PHYSICAL REVIEW

VOLUME 104,

NUMBER 1 OCTOBER 1, 1956

Debye Characteristic Temperatures of Certain Noncubic Crystals

D. D. Berts,* A. B. Buartia, anp G. K. HorToN
University of Alberta, Edmonton, Canada

(Received May 25, 1956)

The Debye characteristic temperatures of noncubic crystals with a principal axis of symmetry are evalu-
ated by an expansion of the integrand involved in terms of harmonic polynomials having the same symmetry
as the corresponding Christoffel equations of elasticity theory. We have applied our method to representative
hexagonal, tetragonal, and trigonal crystals and examined the question of its convergence. The absolute
values of the characteristic temperatures obtained here are unreliable because of a lack of 0°K elastic

constants for the crystals concerned.

1. INTRODUCTION

HE Debye characteristic temperature, ©,, of
nonisotropic crystals may be evaluated by the
method of Griineisen and collaborators'? or by the
Hopf-Lechner method?; both involve lengthy calcula-
tions. There is also a method due to Post.* Recently
Houston’s method® for integrating approximately func-
tions of complete cubic symmetry has been applied by
Bhatia and Tauber® to evaluate ®, for cubic crystals.
The latter work has been further extended by Betts,
Bhatia, and Wyman.”

Here we propose an analogous method for crystals
having a principal axis of symmetry. Our method
involves defining harmonic polynomials of appropriate
symmetry, which play the same role as Kubic har-
monics in similar work on cubic crystals.5~7 So far, we
have not considered using other functions of appropriate
symmetry.

2. GENERAL THEORY

The following formula is well known:
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Here N is the number of atoms in the solid, V the
volume of the crystal, »;(8,¢) the velocities of the long
elastic waves at 0°K, and other symbols have their
usual meanings.

We define harmonics Fi,(0,¢) of a given crystal
symmetry group as
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where [=0,1,2, .-+ ; m=0, &1, - - -&!/; and where the
b’s are chosen to give combinations of spherical har-
monics having the appropriate symmetry. Then any
function such as f(6,¢), having the same symmetry,
can be expanded in terms of the harmonics Fi,(6,¢),

f0,0=3 ¥

1=0 m=—

zalmFlm (0: 50)1 (3)

and

1
- f 1(0,¢)d2=ap=ao. (4)

As is well known from the properties of spherical har-
monics, Eq. (4) is exact. Our approximation consists of
stopping the summation in (3) at a given degree I. The
coefficient @ is then found by solving an appropriate
number of linear equations found by taking various
values of (8,¢).

If dispersion is neglected, the velocities of the elastic
waves in nonisotropic crystals, v;(0,¢), are given by
the three roots of the well-known Christoffel equations
of elasticity theory.® The noncubic crystals considered
here have a principal symmetry axis, which we take to
be the polar axis §=0. Then the harmonics for a given
symmetry are simply “constructed” by choosing those
of the functions Yy ..(0,0)Y; _n(8,¢) which have the
appropriate symmetry. In striking contrast, the con-
struction of harmonics of complete cubic symmetry is
a rather involved process.” The reason for this is that
Kubic harmonics are complicated linear combinations
of spherical harmonics.

Crystals of Symmetry C3h, D3h, Ca, Ds, Ceh, D"

We shall refer to crystals having any of the above
symmetry properties as hexagonal crystals. It is easy
to see that the corresponding Christoffel equation is
¢-independent and symmetric under §—w—6. Thus the
corresponding “cylindrical” harmonics are simply
Legendre polynomials of even degree:

Fy1(0,0)= Py(cosh). (5)

8A. E. H. Love, Mathematical Theory of Elasticity (Dover
Publications, New York, 1944), fourth edition, p. 299.
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Fi1c. 1. Illustration of the directions along which the integrand
in the formula for Debye @, is to be evaluated for (a) hexagonal
crystals, (b) tetragonal crystals, and (c) trigonal crystals.

Here, of course, since [2:(8,¢)*=fp? is a function
of 6 only, it can be integrated approximately by any
of the standard methods. For the sake of uniformity,
however, and because of its simplicity, we shall use
the method outlined above. A straightforward -calcu-
lation yields

ao=[6fa+fp+8fc]/15,
ao=[192144-57f5+256fc+125f5]/630,

a0=[1368f4+153 f5-+1024 fo+2125f»
+1000£.7/5670. (6.3)

The integrand f may be found in the appendix. The
directions correspond as follows : 4—(1,0,0), B—(0,0,1),
Cc—(1,0,1), D—(2,0,1), L—(1,0,2). These directions
are illustrated in Fig. 1(a); the unit sphere is quite
evenly covered by them. Equation (6.2) uses all har-
monics up to and including those of degree six and so
corresponds to the Bhatia-Tauber formula.® The other
formulas are given so that the convergence of the
method can be demonstrated. It should be mentioned
that although the choice of directions is somewhat
arbitrary, they should be chosen to cover the range of
integration fairly evenly. Otherwise we have found
that the coefficients occurring in formulas such as (6),
for ao, nearly cancel one another, leading to poor con-
vergence and hence unreliable results. We stop at /=8
in (3) because Egs. (6) are found to give sufficiently
rapid convergence and because subsequent formulas
tend to become somewhat unwieldy.

(6.1)
(6.2)

Crystals with Symmetry D,, C,?, Ss*, D,"

We shall refer to crystals having any of the above
symmetry properties as ‘‘tetragonal” crystals. The
corresponding Christoffel equation is invariant under
6—r—0, ¢——¢ or ¢—e+w/2. The appropriate
“tetragonal” harmonics are thus

Tgl, 4m(9,¢)=COS4m<pP214m(COSB), (7)

with 4m<2l; 1, m=0,1,2---. Solving the correspond-
ing equations (3), we find

av=[2fa+fp+8fc+4fr]/15,
a0=[24f4+57fp+256fc-+125fp+168f1]/630,

ao=[288 fa+144 f5+512 fc—125fp
+96 54375 f#1/1260.

(8.1)
(8.2)

(8.3)

BHATIA, AND HORTON

The directions 4 to D have the same meaning as
before, £—(1,1,0), and F—(1,1,1/v2). These directions
are illustrated in Fig. 1(b). They are chosen by realizing
that the Christoffel equation for the velocities factors
only along the arcs ¢=0, p==/4 and =m/2 or equiva-
lent arcs. Equation (8.1) is obtained from (3) by ignoring
all tetragonal harmonics of degree /=6 or higher. Equa-
tion (8.3) is found by ignoring all tetragonal harmonics
of degree /=8 or higher. For comparison we also give
formula (8.2) for five directions found by leaving out
Ty but including T in (3). The formulas for the f’s
are again to be found in the appendix.

Crystals with Symmetry D;, C,?, S¢*

We shall call crystals with any of the above sym-
metry properties “trigonal” crystals. The corresponding
Christoffel equation is invariant under ¢——¢ or
¢—¢+m/3 while 6—r—6. The appropriate trigonal
harmonics are thus

Ay, 3m(0,0) = cos3mePapm (cosh), 9)

with 3m<2l; 1, m=0,1,2, ---. For trigonal crystals
the Christoffel equation unfortunately factors only
along the arc ¢=0 or equivalent directions. Thus we
try to choose as many as possible of the directions
along this arc.

Using all four 44, 3, of degree four or less leads to

ao=[6fa+fp+4fct+4fc]/15, (10.1)

where direction G-—(1,0,1) (equivalent to direction
¢=m/3 and 6=/4). Including all harmonics of
degree six or less except 4¢6(0,¢) gives

ao=[384f 4+ 1141 5+256(fo+ fa)
+125(fu+ fp)1/1260, (10.2)

where the direction H—(2,0,1). To use all seven trigonal
harmonics of degree six or less requires us to choose a
seventh direction for which ¢ 0 in order to be able
to solve (3) for @o. We take this direction to be
K—(0,2,1) and obtain

a0=[1536f4+456fp+1024(fc+ f¢)
—625(fp+ fa)+225015]/5040. (10.3)

The directions chosen for this symmetry class are
illustrated in Fig. 1(c). The unit sphere is again quite
evenly covered.

3. CALCULATION OF ®, AND DISCUSSION

In the previous section we have obtained Bhatia-
Tauber type formulas in various approximations for
each of the three sets of symmetry classes considered
in this paper. In this section we use these formulas to
calculate ©, for several examples of crystals from each
symmetry class. These examples include almost all
crystals, of these symmetries, for which elastic constants
are available. The elastic constants and calculated and
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TABLE I. Characteristic temperatures and elastic constants for certain noncubic crystals.
(1) Hexagonal crystals c
haracteristi © e
Elastic constants in 102 dynes/cm? aracteristio temperatm(';etsﬁl:ei::n
Material a 33 cu4 c12 o3 Source Bt Q2 ©¢d and Goensb BoF Source
Beryl 2.692 2.372 0.6536 0.9644 0.6690 Hearmon# 1065 1065 1066 1000 Kittel!
Cd 1.146 0.4851 0.1835 0.4364 0.4064 Hearmon# 186.3 186.3 186.2 160 Kittel!
Cd 1.206 0.5133 0.1852 0.4812 0.4420 Griineisen and Goensb 187.9 187.9 188.0 189 160 Kittel!
Co 3.071 3.581 0.7550 1.650 1.027 MecSkimine 443.5 443.8 445.6 385 Seitzm
Ice 0.1385 0.1499 0.0319 0.0707 0.0581 Humbel ef al.d 292.3 292.6 293.1 315 Bluen
Mg 0.5747 0.5983 0.1669 0.2403 0.1939 Hearmon® 363.6 364.4 365.6 290 Seitzm
In 1.631 0.6111 0.3947 0.3062 0.4911 Hearmone 305.4 307.8 308.3 235 Kittel!
Zn 1.610 0.5420 0.4000 0.4320 0.4370 Griineisen and Goens" 301.9 304.2 303.5 305 235 Kittel!
. . (2) Tetragonal crystals
Elastic constants in 1012 dynes/cm? Characteristic temperatures in °K
Material e ca3 o 65 12 o3 Source B¢ B! O¢2 Ot QoF Source
Sn 0.8391 0.9665 0.1754 0.07407 0.4870 0.2810 Hearmon# 151.9 164.1 165.6 163.1 195 Corake
Zircon 0.7350 0.4600 0.1380 0.1600 0.0900 —0.0540 Bhimasenacker ez al.f 260.0 268.6 268.2 271.8
KDP 0.7230 0.6180 0.1280 0.0618 0.0439 0.1980 Hearmone 306.2 336.9 338.4 337.6
NH:DP 0.6850 0.3240 0.0861 0.0602 —0.0180 0.0178 Hearmone 743.7 795.4 795.2 797.6
(3) Trigonal crystals
. X Characteristic temperatures in °K
Elastic constants in 1012 dynes/cm? _ Griineisen
Material e 33 c14 Cs6 13 cu Source O B¢ Ot 02 ©®  and Hoyerk ©oF Source
Bi Q8407 0.0043 01450 0765 02860 . 0573 Hearmons 1383 1221 1283 1288  127.8 100 Seitzm
Corundum  4.650  5.630  2.330  1.750  1.170 Bhimasenacker®  867.8  921.3  852.4  893.0  898.8
Hg 0.3600 0.5051 0.1290 0.0356 0.3030 0 0470 Griineisen and 71.57 81.65 73.22 75.84 72.09 69 ~60 Kamerlingh
Sckelll Onnes et al.p
Quartz 0.8676  1.048 0.5861  0.4021  0.0950 0.1814  Masoni 528.3 582.0 553.8 552.9 555.8
Sb 0.7916  0.4498 0.2852 0.2717 0.2615 0.1060 Hearmon® 182.5 205.9 191.7 192.6 193.5 140 Seitzm

e See reference 12.
f See reference 13.
& See reference 14.
b See reference 16.

= See reference 9.
b See reference 1.
o See reference 10.
d See reference 11.

experimental values of @, are listed in Table I1.1:2.9-22
We note that while frequently the elastic constants are
only given to two or three significant figures, we use
the four-figure values quoted in Table I so that the
convergence obtained from our method could be clearly
shown, even though the absolute values of the O,
for the elastic constants used, are only good to about
19,. In some cases stiffness constants were given in the
literature and were used to find the elastic constants in
the usual manner.

For hexagonal crystals with Christoffel equations
that are ¢ independent, ®¢!, O, and ©¢® in Table I
refer to characteristic temperatures calculated from
(1) using (6.1), (6.2), and (6.3), respectively. For

9 R. F. S. Hearmon, Revs. Modern Phys. 18, 409 (1946).

1 H. J. McSkimin, ] Appl. Phys. 26, 406 (1955

11 Humbel, Jona, and Scherrer, J. chim. phys. 50 C40 (1953)

12 The elastic constants for Zn are obtained by averagmg the
values quoted by Hearmon in reference (7) and those given b,
C. A Wert and F. P. T. Tyndall, J. Appl. Phys. 20, 587 (1949).

13 J, Bhimasenackar and G. Venkataratuam, J. Acoust. Soc.

Am. 27, 922 (1955).

¥R F.S. Hearmon, Brit. J. Appl. Phys. 3, 120 (1952).

15 W. P. Mason, Bell System Tech. J. 30, 366 (1951).

167, Bhlmasenackar Proc. Natl. Inst. Sci., India 16, 241 (1950).

17 C. Kittel, I niroduction to Solid State Physm J ohn Wiley and
Sons, Inc., New York, 1953), p. 77.

BF, Seltz The Modern Theory of Solids (McGraw-Hill Book
Company, Inc New York 1940), p. 110.

©W. S! Corak and C. B . Satterthwaite, Phys. Rev. 102, 662
(1956).

2°H Kamerlingh Onnes and G. Holst, Leiden Comm. 142C, 30
(1914)

2 E. Griineisen and O. Sckell, Ann. Physik 19, 387 (1934). The
elastic constants of Hg were measured at — 190°C
2 R, W. Blue, J. Chem, Phys. 22, 280 (1954).

i See reference 21.
i See reference 15.
k See reference 2.

1 See reference 17.

m See reference 18.
n See reference 22.
© See reference 19.
p See reference 20.

tetragonal crystals ®¢, ©¢2, and ®¢ have been cal-
culated by using (8.1), (8.2), and (8.3), respectively.
For trigonal crystals @, B¢ and ©,® have been cal-
culated by using (10.1), (10.2), and (10.3), respec-
tively. In the latter two cases we have also obtained
0 by assuming the ¢ dependence of the velocities to
be small and using Eq. (6.2). @oF refers to the experi-
mental data.

From Table I it can be seen that the various ©,
values for a given crystal converge well. However, it
is clear from the ©¢° values that the ¢ dependence of
the integrand in (1) must not be neglected. ®¢¢ was
calculated on the assumption that the integrand in (1)
is cylindrically symmetrical; the directions 4, B, C,
and D, along the arc =0, are used in (6.2). ©q¢
corresponds to the use of directions ABGH in (6.2);
i.e. to the arc p=m/3. The values of ©¢° and ©,° differ
considerably and even the average of corresponding
values yields poor results. We have only given 0,° for
trigonal crystals; for tetragonal crystals the results are
similar. Tt is seen, therefore, that the use of the correct
harmonic polynomials is thus imperative.

By inspection, it is clear that our formulas yield
characteristic temperatures accurate to about 19,. For
Hg, the accuracy is about 49 ; however, the reason for
this lies in the fact that the anisotropy of Hg approaches
that of Pb. It is unfortunately not possible to define a
measure of anisotropy (corresponding to 2¢4s/ (c11— c12)
in cubic crystals) for trigonal crystals. The final for-
mulas are thus significantly superior to the Bhatia-
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Tauber formula for cubic crystals and should be com-
pared in accuracy to the formulas developed by Betts
et al.” for cubic crystals by using higher order poly-
nomials. The formulas (6.2), (8.3), and (10.3) for
integrating over a unit sphere functions f(,¢) of the
three symmetries considered in this paper may also
prove useful in other connections. They are being
applied here to further discussions of the properties
of noncubic crystals. Because of the trouble of evalu-
ating the velocity corresponding to the direction K for
trigonal crystals, it may be convenient in future merely
to use (10.2) instead of (10.3) since, in the calculations
reported in Table I, the two formulas give nearly the
same results.

The disagreement between the theoretical and experi-
mental O¢’s varies between about 59, and 209,. We
believe that the reason for this discrepancy can be
attributed to two causes. Firstly it may be noted that
the experimental ©y’s, with the exception of the values
for Sn and ice, were not obtained recently and may not
correspond to the true 7 region in the heat capacity
data. This possibility is emphasized by the fact that
the value of ©¢ for Sn given recently by Corak and
Satterthwaite®® differs from that quoted by Seitz'® and
Kittel,'” from whose books most of our experimental
data are taken, by over 30%,. We also note, in support
of this point, that, with the exception of @, for Sn and
ice, all our calculated ®¢’s lie above the experimental
values.? Secondly, with the exception of quartz and Hg,
we were forced to use the elastic constants of the
crystals listed in Table I obtained at or near room
temperature. We believe that elastic constants measured

fA = [644]—%4‘ [066]_§+ [611]_;.
/= 20caat ez ]2

BHATIA, AND HORTON

close to 0°K are not available. Now it has been shown
by Bhatia and Horton?* that in the case of Ag the
values of O, obtained by using room temperature
elastic constants and 0°K elastic constants differ by
about 109%,. A difference of up to 209, found for the
crystals considered in this paper is, therefore, not
unreasonable. It is a measure of the uncertainty in the
absolute value of the ®¢’s we have calculated. As soon
as reliable 0°K elastic constants become available, our
formulas can, of course, be used to give reliable charac-
teristic temperatures. The only calculated values avail-
able for comparison are those of Griineisen and Goens!
for Cd and Zn and Griineisen and Hoyer? for Hg. To
enable us to make a meaningful comparison between
the calculated values of Griineisen and Goens! and our
own, we used two sets of elastic constants for Cd and
Zn. One sets represents the values used by Griineisen
and Goens' while the other is an average over all the
available data. The characteristic temperatures ob-
tained by ourselves and Griineisen and Goens! (Zn and
Cd) agree well, but this is not surprising since the
integration involved for these hexagonal metals is over
only one variable. The agreement between our ©g’s
and that of Griineisen and Hoyer? is not so good. We
believe that the numerical averaging procedure of the
latter authors is not so satisfactory for trigonal as for
hexagonal crystals, especially for Hg where the values
of [2:(9, )13 differ by a factor of about five. For Zn
and Cd this quantity has only about a 509, variation.
The extension of our work to higher orders and other
crystal symmetries is straightforward, though this will
usually involve the solution of nonfactorable cubic
equations.

fc= [% (066+644) ]_*‘i‘ [} (611+2644+033) +%{ (611'— 633)2+4 (013+c44)2} ﬂ“‘}

fo=[1(4ces+caa) I3[ dcr1t-Scautcs3) 15 { (4611— 3c44— c55)%+ 16(c1s+caa)?} i1

fE = [644]—%4‘ I:% (611 - 012) ]—%‘f‘ [:% (611+2666+012)]—%-

fr=[3Q2c11—2¢c127caa) T[T Qcr1t2c10+ 46+ Scaatc33) +25{ (2c11+2¢15+ 46— 34— c33)?

+16(c1sF-caa) 3 T HH-[F5 (2c112c12F4cs6+Scaat-c33)

APPENDIX
Tetragonal Crystals

(11.1)
(11.2)
+ % (it 2cuut-ca5) — 2{ (cr1—c33)?+4 (crsFea)?} T (11.3)
+ 75 (doutScat-cas) — 7o{ (dor1—3cas— 33> +16 (cratean)?} T (11.4)
(11.5)
—To{ (201t 2019+4ces—3caa—c53)>+16 (c13t-c4e)} 1. (11.6)

Hexagonal Crystals
For fa, fB, fc, and fp, we simply put ces=3%(c11—c12) in (11.1) to (11.4).
Fr=[Fo (11— c10+8640) I3+ [T (c11+5¢aa+4c35) {5 (cr1t3caa—4c33)*+16 (cratcan)?) T2
+[Fo (crrt-5cast-dess) —25{ (curt-3caa— 4053)*+ 16 (crs+ca)? )T (12)
3 Note added in proof.—This argument is supported by the value of ®,=204°K found recently for Sb by N. M. Wolcott [Bull.

Am. Phys. Soc. Ser. I, 1, 289 (1956)].
2¢ A, B. Bhatia and G. K. Horton, Phys. Rev. 98, 1715 (1955).
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Trigonal Crystals

fa=[ces I H[3(cautcur)+3{ (caa—c11)* +H4er 2P T H-[3 (castc11) — 3{ (cas— cr1)*+4er?} T4

fB = 2[644]“%4‘ [633]_§-

(13.1)
(13.2)

fo=[3 (coscaa—2010) TH-[F (crrt2640+ 2010+ 633) + 1 { (cr1t2014— €33)* +4 (c14tC13Fcaa)*} i

+ [i‘ (611+2644+2614+633 - %{ (011+2614“‘ 633)2+4 (014‘|‘613+C44)2} é:]_g-

(13.3)

Fo=[3}ces+caa—4c1a) TH-[Fo (dort4e1atScastcss)+16{ (dont4eis— 3cas—c33)+4 (401420151 2640)) -t

+[F5 (dent4crut-Scatcss) — fo{ (dent4ciu—3ca— cas)* +4 (dorat2015+ 2040?18 (13.4)
fe= fc (with the sign of ¢i4 changed). (13.5)
fa=fp (with the sign of cis changed). (13.6)
3
fr=2yi (13.7)
=1
where the y; are solutions of the equation
(4cost-caa)/5—y —4c1/5 —4c¢14/5

—4014/5 (4611+C44)/5—y (2Ci3+2644)/5 =0.

—4¢14/5 (2¢13+2¢44)/5  (4cast-c35)/5—y
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Surface Conductance and the Field Effect on Germanium*

J. BarDEEN, R. E. COOVERT, S. R. MORRISON, J. R. SCHRIEFFER, AND R. SUN
Electrical Engineering Research Laboratory, University of Illinois, Urbana, Illinois

(Received April 23, 1956)

Measurements of the steady-state surface conductance and the change in this conductance with transverse
electric field (field effect) have been made on a free germanium surface as a function of the gaseous ambient.
The results can be understood in terms of two sets of surface states: one dependent upon the gaseous ambient
and with a large density and long time constants, probably located at the outer surface of an oxide layer,
and the other a set with much smaller density but shorter time constants, probably located at the germa-
nium-germanium oxide interface. The interface states consist of a discrete state with free energy 0.13-0.15 ev
below the intrinsic Fermi energy and density 1—3X10! states/cm?, and a small continuous distribution.
There is also indication of a discrete state greater than 0.13 ev above the intrinsic Fermi energy. The
measurements suggest that surface scattering effects become important for large barrier layers.

I. INTRODUCTION

ONSIDERABLE progresst™ has been made in
recent years in understanding the nature of the
space-charge layer at a germanium surface and the way

* The experiments to be reported here were initiated by S.R.M.
and J.B. The results were reported in part in reference 2 and more
completely by Morrison, Sun, and Bardeen in a technical report,
January 15, 1955 (unpublished). Because of uncertainties in the
calibration of the field effect measurements, the results were only
of qualitative value. The apparatus was revised by J.R.S., and
further measurements made are reported by J. R. Schrieffer and
J. Bardeen in a technical report, April 10, 1955 (unpublished).
Further revisions in the equipment, particularly to increase the
temperature stability, were made by R.E.C. The work was
supported by the Office of Naval Research and by a grant from
Motorola, Inc.
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it varies with ambient and with surface treatment.
There is good evidence that the surface barrier results
from two different types of surface states with radically
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