each cell may be supposed to be such that each linear
dimension is about 1X10 " cm, the characteristic
wavelength of a nucleon in the nucleus, so that in a
heavy nucleus there will be a very large number of
independently-contributing cells. In consideration of
the central-limit theorem of statistics, it may be ex-
pected that the probability distribution for the matrix
elements (that is, for the sum over cells) will be approxi-
mately normal (that is, Gaussian) with zero mean and
asymptotically normal in the limit as the number of
effective independently-contributing cells becomes in-
finitely large (as in a hypothetical, infinitely heavy
nucleus). '

The above arguments are not intended to constitute
a derivation for the normal distribution but they do
make it a plausible one. Departures from normality are
to be expected. For example, according to the signer
limit the reduced widths I' ' cannot exceed several
thousand electron volts. However, this limit is millions
of times larger than typical average reduced widths of
heavy nuclei, so that the truncation occurs far out in the
tail of the distribution and will not significantly aGect
the present considerations. '

~ More precisely, the matrix element is a "surface" integral in
the sense that the coordinate for the relative separation of the
neutron and the residual nucleus is set equal to the channel radius.
See Kq. (17) of K. P. Wigner and L. Kisenbud, Phys. Rev. 72, 29
(1947) for the precise definition.

7 See, for example, Harald Cramer, Mathematica/ Methods of
Statistics (Princeton University Press, Princeton, 1945), Sec. 1,7.4.

8 In this connection it is important to realize that the matrix
elements can always be made real. See the discussion following the
equation referred to in reference 6.

'The relation between the reduced width y' of the Wigner-
Kisenbud theory (reference 6) and the reduced width F„'which is
commonly used in the discussions of low-energy neutron resonance

It seems reasonable to hypothesize that all reduced-
width amplitudes for levels of the compound nucleus
(that is, levels of fairly high excitation) will be dis-
tributed approximately normally with zero means when
sampled from level to level"; the variances of these
distributions are just the average reduced widths. The
amplitudes associated with the partia/ radiative capture
widths for the compound states will also be assumed to
have such a distribution because these amplitudes are
proportional to matrix elements involving the wave
functions of the compound states (as well as to wave
functions for the final states). On the other hand, the
distribution for the totu/ radiation width for a particular
spin state which is involved in neutron capture is ex-
pected to be very narrow, its variance being inversely
proportional to the number of contributing partial
widths. However, this demonstration (Sec. III) involves
the additional assumption that the distributions for the
various partial widths are independent, "which assump-
tion is more open to question than is the normality
assumption. Although the independence assumption
may be applicable to the bulk of the transitions to states
of fairly high excitation, which states are dense and
presumably complex like the states of the compound
nucleus, it may not be applicable to the direct transi-
tions to low-lying states which may not be sufficiently
complex. That is, several low-lying states might be
identical in all respects except for a single property
which is not involved in the radiative matrix elements
except possibly through a common factor; the distribu-
tions of the matrix elements to these several states
would then be completely correlated, although they
could still be normal. However, for the treatment of III
such transitions are combined as a single "indepen-
dently-contributing" transition. The above-mentioned
variance of the distribution for the total radiation
width is then inversely proportional to the number of
"independently-contributing" partial widths rather
than to the actual number of partial widths. It is hard
to say just what di8erence is to be expected of these two
numbers; it would depend on the relative importance of
the contributions from transitions to the low-lying

is F„s=F„/Zs(ev)1=0.4390vsg)&10 s, where ys has the same
energy unit as F„o, and a is the channel radius in units of 10 '3 cm;
although p' refers to the center-of-mass system, the energies of
F„and Eo refer to the laboratory system. (As it is not necessary
to specify a nuclear radius in the consideration of s-wave neutron
widths, one may prefer to regard the reduced width as the product
p a, which has the dimensions of energy times distance. ) The upper
limit of y' is approximately A'/Ma', where M is the neutron mass,
or 40/a' Mev when u is specified in the above unit. The upper
limit of F„s is therefore 18/a kev.' The proton reduced widths of the 2+ levels of Cu' which are
excited when Ni58 is bombarded by protons with energies from
2-, to 5 Mev are observed to be distributed in an exponential-like
manner [J.P. Schiffer (private communication)g. For an abstract
on this experiment, see Moore, Schiffer, and Class, Bull. Am.
Phys. Soc. Ser. II, 1, 39 (1956).

"Distributions which are independent are of course also un-
correlated, but the converse is not generally true. However, for
the discussions which follow it is well to keep in mind that normal
distributions which are uncorrelated are also independent; (see
Sec. 24.1 of reference 7).
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states compared to the contributions from the states of
fairly high excitation.

The distribution of fission widths is considered in
Sec. IV. Offhand, one might expect this distribution to
be very narrow because, like radiative capture, there
are many final states for the fission process, one for each
possible fragment pair and additional ones for each
possible pair of excitation states that are energetically
accessible. The amplitudes associated with the partial
widths for these states are expected to have normal
distributions. However, if in the fission act the nucleus
passes through only one or a few well-ordered nuclear
states (fission channels) which describe the saddle-point
configuration, " the various partial widths would be
highly correlated (see the appendix). Indeed, if there
were only one such state, the partial width distributions
would be completely correlated, and the total 6ssion
width would be expected to have the one-channel
distribution x l exp( ——', x).

The distributions of nuclear reaction widths enter
into the considerations of the averages and the Auctua-
tions of the cross sections for nuclear reactions which
proceed through compound-nucleus formation. Al-
though in some of the previous published work the
randomness of the signs of the reduced-width amplitudes
was considered, it was generally not suspected that the
Quctuations of the magnitudes were large enough to
warrant detailed considerations. " The average cross
section for compound elastic scattering of neutrons, for
example, is now found to depend critically on the extent
of the Quctuations of the neutron reduced widths. Thus,
the cross section predicted using the x:exp( ——',x)
distribution is twice as large as that predicted using the
less-violent exp( —x) distribution, and in the excitation
region where the levels overlap it is many times larger
than the prediction for constant widths. "As another
example, the average capture-to-fission ratio of U"' is
found to exceed the ratio of the average capture width
to the average fission width by an amount which
depends on the extent of the 6ssion width fluctuations. "
These matters will be discussed later in more detail.

II. NEUTRON WIDTHS

The distributions x *' exp( ——,'x) and exp( —x) belong
to the class of chi-squared distributions

P(x; p)dx=l'(p) —'(px)o —'e—
& pdx, (1)

where v=2p is a parameter which is referred to in the
literature on statistics as the number of degrees of
freedom. This terminology is also appropriate for
physical discussions, and the distributions under in-
vestigation will be referred to as chi-squared distribu-

"A. Bohr, I'roceedings of the International Conference on the
I'eaceful Uses of Atomic Energy (Columbia University Press, New
York, 1956), Vol. 2, Report P/911.

u See, for example, R. G. Thomas, Phys. Rev. 9?, 224 (1955).
'4 See Eq. (45) of reference 13."Sophie Oleksa (to be published).
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FIG. 1. The chi-squared distribution (1) is plotted for v=1, 2,
4, 16, and ~ degrees of freedom. The abscissa x is the ratio of the
width P to its average (F)s,. Note that v=2p.

tions with one and two degrees of freedom, respectively.
The above expression is recognized as being proportional
to the integrand of the integral which defines the gamma
function; the gamma function I'(p) in (1) thus serves to
normalize P(x) to unity. It is evident that (x)A„——1 and
that the variance of x(varx—=(x')A„—(x)A„') is equal to
p

' so that the parameter p (or, equivalently, the number
of degrees of freedom p) characterizes the width of the
distribution, the greater the number the narrower the
distribution. Chi-squared distributions for several
integral values of v are drawn in Fig. 1:when p&~ 1, the
maxima (most-probable values) appear at x=1—p i;
when p&~ 1, the function becomes in6nite at the origin;
and when p= ~, it reduces to a delta function at x= 1.
The chi-squared distribution can thus describe a wide
variety of distributions, and the object is now to deter-
rnine the range of p (considered as a continuous variable)
that is reasonably consistent with the data and to test
the hypotheses that the "true" distribution has one or
that it has two degrees of freedom. "

A statistically eKcient method (that is, one that
admits a small uncertainty) for determining the best-
fitting value of the parameter p is the maximum-likeli-
hood method. " According to this method the most-
probable value of p is the one that maximizes the loga-
rithm of the likelihood function, which is the product of
the P(x;; p) for the set of rrt measurements x;. In this
way it is found that the most probable value of p is the

ie The distribution x & exp( —x&) was also tested by Hughes and
Harvey, 4 and found to be inconsistent with the aggregate of the
data. This distribution was observed by Bethe to give a good ac-
count of the reduced widths of U"' LH. A. Bethe, Proceedings of
the International Conference on the Peacefnl Uses of Atomic Energy
(Columbia University Press, New York, 1956), Vol. 4, Report
P/585j. We will not consider it here because the chi-squared
distribution seems general enough, and for the same reason we will
not consider any of a large variety of other distributions that
might be proposed.' See, for example, M. G. Kendall, The Adwnced Theory of
Statistics (Charles GriKn and Company, Ltd. , London, 1946),
Vol. II, Chap. 17.
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one that satisfies the transcendental equation (the
subscript and superscript of r„' being dropped)

FIG. 2. Plot of the function F(p; ai) of (11) for several values of
the parameter xg, the value of x at which the eSciency for detecting
levels is one-half. The most probable value of xy is 0.01. When
xi=0 this function reduces to the function defined by (2a). Note
that v=2p.

sizes available for the various nuclides are not large,
and a correction must be made for a possible diBerence
of the sample average from the population average.
2. Samples of reasonable size are available for about 15
nuclides, and an analysis is desired which makes use of
all of these for the estimate of the best universal value
of v. 3. The experimental uncertainties of the reported
reduced widths should be taken into account. 4. As a
consequence of instrumental limitations, levels with
small widths may escape detection, and although there
may be only a few of these, rather large errors can be
introduced into the v determination, especially when v

is small, as it seems to be. These complications will now
be considered.

1. The sample average (3) has a chi-squared distri-
bution with nsv degrees of freedom":

1 (mpr)
J (r; p)dr=

I'(mp) E(r)A„)

( mpr) (mpr)
XexpI — IdI I (4)

(r)„„i ((r)„„i

(2) From this distribution it is evident that

where
F(p)=4(p) —»p, (2a)

lb( ) being the derivative of the logarithm of the
gamma function. The curve in Fig. 2 labeled x;=0 is the
function F(p), and it may be used for the determination
of p when the sum in (2) is known. The asymptotic
expression for the variance of this determination is

(r)A =«)A, (4a)

var, I'= (I') A,s/mp, (4b)

(in(r/(r) A ))=F(mp), (4c)

and that the most probable value of I' is L1—(mp)-'j
X(r)A„. Consider the function

var, p ™iLW'(p)—p
—'j—', (2b)

m

C =—P ln(r, /r)yF(mp) —F(p). (S)

(C)A.=0,

where lb' is the derivative of lb. 's

For Uses there are 11 reduced-width measurements Using (4c) it is evident that
that can be used. " By approximating the population
average (I') A„by the sample average,

1 m

r= —gr;, (3)

and it may be shown using (1) and (4) that

var, C =m—'lb'(p) —P'(mp). (Sb)

a value of —1.22 is obtained for the sum in (2), and
referring to the x;=0 curve of Fig. (2) a value of i = 1.04
degrees of freedom is deduced. According to (2b) the
standard deviation of this determination is 0.36 degree
of freedom, indicating that the value v=1 is consistent
with the data whereas the value v= 2 is not.

Although the above example does illustrate the main
features of the maximum likelihood analysis, several
important refinements are called for: 1. The sample

' For tables of P( ), P, and ib' see Harold T. Davis, Tables of
IIigher 3fathematical Functions (The Principia Press, Inc. , Bloom-
ington), Vol. I (1933) and Vol. II (1935).

'I'These are the measurements which appear above the dotted
line in the table of resonance parameters of heavy nuclei in refer-
ence 3. The listing below the dotted line is not considered to be
complete.

The best estimate for p may be taken as the solution to

C(p) =0. (Sc)

According to the central-limit theorem, as the sample
size increases the distribution of the function C asymp-
totically approaches normality:

P(C)dC (2sr varC) l exp( —Cs/2 varC)dC. (Sd)

It will be assumed that the samples are large enough to
justify a normal approximation (Sd), and the hypo-
theses may then be tested by consideration of the error

~' See M. G. Kendall, The Advanced Theory of Statistics (Charles
Grif5n and Company, Ltd. , London, 1946), Vol. I, Example
10.11. This result may readily be verified by noting that its
Laplace transform is equal to the mth power of the Laplace
transform of the distribution (1), in agreement with the convolu-
tion theorem.
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function

(Se)

where
n =C/(varC) '*.

It is evident from (4b) that the variance of an average deter-
mination of a sample of widths which obey a ~=1 distribution is
twice as large as it is for a v= 2 distribution. In many of the pub-
lished listings of average reduced widths and of strength functions,
the uncertainties were arrived at assuming v=2; these uncer-
tainties should be increased accordingly if the v= 1 distribution is
accepted as the correct one."For the U"' data the average of the
11 widths is 2.7 mv (1 mv—=10 ' ev), and the standard deviation
corresponding to (4b) is 1.2 mv, indicating that the errors of the
average extimates from the typical samples available for heavy
elements are apt to be rather large.

2. It is a straightforward matter to modify the above
formulas for treatment of the composite data. In place
of (5), one considers the function

C = (I/res) P;, ln(I';;/I', )+Q, (ns;/m)F(m;p) F(p—),
(6)

where F;; is the ith width of the jth nuclide; m; is the
number of the widths of the jth nuclide; and ris= P,m;.
It may be verified that

(6a)
and that

var, C = (1/ris)P'(p) —Q, (ris;/m)'iP'(its;p). (6b)

For even, the smallest sample which is used (res, =3), it
is suKciently accurate to use for F(tis;p) and for P'(m, p)
just the first few terms of the asymptotic expansions":

P(s) —lns ——'s '—(1/12)s s+(1/120)s 4— (7a)

Z(x; x;; ~)=1—exp( —(.x) ),
where

s = (ln2) "/x.

(10)

and a good fit is obtained with a value of 0.53 for the
shape parameter 0-. The analysis has been carried out
with 0.= ~, 1, and ~." The results were found to be
essentially the same in each case so that it will suKce to
present here the details for just the simplest case, a = 1.

The quantity I(: is very large compared with p, and it
is therefore permissible to neglect —px when it appears
together with —I(:x as the argument of the exponential
function; after renormalization the "experimental"
distribution is then

4. Since the instrumental resolution depends upon the
neutron energy (as does the average neutron width),
the efFiciency for detecting levels will also depend on the
neutron energy as well as on the average reduced width
of the sample. An analysis which accounts for these
dependences has not been devised, and we will have to
be content with using an over-all eKciency factor E(x)
for all energies and for all samples. The "experimental"
distribution function will be taken as the product of the
"theoretical" factor, which is given by (1), and the
"experimental" factor E(x), this product being then
renormalized to unity. According to an analysis by
Harvey, " the over-all eSciency is one-half at a value
x=—x*,= antilogis( —2.00&0.15); the efficiency increases
from 30 to 70% for a factor 10 increase in x and from
15 to 85% for a factor 100 increase in x; it is uncertain
outside of the latter interval. As a function of log10x, the
eS.ciency curve may be approximated closely by an error
function with a standard deviation of 0.85. However,
for the present considerations it is more convenient to
represent it by a function of the form

f'(s) s '+-', s '+-', s—'—(1/30)s—'+ (7b)
( )iE =( +q)1'(p) —'(p )

—'( —'—-" ) d, (1')
3. If the possible values of the errors of the F;; in the

first sum in (6) are assumed to be small, independent,
and normally distributed with zero means and with
standard deviations 0;;, the additional contribution to
the variance of C is found to be

var.C =m—Q;,[o,;(I',;—I';)/I';, I';] . (8)

where

v=(V —1) ' 1=~/p

We were unable to derive from (1') the distribution
corresponding to (4) for the sample average. However,
the low-order moments can readily be derived from (1');
to a high degree of accuracy one finds that

The additional contribution to the variance (4b) of
I', is

where

«&;=(I+~)«);,
var, I'= (I')A.'/mp,

m= m(1+q) (1—pq)
—'.

(4a')

(4b')

For the evaluation of (Se), the contributions (Sb) and
(8) may be added as though they were independent.

2I There are several indirect methods for determining the
strength function which effectively make use of very large samples,
and they are therefore not subject to this uncertainty: see S. E.
Darden, Phys. Rev. 99, 748 (1955); D. J. Hughes and V. E.
Pilcher, Phys. Rev. 100, 1249(A) (1955).

22 Erdelyi, Magnus, Oberhet tinger, and Tricomi, Higher
Transcendental FNnctions {McGraw-Hill Book Company, Inc.,
New York, 1953), Vol. I, Sec. 1.18, Eq. (7).

For the final analysis it is sufFiciently accurate to
approximate the distribution for the sample average
by (4) with (I')«replaced by (1+q)(1')A„and with m
replaced by m, so that the correct expectation values
(4a') and (4b') are obtained. With this approximation,

~' J. A. Harvey {private communication).
'4 The analysis for 0.= ~ was actually carried out by truncating

the distribution {1)at xg and by replacing the normalizing gamma
function by the appropriate incomplete gamma function.



C. E. PORTER AND R. G. THOMAS

one can write

(inL T'/(1+ g)(I') „)),=F(mp), (4c')

and it may be shown that (6a) is very nearly satisfied if
in (6) the function F(m, p) is replaced by F(m,p) and if
the function F(p) is replaced by

F(p; x,)=F(p)+q in' —ln(1+q). (11)

The expression corresponding to (6b) is found to be

The function F(p; n) is plotted in Fig. (2) for several
half-efficiency values x;, including the most-probable
value x.;=0.01.It is evident that when v= 1 the function
is rather sensitive to x*„but when v=2 it is not. With
x;=0.01 and v=1, the factor (1+q)=1.09, and (4a')
indicates that to estimate (F)A, the sample average
should be reduced by about 9'%%u~, which amount is
usually small compared with the statistical uncer-
tainty corresponding to (4b'). The quantity m in (4b')
is equal to 1.15m.

The expressions (5) through (9) with the modifica-
tions indicated under item 4 were used to analyze a
total of 148 neutron reduced widths for 15 diferent
nuclides. This total includes the 3 recent determinations
for manganese" in addition to the 145 values which were
analyzed by Hughes and Harvey. 4 "The sum over ij in
(6) is found to be —0.795 and the sum over j is —0.091
for v=1 and —0.050 for v=2; by using the x;=0.01
curve of Fig. 2, a value v= 1.02 is obtained as the solu-
tion to (Sc). The standard deviations corresponding to
(6b') and (8) are 0.062 and 0.020, respectively, for
v=1, giving an over-all standard deviation of 0.065,
which is primarily due to statistics. The standard
deviation of the v estimate corresponding to the com-
bined variances of C is about 0.13 degree of freedom.
The hypothesis v=1 gives a probability integral (P,

Eq. (Se), which is close to unity, indicating that this
hypothesis is quite consistent with the data, while the
hypothesis v=2 gives a value n= —6.4 and an inad-
missibly small value of O'. The v= 1 hypothesis would be
acceptable for any value of x; in the range antilogyo

(—2.00&0.15) specified by Harvey. " However, for
x;=0, (P is only 0.006 for v=1, thus indicating the
importance of the efdciency correction; for v=2 it
would still be extremely small.

There is one datum which appears to be at variance
with the v=1 hypothesis. The plotted point for y=—x'

0.1 on Fig. 2 of the paper by Hughes and Harvey4

falls way below the curve for v= 1 and near to the curve
for v= 2. Since this point just corresponds to the most-
probable half-efficiency value x;=0.01, it should be
raised by a factor of about two, thus placing it almost
within a standard deviation of the v= 1 curve and several
standard deviations away from the v = 2 curve.

With the exception of U"8, all nuclides of reference
26 can form two diferent spin states when interacting
with low-energy neutrons. It has been assumed here
that the two spin states have identical reduced-width
distributions. At the time that this analysis was under-
taken, this assumption seemed reasonable and was not
known to be in contradiction with any data, However,
from a recent summary of the data on the angular
momentum associated with slow-neutron resonances,
Sailor has found indications that the compound nucleus
is preferentially formed in the state of higher spin. "
If the two spin states are equally abundant, this
indication implies that the average neutron width is not
the same in each state. Unless the widths of the states
of the lower spin are unobservably small, our analysis
is apt to be biased towards a v value which is too small.
With the existing data it is difficult to estimate the
extent of this bias.

Before proceeding with the radiation and fission
widths, it is worthwhile to include an explanatory re-
mark on the physical signjtficance of the terminology
"degrees of freedom. " In Sec. I, arguments were put
forth for the plausibility of a Gaussian amplitude
distribution, corresponding to a chi-squared width
distribution with one degree of freedom. These argu-
ments took account of the fact that the amplitudes
could suitably be chosen as real. ' Now, if the amplitudes
had been regarded as complex with independent real
and imaginary parts, these arguments would have led
to a width distribution with two degrees of freedom,
one for the real part and one for the imaginary part. "
In the next section on radiation widths a situation is
illustrated involving effectively a large number of
degrees of freedom, and in the following section on
fission widths one encounters a distribution with
electively only a few degrees of freedom.

III. RADIATION WIDTHS

The total radiation width I which pertains to the
neutron resonance region is expected for heavy nuclei
to be the sum of a large number e of partial radiation
widths F;29:

(12)

"Bollinger, Dahlbert, Palmer, and Thomas, Phys. Rev. 100,
126 (1955).

"The actual values and their uncertainties were read from the
listing of resonance parameters in reference 3. The nuclei were:
Mo' (4); Mo'7(4); In" (7); In"'(8); Sn"7(5) j Cs'"(12); Eu'" '"
(14) j Tb (16) j Ho" (10) j Tm (10) j Hf (12) j Hf (17)
Ta'"(10);U"'(11); the number of widths used for each nucleus is
indicated in parentheses. Only those widths appearing above the
dotted lines in the listings were used.

We will examine here the consequences of assuming that
sr V. L. Sailor (to be published).
2' See J. M. C. Scott, Phil. Mag. 45, 1322 (1954).
"See J. M. Blatt and V. F. Weisskopf, Theoretica/ nuclear

2'hysics (John Wiley and Sons, Inc. , New York, 1952), Chap. XII;
and the article by B.B.Kinsey, in Beta- and Gamma-Ray Spectro-
scopy (Interscience Publishers, Inc. , New York, 1955), pp.
795-822.
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the distributions of the individual I'; are independent
and chi-squared with one degree of freedom, like the
neutron widths. As mentioned in Sec. I, the latter
assumption seems reasonable, while the former one
stands on less certain grounds because some correlations
are expected in the distributions of the partial widths
for transitions to states of low excitation.

If all of the partial widths had the same average
value (I',)A„ the probability distribution for the total
width would be chi squared with e degrees of freedom;
that is, it would be given by (4) with rtt I' replaced by I'
and with p replaced in —,m. The distribution for the total
width would thus become narrower as the number of
partial widths becomes larger. For the general case
where the (I';)A„are unequal, we have succeeded in
deriving the distributions for the total only for even
values of the number of degrees of freedom v of the
partial-width distribution. However, these total dis-
tributions are rather complicated and all we need to
consider anyway are the average and the variance; for
any value of v they are "

(I'),„=P (F;)«,
i=1

(13a)

(13b)

y(n, x) —= t~ 'e 'dt

is an incomplete gamma function. For electric dipole
radiation, the square of the coePciertt of wariatiort V is
therefore predicted to be

where
~B

p(E)dE=CT(e" 1)—
~ See, for example, S. Chandrasekhar, Revs. Modern Phys. 15,

1 (1943), Appendix IV.

These equations show that in the general case the dis-
tribution also becomes narrower as the number of
partial widths becomes larger. In the following it is
assumed that v=1.

The partial radiation widths are believed to be
proportional to E~"+', where E~ is the transition energy
and l is its multipolarity. ' By approximating the sum
over radiative transitions by an integration using the
level density formula

p(E) =C exp(E/T) (14)

with constant temperature T and a constant coeScient
C, one finds that the average of any power m of E~ is

(E ")A =CT +'e"y(rtt+1, r), (15)

where r =B/T, B being the neutron binding energy, and

2.3, r=0

5.3, r=32
V'= —X'

e 10.9, r=6

20.0, r= ~.
There are only a few elements for which a sufhcient

number of radiation widths have been determined for
statistical considerations. The use of the above formulas
will be illustrated by analyzing the widths for Ta'",
which has the largest reported number, although there
may be some question as to their reliability; in mv they
are: 49+6, 49&11,50&10, 51+10,50%15, 40&15.' It
is apparent that these widths show very little Auctua-
tion other than that which could be ascribed to the
indicated experimental uncertainties. The actual dis-
tribution must be narrow, and it may therefore be
approximated by a normal distribution, the coeKcient
of variation of which may be compared with (17).As a
generalization to the familiar chi-squared test of sample
variances, it may be shown that the weighted sample
variance has a chi-squared distribution with tn —1
degrees of freedom, where m is the number of measure-
ments, the weighting factors being equal to the re-
ciprocal of the sum of the population variance and the
variance corresponding to the uncertainty of the
measurement. Assuming to begin with that the popu-
lation variance is zero )that is, that I in (17) is infinite],
one arrives at a total probability of less than one percent
for weighted sample variances which are smaller than
the observed one, indicating that there may be some
systematic errors in the measurements or in the estima-
tions of the uncertainties. For illustrative purposes, the
undertainties are neglected altogether, thus allowing
one to state, for example, that there is only a 5% total
probability for the weighted sample variances being
smaller than observed when a population variance of
(8.7 mv)' is assumed; this variance corresponds to
rt= 340 in (17) with r= 3. This statement is consistent
with the view that there are many independently-
contributing partial widths, but it sheds very little
light on the question of what fraction of all of the partial
widths contribute independently. Thus, the number of
partial widths is expected to be of the order of magni-
tude of the ratio of the nuclear temperature to the mean
level spacing, which ratio is about 10' for a typical
heavy nucleus.

The radiation widths of eleven nuclides for which
more than one width are reported have carefully been
analyzed for Auctuations by Levin and Hughes. '~ They
found rather definite indications of Quctuations in the
widths of several of the accurately measured nuclei,

» K. Pearson, Tables of the ImcomPlete Gamma Fttrtctt'ott (Carn-
bridge University Press, Cambridge, 1934).

Is J. S. Levin and D. J. Hughes, Phys. Rev. 101, 1328 (1956).

is the number of partial widths. Using Pearson's tables, "
one finds that
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notably In"' and Eu'"" However, for these two it is
observed that the radiation widths fall into two groups,
each group having a definite but distinct isomeric
branching ratio, thus suggesting that each group
corresponds to a difI'erent spin state of the compound
nucleus. With this contingency, they concluded that it
was not possible with the existing data to reject the
hypothesis that the radiation widths of a particular
spin state of a particular nucleus are the same at all of
the levels. A more critical testing of this hypothesis
should be realized with a zero-spin target nucleus, with
which only compound states of a single spin value could
be excited with low-energy neutrons. The only such
nucleus with a sufhcient number of reported widths is
U"' these being 24&2, 25&5, 29&9, 17&10mv. ' From
the chi-squared test of the weighted sample variance,
it may be concluded that with a population variance of
(12 mv)' there is only a 5% probability for a sample
variance smaller than the observed one. This population
variance corresponds to a value of st=40 in (17) with
r=3. This conclusion is not significantly di8erent from
the previous one for Ta'" '4

IV. FISSION WIDTHS (Uses)

An analysis has been made of the Ructuations of the
15 6ssion widths of U" which are provisionally re-
ported in the recent compilation by Hughes and
KgelstaG ind in a private communication from Sailor. '~

These widths fluctuate considerably but not as much as
do the neutron widths. The solution to Eq. (5c) is
v=2.3 degrees of freedom, the standard deviations
being 0.8 degree of freedom from the statistics and 0.3
degree of freedom from the indicated experimental
uncertainties. The average width is 71 mv as estimated
from the sample average, the standard deviations being
17 mv from the statistics and 5 mv from the indicated
experimental uncertainties. To test the hypothesis that
there is only one fission channel, that is, that the distri-
bution has only one degree of freedom, the probability
integral (p(v= 1) of (5e) was evaluated and found to be
0.10, which is small but not inadmissible according to
most statistical criteria.

Another way to estimate the number of degrees of freedom of
the best-fitting chi-squared distribution is to equate the first and

ta H. H. Landon and V. L. Sailor, Phys. Rev. 98, 126'/ (1955)~

See also H. H. Landon, Phys. Rev. 100, 1414 (1955); G. Igo and
H. H. Landon, Phys. Rev. 101, 726 (1956).

3' Six radiation widths for U"8 have recently been reported by
J. E. Lynn and N. J. Pattenden, Proceedings of the International
Conference on the Peaceful Uses of Atomic Energy (Columbia
University Press, New York, 1956), Vol. 4, Report P/423. They
are 26.1&1.5, 28.8&2.3, 24.9&4.2, 28.6&2.7, 15.5&5.4, 13.6
&4.8 mv, thus revealing rather significant Quctuations. With these
data, one could state with essentially 95% confidence that n lies
in the raage from about 30 to 500.

35 D. J. Hughes and P. A. Egelsta8, Progress in Nuclear Energy
(Pergamon Press, London, 1956), Vol. 1, Chap. II. The widths in
the compilation were used except for those which have recently
been determined more accurately by Sailor; the values and their
uncertainties are: 99~5, 120~15, 13~3, 110~45, 130+25,
87~15, 3&2, 9.5&5, 10.5~5, 70~16, 42~18, 43~21, 90~26,
200&20, 44&20 mv.

second moments of the sample to the corresponding moments of
the population. In this way one estimates that"

v = 2 (1—m ')/ Us, (18)
where

&= l.m ' &'(P' —I')'3/I"
the variance being given to order m ' by

var, v =v'(1+4v ')m/(m —1)'. (18a)

Using the same data, these give 3.3&1.6 degrees of freedom, which
is consistent with the maximum likelihood estimate. The estimate
(18)is especially poor when r is small, "but for large v the variances
(2b) and (18a) may be shown, by using (7b), to be asymptotically
equivalent.

The number of degrees of freedom will in general be
smaller than the actual number of channels if the
average widths for the various channels are unequal and
if there are correlations in the distributions. Another
difFiculty in the interpretation is that there are two spin
states formed when low-energy neutrons are captured by
U"', and these states will not necessarily have the same
distributions. "The fact that the ratio of the average
capture cross section to the average 6ssion cross section
at low energies" is about equal to the ratio of the average
capture width" to the average 6ssion width of the low-

energy resonances indicates that the average 6ssion
widths for the two spin states are equal to within a
factor of two. However, there is no way of telling from
the existing data whether or not the distributions for
the two spin states have the same variances. In spite of
these complications, the original qualitative conclusions
should remain valid: namely, that there are not very
many channels involved in the slow-neutron-induced
6ssion of U"', and the likelihood is small of there being
only one channel (for each spin state). The main

~' See Sec. 27.7 of reference 7, in particular Eq. (27.7.3). The
derivations of Eqs. (18) and (18a) above are very similar to those
of the example presented in connection with Eqs. (27.7.10) of this
reference. However, here we treat the square of V whereas the
example treats V. The expectation value of V'has also been evalu-
ated to one higher order jn m ' in order to obtain the factor
(1—m ') of (18) which makes the estimate unbiased.

3~ See Sec. 17.51 of reference 17."The spin of U"' is 7/2 jK.L. Vander Sluis and J.R. McNally,
Jr., J. Opt. Soc. Am. 45, 65 (1955)j and its parity is presumably
even LM. G. Mayer and J. H. D. Jensen, Elementary Theory of
Nuclear Shell Structure (John Wiley and Sons, Inc. , New York,
1955), p. 81j so that even-parity states of spin 3 and 4 are formed.
From the theoretical account of slow-neutron-induced fission
which is given in reference 12, it is implied that the average fission
width of the 4+ states will be larger than that of the 3+ states,
because the former type state is contained in the rotational band
associated with the lowest nucleonic configuration while the latter
type would appear in a band involving an excited configuration.
This configuration excitation is estimated to be of the order of an
Mev, so that the difference of the average fission widths is ex-
pected to be especially large if the slow-neutron excitation energy
exceeds the absolute threshold for fission of the 4+ states by less
than about one Mev. However, recent results on the U"'(ct,P)
fissioN reaction indicate that this excess is about 1-, Mev (un-
published experiments of K. Boyer and R. H. Stokes), and it is
perhaps not inconsistent with the theory for the diff'erence of the
widths to be small.

"Kanne, Stewart, and White, Proceedings of the International
Conference on the Peaceful Uses of Atomic Energy (Columbia
University Press, New York, 1956), Vol. 4, Report P/595.

~ V. L. Sailor, Proceedings of the International Conference on the
Peacefstl Uses of Atomic Ertergy (Columbia University Press, New
York, 1956), Vol. 4, Report P/586.
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APPENDIX

The relation between the descriptions of the 6ssion
process in terms of fission channels and in terms of
fission fragment pairs may be illustrated by a few

simple equations. The wave functions P, for the fission
channels c may be expanded in terms of the wave func-
tions y~ for the fission fragment pairs p as

pc =~n&cy happ (19)
4' A likelihood analysis of the 15 fission widths for Pu'~, which

are provisionally reported by L. M. Bollinger, R. K. Coth, J. M.
LeBlanc, and G. E. Thomas, gives for the number of degrees of
freedom v&1.7 with an uncertainty of 0.5 degree of freedom from
the statistics. Only an upper limit to v can be stated because one
of the resonances has no detectable fission width.

's J. A. Harvey, Bull. Am. Phys. Soc. Ser. II, 1, 86 (1956).

reason for seeking the best 6tting chi-squared distribu-
tion is that this distribution is very convenient to use
for calculating the effects of the 6ssion width Quctua-
tions on the averages and variances of fission and com-

peting reaction cross sections. "
Interference effects have been noticed by Sailor" in

the fission cross section of U"'. It has also been. noticed
by him that the occurrence of interference effects in
6ssion and the nonoccurrence of such effects in reactions
in which radiative capture dominates are consistent
with the view that there are many exit channels in the
latter case, the reduced-width amplitudes of which have
random signs, whereas there are effectively only a few
such channels in the former case.

As a final remark, it is noted that there is no signi-
ficant correlation in the fission and neutron width
distributions of U"'. This observation confirms an
earlier one by Harvey. 4' It also indicates that no correc-
tion to the analysis using (Sc) is needed for failure to
detect levels having very small neutron widths. "
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&i,(&)-&.v~.4. (21a)

plus terms associated with other reactions, where the
coefficients yq, are the reduced-width amplitudes for
the fission channels c. Vsing (19) the surface expansion

may alternatively be expressed as

&~(&)-&,7i,~„
plus the other terms, where

Qxp ~cP) Wc@

(»b)

(22)

is the reduced-width amplitude associated with the pth
6ssion fragment pair. The total fission width F~y for
the level t, which is normally expressed as the sum of
partial widths for the various fragment pairs, may also
be expressed as a sum over the partial widths associated
with the various 6ssion channels; using (20), one finds
that

I'M=&pygmy'=&. y) '. (23)

Now if the distributions of the y~, are normal with

respect to levels, with zero means, and independent
with respect to channels, then the distributions of the

yq„, as expressed by (22), will also be normal with

variances

(24a)

the averages being with respect to the levels, and with
covariances (correlation coefficients)

(YxyVxp')Av +wcrrrcy'(yi c )Av (24b)

Near the 6ssion threshold it is expected that only a few

6ssion channels will have appreciable amplitudes yq,
so that the covariances will not generally vanish even

though the q, may constitute a complete set. This
means that the distributions of the yq„are expected to
be correlated, and therefore to be dependent. "

with real coefficients n.„.Both sets of wave functions
are assumed to be orthonormal (but not necessarily
complete) so that

(20)

On the "surface" 8 of the nuclear configuration space,
the wave functions Xq of the levels X of the compound
nucleus may be expressed in terms of the fission-channel
states as


