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Debye Characteristic Temperatures of Certain Noncubic Crystals
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The Debye characteristic temperatures of noncubic crystals with a principal axis of symmetry are evalu-
ated by an expansion of the integrand involved in terms of harmonic polynomials having the same symmetry
as the corresponding ChristoBel equations of elasticity theory. We have applied our method to representative
hexagonal, tetragonal, and trigonal crystals and examined the question of its convergence. The absolute
values of the characteristic temperatures obtained here are unreliable because of a lack of O'K elastic
constants for the crystals concerned.

1. INTRODUCTlON

'HE Debye characteristic temperature, Os, of
nonisotropic crystals may be evaluated by the

method of Gruneisen and collaborators" or by the
Hopf-Lechner method'; both involve lengthy calcula-
tions. There is also a method due to Post. 4 Recently
Houston's method' for integrating approximately func-
tions of complete cubic symmetry has been applied by
Bhatia and Tauber' to evaluate 0'e for cubic crystals.
The latter work has been further extended by Betts,
Bhatia, and Wyman. 7

Here we propose an analogous method for crystals
having a principal axis of symmetry. Our method
involves de6ning harmonic polynomials of appropriate
symmetry, which play the same role as Kubic har-

monics in similar work on cubic crystals. ' ~ So far, we

have not considered using other functions of appropriate
symmetry.

2. GENERAL THEORY

The following formula is well known:

J (3X)&. s

(e'((t ~)) 'd(2
k E4xV)

Here X is the number of atoms in the solid, V the
volume of the crystal, e, (e,&) the velocities of the long

elastic waves at O'K, and other symbols have their

usual meanings.
We define harmonics Ft (0,&) of a given crystal

symmetry group as
l

Ft-((t, v)= Z &t--I't (() ~),

*National Research Council of Canada Postdoctorate Fellow,
1955-1956.' E. Griineisen and E. Goens, Z. Physik 26, 250 (1924).

2 E. Griineisen and H. Hoyer, Ann. Physik 22, 663 (1935).
' L. Hopf and G. Lechner, Verhandl. deut. physik. Ges. 16, 643

(1914).
e E. J. Post, Can. J. Phys. 31, 112 (1953).
' W. V. Houston, Revs. Modern Phys. 20, 162 (1948).
~ A. B. Bhatia and G. E. Tauber, Phil. Mag. 45, 1211 (1954).

The right-hand side of Eq. (5) in this paper should be multiplied

by p~.
r Betts, Bhatia, and Wyman, Phys. Rev. 104, 37 (1956), pre-

ceding paper.

where 3=0, 1, 2, ; ms=0, +1, +l; and where the
b's are chosen to give combinations of spherical har-
monics having the appropriate symmetry. Then any
function such as f(8,y), having the same symmetry,
can be expanded in terms of the harmonics Ft (8, p),

and

f(e,v)=E 2 «-Ft-(e, tt),
l=O 77 l

(3)

f((t, y) d(2 =aoo= ao

As is well known from the properties of spherical har-
monics, Eq. (4) is exact. Our approximation consists of
stopping the summation in (3) at a given degree l. The
coeKcient ~ is then found by solving an appropriate
number of linear equations found by taking various
values of (H, to).

If dispersion is neglected, the velocities of the elastic
waves in nonisotropic crystals, e;(e,q), are given by
the three roots of the well-known ChristoGel equations
of elasticity theory. ' The noncubic crystals considered
here have a principal symmetry axis, which we take to
be the polar axis 0=0. Then the harmonics for a given
symmetry are simply "constructed" by choosing those
of the functions I'

t, (e,q)&Ft, (e, io) which have the
appropriate symmetry. In striking contrast, the con-
struction of harmonics of complete cubic symmetry is
a rather involved process. 7 The reason for this is that
Kubic harmonics are complicated linear combinations
of spherical harmonics.

Fst(e, q) =Est(cose).
'A. E. H. Love, Mathematica/ Theory of Elasticity (Dover

Publications, New York, 1944), fourth edition, p. 299.

Crystals of Symmetry C,", D,", Ce, De, Cs', Ds"

We shall refer to crystals having any of the above
symmetry properties as hexagonal crystals. It is easy
to see that the corresponding Christoffel equation is
q-independent and symmetric under 0~—0. Thus the
corresponding "cylindrical" harmonics are simply
Legendre polynomials of even degree:
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Here, of course, since Ls, (8,y)] '—=fp ' is a function
of 0 only, it can be integrated approximately by any
of the standard methods. For the sake of uniformity,
however, and because of its simplicity, we shall use
the method outlined above. A straightforward calcu-
lation yields

ao= [6f~+fa+8fc]/15,

ap $192f——g+57fri+256fc+125 fr)]/630,

(6.1)

(6.2)

ap [1368f——~+153fa+1024fc+2125 fg&

+1000fr,]/5670. (6.3)

The integrand f may be found in the appendix. The
directions correspond as follows: A~(1,0,0),B~(0,0,1),
C—+(1,0,1), D~(2,0,1), L—+(1,0,2). These directions
are illustrated in Fig. 1(a); the unit sphere is quite
evenly covered by them. Equation (6.2) uses all har-
monics up to and including those of degree six and so
corresponds to the Bhatia-Tauber formula. 6 The other
formulas are given so that the convergence of the
method can be demonstrated. It should be mentioned
that although the choice of directions is somewhat
arbitrary, they should be chosen to cover the range of
integration fairly evenly. Otherwise we have found
that the coeflicients occurring in formulas such as (6),
for cp, nearly cancel one another, leading to poor con-
vergence and hence unreliable results. We stop at 1=8
in (3) because Eqs. (6) are found to give sufFiciently
rapid convergence and because subsequent formulas
tend to become somewhat unwieldy.

Crystals with Symmetry D4, C4", 84", D4"

We shall refer to crystals having any of the above
symmetry properties as "tetragonal" crystals. The
corresponding Christoffel equation is invariant under
8~—8, y~ —y or ip~qr+s/2. The appropriate
"tetragonal" harmonics are thus

Tsi, 4~(8, po) =cos4iwyPsi4™(cos8), (7)

with 4m&21; 1, m=O, 1, 2 . Solving the correspond-
ing equations (3), we find

ap= [2f~+fr+8fc+4fE]/15, (8 1)

ao $24fg+57fii+256f——c+125fri+168fir]/630, (8.2)

as $288fg+ 144 five+51——2fc 125fD-
+96fE+375fr ]/1260. (8.3)

(cJ

FIG. 1. Illustration of the directions along which the integrand
in the formula for Debye Oo is to be evaluated for (a) hexagonal
crystals, (b) tetragonal crystals, and (c) trigonal crystals.

The directions A to D have the same meaning as
before, E—+(1,1,0), and F—+(1,1,1/v2). These directions
are illustrated in Fig. 1(b). They are chosen by realizing
that the Christoffel equation for the velocities factors
only along the arcs io=0, io=s./4 and 8=7r/2 or equiva-
lent arcs. Equation (8.1) is obtained from (3) by ignoring
all tetragonal harmonics of degree 1=6 or higher. Equa-
tion (8.3) is found by ignoring all tetragonal harmonics
of degree l=8 or higher. For comparison we also give
formula (8.2) for five directions found by leaving out
To4 but including T~p in (3). The formulas for the f's
are again to be found in the appendix.

Crystals with Symmetry D» C3', S6"

We shall call crystals with any of the above sym-
metry properties "trigonal" crystals. The corresponding
Christoffel equation is invariant under y—&—q or
~po+pr/3 while 8~s —8. The appropriate trigonal
harmonics are thus

A s lorn(8~ @, ) = cos3rispoPsP" (cos8), (9)

with 3m&~23; l, m=0, 1, 2, . .. For trigonal crystals
the Christoffel equation unfortunately factors only
along the arc p=O or equivalent directions. Thus we
try to choose as many as possible of the directions
along this arc.

Using all four 22~ 3 of degree four or less leads to

ao= $6fa+ fa+4fc+4fc]/15, (10.1)

where direction G—+(1,0,1) (equivalent to direction
po= 7r/3 and 8=or/4). Including all harmonics of
degree six or less except Aoo(8, po) gives

ao= P84f~+114f&+256(fc+fa)
+125(fir+ fD)]/1260, (10;2)

where the direction H—+(2,0,1).To use all seven trigonal
harmonics of degree six or less requires us to choose a
seventh direction for which y WO in order to be able
to solve (3) for ap. We take this direction to be
E~(0,2,1) and obtain

ap = [1536f&+ 456 fir+ 1024(fc+fa)
625 (fD+ f~)+2—250fx]/5040. (10.3)

The directions chosen for this symmetry class are
illustrated in Fig. 1(c). The unit sphere is again quite
evenly covered.

3. CALCULATION OF O~p AND DISCUSSION

In the previous section we have obtained Bhatia-
Tauber type formulas in various approximations for
each of the three sets of symmetry classes considered
in this paper. In this section we use these formulas to
calculate Op for several examples of crystals from each
symmetry class. These examples include almost all
crystals, of these symmetries, for which elastic constants
are available. The elastic constants and calculated and
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Tmz.z I. Characteristic temperatures and elastic constants for certain noncubic crystals.

Material C11

Elastic constants in

C88 c44

10» dynes/cm8

C12 C18

{1)Hexagonal crystals

Source 801

Characteristic temperatures in 'K
GrQneisen

802 8o8 and Goensb 80@ Source

Beryl
Cd
Cd
Co
Ice
Mg
Zn
Zn

2.692
1.146
1.206
8.071
0.1885
0.5747
1.681
1.610

2.872
0.4851
0.5188
8.581
0.1499
0.5988
0.6111
0.5420

0.6586
0.1835
0.1852
0.7550
0.0319
0.1669
0.3947
0.4000

0.9644
0.4364
0.4812
1.650
0.0707
0.2408
0.8062
0.4320

0.6690
0.4064
0.4420
1.027
0.0581
0.1939
0.4911
0.4370

Hearmona
Hearmona
GrQneisen and Goensb
McSkiminc
Humbel et at.d

Hearmona
Hearmon0
Griineisen and Goensb

1065
186.3
187.9
448.5
292.3
868.6
805.4
301.9

1065
186.8
187.9
448.8
292.6
864.4
807.8
804.2

1066
186.2
188.0
445.6
298.1
365.6
308.8
803.5

189

805

1000 Kittel&
160 Kit teP
160 Kittel&
385 Seitz m

815 Bluen
290 Seitsm
285 KIttell
235 Kittel&

Material

Sn
Zircon
KDP
NH4DP

C11

0.8391
0.7850
0.7230
0.6850

0.9665
0.4600
0.6180
0.8240

0.1754
0.1880
0.1280
0.0861

Elastic constants

C88 c44

in 10» dynes/cm8

c66

0.07407
0.1600
0.0618
0.0602

C12

0.4870
0.0900
0.0439—0.0180

0.2810-0.0540
0.1980
0.0178

Hearmona
Bhlmasenacker et al.f
Hearmong
Hear mono'

(2) Tetragonal crystals

Source
Characteristic temperatures in 'K

80c 801 808 808

151.9 164.1 165.6 168.1
260.0 268.6 268.2 271.8
306.2 336.9 388.4 887.6
743.7 795.4 795.2 797.6

80II' Source

195 Corako

Material

Bi
Corundum
Hg

Quarts
Sb

0.8497
4.650
0.3600

0.8676
0.7916

0.5948
5.680
0.5051

1.048
0.4498

0.1459 0.1765 0.2860 —0.0573
2.830 1.750 1.170 1.010
0.1290 0.0356 0.3030 0.0470

0.5861 0.4021 0.0950 0.1814
0.2852 0.2717 0.2615 0.1060

Elastic constants in 10» dynes/cm'

C38 C44 C66 C18 C14 Source

Hearmona
Bhimaaenacllrb
GrQneisen and

Sckelli
Masons
Hggrmona

80c

188.8
867.8
71.57

528.8
182,5

(8) Trigonal crystals

80c

122.1
921.3
81.65

582.0
205.9

128.8
852.4
73.22

558.8
191.7

128.8
898.0
75.84

552.9
192.6

127.8
898.8
72.09

555.8
193.5

Characteristic temperatures in 'K
GrQneisen

8o1 8o8 808 and Hoyer& 80@ Source

100 Seitsm

60 Kamerlingh
Onnes et al. Is

140 Seitsm

a See reference 9.
b See reference 1.
c See reference 10.
d See reference 11.

c See reference 12.
f See reference 18.

& See reference 14.
b See reference 16.

I See reference 21.
& See reference 15.
& See reference 2.
1 See reference 17.

m See reference 18.
n See reference 22.
o See reference 19.
I See reference 20.

experimental values of 0's are listed in Table I.' s s-»

We note that while frequently the elastic constants are
only given to two or three significant figures, we use
the four-figure values quoted in Table I so that the
convergence obtained from our method could be clearly
shown, even though the absolute values of the Os,
for the elastic constants used, are only good to about
1%.In some cases stiffness constants were given in the
literature and were used to find the elastic constants in

the usual manner.
For hexagonal crystals with Christoffel equations

that are y indePendent, O~s', O~ss, and O~ss in Table I
refer to characteristic temperatures calculated from

(1) using (6.1), (6.2), and (6.3), respectively. For

' R. F. S. Hearmon, Revs. Modern Phys. 18, 409 (1946).
"H. J. McSkimin, J. Appl. Phys. 26, 406 (1955).
"Humbel, Jona, and Scherrer, J. chim. phys. 50, C40 (1953).
'~ The elastic constants for Zn are obtained by averaging the

values quoted by Hearmon in reference (7) and those given by
C. A. Wert and F. P. T. Tyndall, J. Appl. Phys. 20, 587 (1949)."J.Bhimasenackar and G. Venkataratuam, J. Acoust. Soc.
Am. 27, 922 (1955).

'4 R. F S. Hearmon. , Brit. J. Appl. Phys 3, 120 (1952.).
"W. P. Mason, Bell System Tech. J. 30, 366 (1951).
'6 J.Bhimasenackar, Proc. Natl. Inst. Sci., India 16, 241 (1950).
'7 C. Kittel, Introdlctioe to Solid State I'hysics (John Wiley and

Sons, Inc. , New York, 1953), p. 77."F.Seitz, The 3dodere Theory 0f Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 110.

"W. S. Corak and C. B. Satterthwaite, Phys. Rev. 102, 662
(1956).

'0 H. Kamerlingh Onnes and G. Hoist, Leiden Comm. 142C, 30
(1914)."E.Griineisen and O. Sckell, Ann. Physik 19, 387 (1934). The
elastic constants of Hg were measured at —190'C.

"R, W. Blue, J. Chem. Phys. 22, 280 (1954).

tetragonal crystals O~s' Q~ss and Q~ss have been cal
culated by using (8.1), (8.2), and (8.3), respectively.
For trigonal crystals O~s', O~s', and O~ss have been cal-
culated by using (10.1), (10.2), and (10.3), respec-
tively. In the latter two cases we have also obtained
Oo' by assuming the y dependence of the velocities to
be small and using Eq. (6.2). OP refers to the experi-
mental data.

From Table I it can be seen that the various O~s

values for a given crystal converge well. However, it
is clear from the Os' values that the y dependence of
the integrand in (1) must not be neglected. Os' was
calculated on the assumption that the integrand in (1)
is cylindrically symmetrical; the directions A, 8, C,
and D, along the arc @=0, are used in (6.2). O~e'

corresponds to the use of directions AJ3GH in (6.2);
i.e. to the arc @=sr/3. The values of O~s'and 0's'differ
considerably and even the average of corresponding
values yields poor results. We have only given O~&' for
trigonal crystals; for tetragonal crystals the results are
similar. It is seen, therefore, that the use of the correct
harmonic polynomials is thus imperative.

By inspection, it is clear that our formulas yield
characteristic temperatures accurate to about 1%. For
Hg, the accuracy is about 4%; however, the reason for
this lies in the fact that the anisotropy of Hg approaches
that of Pb. Xt is unfortunately not possible to define a
measure of anisotropy (corresponding to 2c44/(c» —cis)
in cubic crystals) for trigonal crystals. The final for-

Inulas are thus significantly superior to the Bhatig, -
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Tauber formula for cubic crystals and should be com-
pared in accuracy to the formulas developed by Betts
et al. ' for cubic crystals by using higher order poly-
nomials. The formulas (6.2), (8.3), and (10.3) for
integrating over a unit sphere functions f(0,91) of the
three symmetries considered in this paper may also
prove useful in other connections. They are being
applied here to further discussions of the properties
of noncubic crystals. Because of the trouble of evalu-
ating the velocity corresponding to the direction E for
trigonal crystals, it may be convenient in future merely
to use (10.2) instead of (10.3) since, in the calculations
reported in Table I, the two formulas give nearly the
same results.

The disagreement between the theoretical and experi-
mental O~p's varies between about 5% and 20%. We
believe that the reason for this discrepancy can be
attributed to two causes. Firstly it may be noted that
the experimental Op's, with the exception of the values
for Sn and ice, were not obtained recently and may not
correspond to the true T' region in the heat capacity
data. This possibility is emphasized by the fact that
the value of O~p for Sn given recently by Corak and
Satterthwaite" divers from that quoted by Seitz'8 and
Kittel, '7 from whose books most of our experimental
data are taken, by over 30%. We also note, in support
of this point, that, with the exception of O~p for Sn and
ice, all our calculated 0'p's lie above the experimental
values. "Secondly, with the exception of quartz and Hg,
we were forced to use the elastic constants of the
crystals listed in Table I obtained at or near room
temperature. We believe that elastic constants measured

close to O'K are not available. Now it has been shown
by Bhatia and Horton'4 .that in the case of Ag the
values of Op obtained by using room temperature
elastic constants and O'K elastic constants differ by
about 10%. A difference of up to 20% found for the
crystals considered in this paper is, therefore, not
unreasonable. It is a measure of the uncer'tainty in the
absolute value of the O~p's we have calculated. As soon
as reliable O'K elastic constants become available, our
formulas can, of course, be used to give reliable charac-
teristic temperatures. The only calculated values avail-
able for comparison are those of Griineisen and Goens'
for Cd. and Zn and Griineisen and Hoyer' for Hg. To
enable us to make a meaningful comparison between
the calculated values of Griineisen and Goens' and our
own, we used two sets of elastic constants for Cd and
Zn. One sets represents the values used by Griineisen
and Goens' while the other is an average over all the
available data. The characteristic temperatures ob-
tained by ourselves and Griineisen and Goens' (Zn and
Cd) agree well, but this is not surprising since the
integration involved for these hexagonal metals is over
only one variable. The agreement between our O~p's

and that of Gruneisen and Hoyer' is not so good. We
believe that the numerical averaging procedure of the
latter authors is not so satisfactory for trigonal as for
hexagonal crystals, especially for Hg where the values
of [v;(8,44)]

' differ by a factor of about five. For Zn
and Cd this quantity has only about a 50% variation.
The extension of our work to higher orders and other
crystal symmetries is straightforward, though this will
usually involve the solution of nonfactorable cubic
equations.

APPENDIX

Tetragonal Crystals
(11.1)

(11.2)

Hexagonal Crystals

For f~, fs, fc, and fD, we simply put css ———', (cll —cls) in (11.1) to (11.4).

fz, [;p (c» cls+8c44)]——'+—[;,(—c»+5C44+4=cps)+—{1'p(c»+3C«—4css)'+16(cls+c«)'}'] '
+L1 p (c»+5c44+4c33) 1p {(cll+3c44 —4css)'+ 16 (cls+c44)'} '*] ' (12)

ssXo&e added sn proof.—This argument is supported by the value of 06=204'K found recently for Sb by N. M. Wolcott LBull.
Am. Phys. Soc. Ser. II, I, 289 (1956)7.

34 A, 3.3hatia and G. K. Horton, Phys. Rev. 98, 1715 (1955).

f~=[C44] '+[Cps] '+[C11]

fs=2[c44] &+[cps] &

fc= [2 (css+C44)] +[4 (cll+2c44+css) +4{ (cll —css) +4(cls+c44) }«]
+[4(c»+2«4+css) —4{(cll—css)'+4(cis+«4)'}'] '. (11.3)

f~= L.(4«6+«-4)] '+[1p («»+5«4+c33)+ 1'p {(«»—3«4—css)'+16(c»+c44)'}'] '
+[16 (4cll+5c44+c33) 1 o {(4cll 3c44 c33) +16(cls+c44)'}&] &. (11.4)

f@=[c44] +[2 (cll c12)] *+[2(cll+2C66+c12)] (11.5)

f& [6 (2cll —2cls+c4——4)] &+[—,'p (2cll+2c»+4css+5c44+css)+ —,'p {(2cll+2cls+4css —3c44—css)'
+16(cls+c44) }] *+[1p(2cll+2cls+4css+5c44+css)

—1'o {(2cil+2cis+4css —3c44—css)'+16(cls+C44)'}1] 1 (11 6)
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Trigonal Crystals

fA [c63) +[3(c44+cll)+3 {(c44 cll) +4c14 ) ) +[3(c44+cll) z { (c44 cll) +4c14 ) )
fll ——2[c44)

—'*+[c33)
—

&.

(13.1)

(13.2)

fo = [3 (css+c44 —2c14)) &+[4 (c»+2C44+2c14+c33)+4{(cll+2c,4
—c33)'+4(c14+c13+c44) jf)

+[4(cll+2c44+2c14+ c33) 4 {(Cll+2C14 C33) +4 (C14+C13+C44) ) ) . (13.3)

frl = [-,' (4c«+c44 4—C14)) '+-[,'o (—4c»+4c14+5c44+c33)+—1'o {(4cll+4cls —3c44—c„)'+4(4c14+2cls+2C44)s) &)
—

&

+[1'o (4c„+4c,4+Sc44+c„)—1'o {(4c„+4c,4—3c44—c„)+4(4c,4+2c„+2c44) )&)
—

&. (13 4)

f0= fo (with the sign of c14 changed).

f~= f~ (with the sign of c14 changed).

(13.5)

(13.6)

(13.7)

where the y; are solutions of the equation

(4css+C44)/5 —y —4C14/S —4c14/5

4c14/5 (4cll+c44)/5 —y (2cls+2c44)/5 =0.
—4c,4/5 (2C»+2C44)/5 (4c44+c33)/5 —y
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Surface Conductance and the Field Effect on GeriaaniuIn*

J. BARDEEN, R. E. CoovzRT, S. R. MoRRrsoN, J. R. ScHRrEFFER, ANn R. SoN
Electncul Engineering Reseurch Luborutory, University of Illinois, Urbunu, Illinois

(Received April 23, 1956)

Measurements of the steady-state surface conductance and the change in this conductance with transverse
electric field (field effect) have been made on a free germanium surface as a function of the gaseous ambient.
The results can be understood in terms of two sets of surface states: one dependent upon the gaseous ambient
and with a large density and long time constants, probably located at the outer surface of an oxide layer,
and the other a set with much smaller density but shorter time constants, probably located at the germa-
nium-germanium oxide interface. The interface states consist of a discrete state with free energy 0.13—0.15 ev
below the intrinsic Fermi energy and density 1—3X10"states/cm', and a small continuous distribution.
There is also indication of a discrete state greater than 0.13 ev above the intrinsic Fermi energy. The
measurements suggest that surface scattering eR'ects become important for large barrier layers.

I. INTRODUCTION

ONSIDERABLE progress' —"has been made in~ recent years in understanding the nature of the

space-charge layer at a germanium surface and the way

*The experiments to be reported here were initiated by S.R.M.
and J.B.The results were reported in part in reference 2 and more

completely by Morrison, Sun, and Bardeen in a technical report,
January 15, 19SS (unpublished). Because of uncertainties in the
calibration of the field effect measurements, the results were only
of qualitative value. The apparatus was revised by J.R.S., and
further measurements made are reported by J. R. Schrieffer and

J. Bardeen in a technical report, April 10, 1955 (unpublished).
Further revisions in the equipment, particularly to increase the
temperature stability, were made by R.E.C. The work was
supported by the OfBce of Naval Research and by a grant from
Motorola, Inc.

'W. H. Brattain and J. Bardeen, Bell System Tech. J. 32, 1

(1953).' J. Bardeen and S. R. Morrison, Physica 20, 873 (1954).
3 C. G. B. Garrett and W. H. Brattain, Phys. Rev. 99, 376

(1955).

it varies with ambient and with surface treatment.
There is good evidence that the surface barrier results
from two diGerent types of surface states with radically

' E. N. Clarke, Phys. Rev. 91, 756 (1953);94, 1420 (1954).
3 S. R. Morrison, J. Phys. Chem. 57, 860 (1953).
4 W. Shockley and J. L. Pearson, Phys. Rev. 74, 232 (1948).
P. Handler, Bull. Am. Phys. Soc. Ser. II, I 144 (1956).

3 G. G. E. Low, Proc. Phys. Soc. (London) 468, 10 (1955).' H. C. Montgomery and B. A. McLeod, Bull. Am. Phys. Soc.
Ser. II, 1, 53 (1956).

14 J. R. Schrieffer, Phys. Rev. 94, 1420 (1954); 97, 641 (1955).
"W. L. Brown, Phys. Rev. 98, 1565 (1955).
~ Statz, de Mars, Davis, and Adams, Phys. Rev. 101, 1272

(1956).
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