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rules out a spin assignment of 0 or 3 for the 3.58-Mev
state (barring an attenuation of the coefficient in the
spin 0 case) . For spin 1 or 2, a dipole-quadrupole mixture
is possible in the first transition. Figure 4 gives A2
as a function of n', the amount of mixing. The observed
value of A2 agrees with a spin assignment of 2 with
n".=0.075 (0 phase) or ~, or with an assignment of 1

with n'=0. 12 (sr phase) or 8.0 (sr phase). The elimina-
tion of a spin assignment of 0 or 3 for the state at
3.58 Mev is in agreement with conclusions' ' reached
from a consideration of intensities in the decay scheme
in 8".In addition, the decay scheme favors the assign-

0(D) 1(Q)3
1(D)1(Q}3
2(D)1(Q)3

—0.10
+0.05—0.01

1(Q)1(Q)3
2(Q)1(Q)3
3(Q)1(Q)3

+0.05—0.05
+0.02

ment of spin 2 rather than 1.If the spin is indeed known,
then the correlation measurement provides a measure
of the dipole-quadrupole mixture in the 2.86-Mev
transition.

TABLE I. Theoretical values of A& in the expression 1+3&cos'8.

P H VS I CAL REVIEW VOLUME 104, NUM HER 2 OCTOBER 1S, 19SC

Nucleon Energy Levels in a Velocity-Dependent Potential*
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The neutron and proton level sequences in a diRuse, velocity-dependent potential have been investigated,
A velocity-dependent interaction is used which manifests itself by attributing to a nucleon inside nuclear
matter an "effective mass" which is a function of its position. Following Brueckner, Johnson and Teller, and
Duerr, the eRective mass in the center of the nucleus is chosen to be one-half the free-particle mass. The
potential form was taken as V(r) = —Ve/{1+exp5n(r —o)g}, and for protons a Coulomb potential derived
from a uniform charge distribution extending to r =e was added. The proper neutron shell structure and level
sequence was obtained with the parameters 0.=1.16X10'~ cm ', a=1.3A&X10 "cm, V0=69 Mev, and a
spin-orbit coupling 33 times the Thomas term. For protons, using the same 0., radius, and spin-orbit coupling,
it was found that the potential depth had to be increased by roughly 13 Mev to bind the correct number of
protons in Pb"".If Pauli principle correlations are included, then a deeper proton potential is obtained. This
correction depends critically on the form of the nucleon densities. Since a self-consistent treatment has not
been made, this effect has been estimated in two ways: (1) A Fermi-Thomas approximation was used to
compute the densities. In this case, the correct neutron-proton ratio is obtained but the correct proton
level sequence is destroyed. (2) The neutron well depth was increased by an amount (N+ ',Z)/(Z+ ,'N ). --'
In this approximation the correct proton level sequence is obtained but it is not possible to 'bind the proper
number of protons.

INTRODUCTION

HE phenomenological shell model of the nucleus
proposed independently by Mayer and by Haxel,

Jensen, and Suess' has achieved considerable success,
particularly in explaining ground state properties of
nuclei. ' This might well be considered surprising in
view of the strong two-body interactions exhibited, for
example, in nucleon-nucleon scattering. Such forces
would imply a strongly correlated wave function (in-

deed, if repulsive cores are introduced, the wave func-
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' M. G. Mayer, Phys. Rev. 75, 1.969 (1949);Haxel, Jensen, and
Suess, Phys. Rev. 75, 1'766 (1949).' See for example, M. G. Mayer and J.H. D. Jensen, Elemezztury

Theory of Ãz~clear S1zell Structure (John Wiley and Sons, Inc. ,
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tion must effectively vanish if two particles are suffi-

ciently close) instead of a product of single-particle
states. Further, the apparent short mean free path for
collisions of nucleons in nuclei, indicated by the success
of Bohr's compound nucleus model, ' also violates the
idea of an independent-particle model. Indeed, for some
time it was felt that a model in which the nucleons were
pictured as moving in approximatelyindependent orbits
under the inhuence of a mean potential generated by
the other nucleons in the nucleus, could not be at all
successful.

However, once it was realized that a strong spin-
orbit interaction would give reasonable results when
taken in conjunction with a smooth average potential,
the idea of a single-particle model was revived. It is
well known4 that this average potential cannot arise
fr'om purely attractive signer-type forces since these

~ N. Bohr, Nature 137, 344 (1936).
See for example, J. M. Blatt and V. F. %'eisskopf, Theoretical

nuclear I'hyszcs (John Wiley and $ons, Inc. , New York, 1952).
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do not lead to saturation. On the other hand, introduc-
ing two-body exchange forces is unsatisfactory since
the condition for saturation gives more exchange than
seems to be required to explain the two-body scattering
data. Therefore, in order to obtain a total nuclear
energy proportional to A (the mass number) and a
radius proportional to A', one is essentially left with
the need for repulsive and probably velocity-dependent
forces which could be of either two-body or many-body
character. '

Johnson and Teller' have postulated the existence of
a smooth shell-model-like nuclear potential, generated
by a scalar meson field, and have examined under what
conditions this can lead to saturation of nuclear forces.
They hnd that if the potential is made velocity-de-
pendent in such a way that within nuclear matter a
nucleon moves as if it had a "reduced mass, " then the
experimentally observed saturation properties are re-
produced. Further, according to their theory the spin-
orbit interaction is larger than the usual Thomas
term, ' and in heavy nuclei approximately the correct
neutron-proton ratio is obtained. (This last result must
be modified in view of further calculations described
in this paper. )

This theory has been reformulated by Duerr' in a
relativistically invariant way which avoids the collapse
of the nucleus at high momenta —a fault of the Johnson-
Teller model. In Duerr's theory the nucleons are as-
sumed to interact with an attractive scalar and a re-
pulsive vector meson field. At normal densities the
former gives a strong attraction and the latter a re-
pulsion. However, at higher momenta the attraction
decreases, leading to an over-all repulsion and hence to
saturation. The potential experienced by a nucleon is
the sum of the scalar and vector fields, both of which
have a magnitude of several hundred Mev. On the
other hand, the force exerted on an antinucleon is the
difference of the scalar and vector interactions and
consequently is very large. This has the interesting
eGect that the cross section for the interaction of an
antinucleon with matter is considerably larger than
that for a nucleon. '' This di8erence seems to be ob-
served experimentally. " Since the spin-orbit coupling
arises through interactions in negative-energy states, a
large antinucleon interaction implies a large spin-orbit
coupling, as required by the shell model.

~ See for example, S. D. Drell and Kerson Huang, Phys. Rev.
91, 1527 (1953), who have shown that in the perturbation limit
the three-body forces derivable from pseudoscalar meson theory
with pseudoscalar coupling are su%cient to give saturation.' M. H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955).

r L. H. Thomas, Nature 117, ~514 (1926); D. R. Inglis, Phys.
Rev. 50, 783 (1936).' Hans-Peter Duerr, Phys. Rev. 103, 469 (1956).

'Hans-Peter Duerr and Edward Teller, Phys. Rev. 101, 494
(1956)."Brabant, Cork, Horowitz, Moyer, Murray, Wallace, and
Wentzel, Phys. Rev. 101, 498 (1956);

'
Chamberlain, Keller,

Segrh, Steiner;"Wiegaiid;. 'and. ' Ypsilaiitis, Phys. 'Re@; 102, - $637
(1956).

On the. other hand, Brueckner and his co-workers"
have attempted to make a self-consistent nuclear model
based on two-body interactions which give roughly the
correct scattering up to 90 Mev. These potentials,
which are derived from pseudoscalar meson theory
neglecting the pair term, "lead to saturation because of
their velocity dependence and nonmonotonic character.
Despite the assumption of strong two-body forces,
which means highly correlated wave functions, a trans-
formation" is introduced (equivalent to neglecting
"incoherent scattering" on exclusion principle argu-
ments) which, for an infinite nucleus, reduces the wave
function to the product of plane waves moving in a dis-
persive medium. Since the scattering amplitudes have
then to be evaluated in this medium, a self-consistent 6eld
problem arises. It is interesting to note that although
these authors start from a completely diferent point of
view than do Duerr or Johnson and Teller, they arrive
at the same conclusion —namely that nucleons inside
nuclear matter move as if they had an "effective mass"
no=0.5mo, where @so is the mass of the free nucleon.
(Note: res is defined throughout this work as the
"effective mass. ")

Although both the Duerr-Johnson-Teller and Brueck-
ner theories lead to the study of a self-consistent field
problem, these authors have neglected this and evalu-
ated the constants of their theories in the Fermi-
Thomas approximation. The purpose of this paper is
»ot to consider the question of self-consistency but to
take the simplest form of the single-particle equation
(which is similar for all the above models) and see
whether it is indeed possible to reproduce the shell-
model level sequence. It should, therefore, be stressed
that this work provides only (a) an afhrmative answer
to the question of whether the shell-model level se-
quence can be obtained with this type of velocity de-
pendence and (b) eigenvalues and eigenfunctions which
could be used as a starting point in making a self-
consistent calculation.

WAVE EQUATION

The single-particle equation derivable from the
Johnson-Teller Hamiltonian is

1
@+V(&) 4= J-'ll,

2m

m= ~o(@+XV(r)].

The value of E is chosen to approximately satisfy the
saturation condition and V(r) is, ideally, the self-

"Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217
(1954). K. A. Brueckner, Phys. Rev. 96, 508 (1954); 97, 1353
(1955).K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955).

'X. A. :Brueckner and K. M. Watson, Phys. Rev. 92, 1023
(1953).

"See for, example, R..:J.Eden and. ¹ C. Francis, Phys. Rev.
97; 1366"(1955): for a more detailed discussion of this type of
approach.
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consistent potential in which the particle moves. The
spin-orbit interaction is taken. to be the usual Thomas-
type term multiplied by an appropriate constant, X.
Therefore, for neutrons the radial Schrodinger equation
to be solved is

mately 10% larger than obtained from high-energy
electron scattering data."However, this was not felt
to be important since the level sequence is invariant
[i.e., Eq. (3) is invariant] under the transformation

/(/+1)
[1+vV(r)]+I V(r)+

2mp r'

1 d dE
——-~'[1+%U(r)]-

2mp r' dr

Uofo'= Uo'fo",

XUo=) 'Up',

Iofo=n fo,
EVp ——E'Uo',

fpr —fo r)
I

Efp —E fp0 )

(6)

Xk' 1dV /

iR=ER, (3)
4nzp'c' r dr —(/+1)

where / is the orbital angular momentum of the par-
ticle, R is the radial wave function, and the operator
e 1 has been replaced by / and —(/+1), its eigenvalues
when operating on a state with j=/+-', and j=/ ——,

'
respectively.

Since a self-consistent treatment is not attempted,
the Woods-Saxon" form of the potential

U(r) = —Vp/[1+expn(r —a) 7 (4)

has been arbitrarily assumed. This has previously been
investigated in connection with the static-shell-model
level sequence. "

The level sequence obtainable from this type of
interaction is a function of the five parameters E, Vp,
o., a, and ). From considerations of the volume energy
alone, Brueckner, Duerr, and Johnson and Teller
arrive at the conclusion that the "effective mass" of a
nucleon inside nuclear matter should be between 40%%uz

and 60% of the free nucleon mass. In view of this, E is
chosen to be

E= —1/Vp,

where Vp„ is the neutron well depth. This implies that
in the center of the nucleus a nucleon has a mass of
approximately 0.5mp.

The well depth, Vp„, was chosen in such a way that
the energy belo~ the top of the well of the last ulled
level in Pb"' was roughly the same as in the static
case."This allows comparison of the behavior of the
uppermost levels in the static and velocity-dependent
wells when they are "bound" by the same amount.
When a self-consistent calculation is made, the energy
below the top of the well is not necessarily equal to the
experimentally observed separation energy, since in
order to calculate the latter the change in energy of the
meson field and the change in energy of the nucleons
due to removal of one of them, must also be included.

The "nuclear radius" a was taken to be u=fpA~,
where fp was chosen to be 1.3)(10—"cm. This will lead
to a radius of the charge distribution which is approxi-

' R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
"Ross, Mark, and Lawson, Phys. Rev. 102) 1613 {1956).

Z—1 t'rp
v, (.)= e 3—)-~

2a &aj
for»&a

for r&a

must be added to Eq. (3).
Equation (3) can be readily solved in the limit that

the potential is a square well. In this case, the solution
for r(a is, as in the static case (K=O), a spherical
Bessel function with argument

[(2m/5') (Vp —E)]*'r= [(mp/5') (Vp —E)]'r.

For f& a, the solution is the same as in the static case,
a spherical Hankel function of argument (2nspE/h')&r.

The connection condition at f=a is now

m dr inside mo d» outside

X Vp R(a)
(8)

4m p'c' a —(/+1)

From Eq. (8) it is seen that there is a finite discon-
tinuity in the derivative of the wave function which
arises from the form of the velocity dependence as well

Hahn, RavenhaI1, and Hofstadter, Phys. Rev. 101, 1131
{1956).

and so the eigenvalues for other radii can easily be
obtained.

Duerr's theory gives an expression for the spin-orbit
coupling. However, the constants he derives are based
on the approximation of an infinite nucleus, and hence
may not be too reliable. The constant A has, therefore,
been kept as an open parameter. This constant, to-
gether with e, has been adjusted to give the observed
shell-model level sequence for neutrons.

To study the proton level sequence the same o., ), E,
and fp were used. Further, it was assumed that the
Coulomb potential a proton experiences is derivable
from a uniform charge distribution extending out to
r=a. This implies that for protons an additional
potential
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as the usual one due to the spin-orbit interaction. If
the kinetic energy term in Eq. (3) had been taken as the
non-Hermitian (1/2m)y' rather than y (1/2')y, then
the connection condition at the nuclear radius would
have been

inside outside

XVO R(a)
+ —(ln2)

4m pc' a
(9)—(/+1)

In the static case (K=0), the square well gave no shell
at %=126 and led to an unsatisfactory level sequence.
In the velocity-dependent case the results are con-
siderably worse. The high angular momentum states,
which were already too tightly bound, are now pulled
down even further. This can be seen as follows: The
connection condition, Eq. (9), is essentially the same
as the condition in the static case except that the spin-
orbit coupling is changed and that (V E) in the ar—gu-
ment of the interior wave function is changed to
(V—E)/2. This means that if two levels with different
angular momenta are bound by the same energy in the
static potential, they will still be bound by the same
energy in the velocity-dependent well if (ln2) (XVo) «&, a,~,
= (lI Vo) g t, ; . The spacing between all levels will be
roughly doubled provided the same number of levels
are bound, since V,~ d p 2Vstgtjc Therefore, if an
equation with a kinetic energy term (1/2m)y' is used,
no great violence is done to the level sequence.

On the other hand, the operator y (1/2m)y, which
has been used, gives rise to a term K(dV/dr)(dR/dr)
in the radial equation. This term is responsible for the
additional discontinuity in the wave function and is the
major cause for the disrupted level sequence. In the
square-well limit, this term gives rise to a 5-function
attraction since (1/R) (dR/dr) must always be negative
at the radius of the potential for a bound level. Further-
more, the term is likely to be more important for levels
with large angular momenta and few radial nodes since
for these the wave function is larger at the edge. As an
example of this effect consider the behavior of the 3s
and 1h levels in Ce'" neglecting spin-orbit coupling
(i.e., X=O). In the static case with V0=42.8 Mev, the
3s level is bound by 10.94 Mev and the 1k state is
above it at 10.73 Mev. Using Eq. (9) with Vo= 72 Mev,
the 3s level is at 8.79 Mev and the 1h level is above it at
8.43 Mev. If the matching condition, Eq. (8) is used,
then the 3s level is pulled down to 12.23 Mev and the
1h level is at 14.62 Mev. In addition, if the spin-orbit
coupling (with X=39.5) is included, the center of
gravity of the 1h9/Q and ih»~& levels using Eq. (9) is

depressed by 1.95 Mev and the two levels are split by
13.1 Mev, whereas with Eq. (8) the center of gravity
descends 2.30 Mev and the splitting of the levels is
14.0 Mev.

The foregoing discussion of the square-well limit

suggests that it may be necessary to use a somewhat
smaller X and a larger potential surface thickness than
was necessary in the static well to obtain the correct
level sequence.

The diRerential analyzer at UCRI was programed
to study the eigenvalue problem. Methods exactly
analogous to those described previously" were used to
And solutions. As in that case, the errors introduced by
the boundary condition approximations were con-
siderably less than those inherent in the machine. In
absolute magnitude the latter were increased, over the
static case, by the doubling of the energy scale and the
necessary use of two input plots —one of the potential
and one of the eRective mass. The eigenvalues quoted
here are accurate to approximately 0.2 Mev in relative
spacings. The absolute magnitude is probably a little
less accurate.
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Fxo. 1. Top neutron levels in nuclei with X=20, 28, 50, 82,
and 126. The parameters used to determine the energy levels in
the diffuse potential are: a 1.45X10" cm, Up=72 Mev, a
=1.3A &)&10 "cm, and X=39.5; me ff =0.5mp at r =0. The square-
well level sequences for the same values of Up, u, and X are also
shown. The dotted lines indicate unhlled levels in both the
square and the diffuse potential.

RESULTS

(a) Neutrons

For the purpose of comparison and orientation, the
top levels in various nuclei were 6.rst investigated with
the parameters that were optimum in the static case,
o.=1-45X10" cm ' ),=39.5, ro=1.3X].0 " cm. The
well depth, Vp„, was taken to be 72 Mev, which gives
a "binding" of 7.9 Mev for the 3p~~2 level in Pb"'. The
results are shown in Fig. 1.

It can be seen that although the situation is very
greatly improved from the square-well limit —a shell
is obtained at E= 126 and the high angular momentum
levels have been raised —it is by no means ideal and



NUCLEON ENERGY LEVELS

.6

4
C|: ———SQUARE WELL

FFUSE WELL
I,I6)

I.2
I l
i I

i 40

t I
I i i i

C3 2a~0

5s ig,
Ce'"

i I I I

POTENTIAL

TY
PENDENT

ENTIAL

l.2—
I I I

i I I i

.3—

0
0 6

t xlQcm

I

l2

FrG. 2. The upper panels show the wave functions of the 3s]./2
and 1h»» levels in a square and a diffuse (n 1.16 1X0" =cm ')
velocity dependent potential. The lower panels compare the
wave functions of the same levels in a static and velocity-de-
pendent potential, both with += 1.45)(1013cm '.

does not, yet display the satisfactory characteristics ob-
tained in the static case. The high angular momentum
states are still somewhat too tightly bound. For ex-
ample, the 1h~~~2 level lies too low in the well and this
would have the consequence that the ground state
configurations beyond %=64 would be either 1h~~~2 or
allowing for pairing, possibly 2d5~2 or 1g7/g which is
not observed.

Since the 3s~j~ level fills in together with the 1h~~~2,

these two levels should lie approximately at the same
energy. Similarly, the 1g9~g level should probably lie
above the 2pi~g since the last three odd neutron nuclei
before the /=50 shell, Sr", Kr~, and Se" all have
spins consistent with a 1g9~2 configuration. Finally, in
K" the 2s~~2 and the 1d5~~ levels are split by 8 Mev
whereas the shell spacing between the 2d@2 and the
1f7~g is only 4.1 Mev, so that a strong shell should

appear at E= 14 rather than at E=20. In view of these
considerations it is apparent that both n and X must
be changed.

In order to find a more suitable set of potential
parameters, the behavior of several representative
energy levels was investigated as the surface thickness
6 was varied. [The surface thickness, 6, is defined as
the distance from the point where the potential has 90%
of its maximum value to the point where it has 10%,
2 = (2 ln9)/u. ]

It was demonstrated in the static case that treating

LEVEL SHIFT AS A FUNCTION OF 6,

cn l5

bJ
l2

h STATES

0
0 2

A InCmXIO

FIG. 3. The energy shift of four representative levels as the
surface layer of the potential is increased is shown in this figure.
The points indicate the magnitude of the errors in the eigenvalues
determined with the differential analyzer. These calculations are
made with Vp= 72 Mev, ) =39.5, and a= 1.3A&)&10 ' cm.

the potential slope by first-order perturbation theory
was quite inadequate for quantitative estimates. The
introduction of a velocity dependence increases the
dependence of the wave function on the surface thick-
ness, A. This can be seen in Fig. 2. Thus first-order
perturbation, theory is of even less use than in the
static case for estimating the behavior of energy levels
when the surface thickness is varied.

In Fig. 2 there is also a direct comparison between
the wave functions in the velocity-dependent and static
cases for a surface thickness, 6=3.03&(10—"cm. It
may be seen that the wave functions in the former case
reach their last maxima at larger values of r than in the
latter case. This is so because in the velocity-dependent
case the nucleon mass is closer to neo for r) u than for
r &a and the "eGective potential, " nzV, thus becomes
more important for large r. The eGect may also be
regarded as an increase of (ln2)/n in the "effective"
nuclear radius of the "effective potential. " This in-

crease in the radius obviously tends to increase the
binding energies of the levels with increasing 6 which

opposes the usual effects tending to raise levels, and in

fact overcomes them for large values of b,. (See the
3si(g, 2ds/g, aiid 1hg/g levels shown in Fig. 3.)

However, as far as the relative shift of levels of

diGerent angular momenta is concerned, the general

behavior is similar to the static case: As the thickness
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of the surface increases, the higher angular momentum
levels shift upwards in the well relative to those of lower
angular momentum. The more tightly bound a level,
and the fewer nodes it has, the more rapid is the shift
as 6 changes. Also, for a Axed value of 8,, levels of
total angular momentum j=1+2' move downwards and
of j=/ ——,

' move upwards when A. is increased, and the
magnitude of the splitting of two such levels is roughly
proportional to the orbital angular momentum, 3.

There are two other eGects, which like the increase
in the "effective" radius, tend to obscure rather' than
alter the behavior of the energy of levels with changing
D. First, the derivative at the origin of the curves shown
in Fig. 3 is negative, although it very rapidly becomes
positive. Intuitively this can be seen in the limit from
the "effective potential" argument given above. Alter-
natively, it can be rigorously derived in the limit from
the equation

dH
g2 y2d

"o

where E is the radial wave function, E~ is the binding
ener'gy in the di8use potential, and E/, =("binding
energy" in square well) —("binding energy" in diffuse
well). In the limit that 6—+0, this leads to

de ln2

Equation (11) yields a negative slope of (—0.9) for
the 3s~/2 level and (—5.1) for the 1hU/2. These slopes
are omitted from Fig. 3 because it is diQicult to deter-
mine eigenvalues on the machine in the region of small
6 owing to the sharpness of the potential edge. Further-
more, this region is of little interest from the point of
view of obtaining good level sequences. However, Eq.
(10) provides a very useful check on the 3s&/2 level
curve in Fig. 3 since the machine eigenvalues are not
accurate enough to distinguish the shape without the
aid of a calculated derivative.

Second, the magnitude of the spin-orbit splitting, for
fixed A., decreases with increasing D. The splitting of the
1h~~/2 and 1h9/2 levels in Ce'" for A.=39.5 decreases from
14.1 Mev for 6=0 to 9.1 Mev at 6=5&(10—"cm, which
is less than two-thirds of its original value. This can
be considered partially as a consequence of the effective
doubling of the spin-orbit term outside the nuclear
radius and partially as a consequence of the decrease
in magnitude of the wave function near the nuclear
radius as 6 is increased (see Fig. 3). Despite this, for
6xed 6 in the region of interest, one can roughly take
the spin-orbit splitting as proportional to X and the two
levels as having a fixed center of gravity.

Bearing all these facts in mind, plus the fact that the
lighter the nucleus the farther a given angular mo-

mentum level is shifted when 6 is changed, "it is pos-
sible to make rough predictions about the positions of
levels for a given 6 and X in the region of interest. The
most critical region for choosing the parameters n and
X is again near the 82 shell where the 3s~/2, 2d3/2, and
1k~~/2 levels are all in competition. From single-particle
assignments' it is clear that the 2da/2 and the 1k~~/2

levels must lie above the 3s&/2 level. The requirement
that the 1k~~/2 level lie between the 3s~/2 and 2d3/2

levels (as in the static case) is unnecessarily stringent
since the 1k~~/2 state, due to its high angular momentum
fills in pairs with appreciable pairing energy. " It has,
therefore, been allowed to lie slightly above the 2d3/2

level. In order to raise the 1h~~/2 level relative to the
other two levels, it is necessary to decrease X, increase
6, or to do both. Making the restriction that the 2d3/2

level lies above the 3s~/2 level and at the same time
minimizing both X and the surface thickness, the follow-

ing "final" parameters" are obtained: X=33, o.=1.16
X10" cm ', and VD„——69 Mev. (The well depth was
chosen to bind the 3p&/& level in Pb"' by approximately
7.4 Mev. )

The purpose of trying to keep both o. and X minimal
is to obtain as close agreement as possible with the
electron scattering measurements of the surface thick-
ness, and Duerr's prediction for the magnitude of the
spin-orbit interaction. Also it is not desirable to exag-
gerate the crossovers of the 2f~/2 and. 1h9/2 levels, the
2d5/2 and 1g7/2 levels, and the 2pa/2 and 1'/2 levels.
These crossovers would be increased by an increase
in either 6 or X. If for neutrons the 2f~/2 level is too
much more tightly bound than the 1h9/2 level, then it
cannot be expected that the correct level sequence will
be obtained for protons since, in the proton case, the
1h9/2 level must lie below the 2f~/2 state to give the right
spin and parity for the ground state of Bi'".

In the region Ã= 50 to 64, it is not certain that the
2d5/2 level lies much below the 1g7/2 since these levels
fill in together. In addition, from the ground state
spins of Cr" and Fe", the 2p3/2 level is assigned to lie
below the 1fq/2, but the spacing between these levels
should be considerably smaller than the shell spacing.

It can be seen from Fig. 4 that very good agreement
with assignments from ground state spiiis and parities is
indeed obtained with these parameters, except in the
region in the middle of the X=82 to X=126 shell,
which is for neutrons the region of strong distortion.
Some criticism might perhaps be made of the spacings
of levels. For example the 1g9/2 level now lies correctly
above the 2p~/2 level, but in Zr" it is 2.4 Mev above it.

The 1i states in Pb2, for example, behave, as in the static
case, remarkably like the 1h states in Ce'~ and the 1g states in
Zr ', etc."R.D. I.awson and A. A. Ross, Hull. Am. Phys. Soc. Ser. II,
1, 246 (1956).

"o.could actually be very slightly larger if the 1h»&& state re-
turned to its previous position between the 2d3/2 and 3s1/2 levels.
The latter are so close, however, that it is not possible to quote
more exact minimum values.
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In view of the assignment 2pi/s to Se" as well as to
Zn", this seems large. Similarly, in V" the un611ed
2ps/s and 1fs/s levels are split by 2.6 Mev. Other levels
which might properly be closer together show similar
wide spacings.

However, two things should be remembered. In the
first place the large splitting of the 2ps/s and 1fs/s levels
in V" does not persist as more nucleons are added (in
Zr" these levels are only split by 0.2 Mev) and hence
when the 2p3/s and 1fs/s particles start to fill in, it is
likely that the energy difference between these levels is
less than 2.6 Mev. Secondly, all level spacings are
roughly doubled since the well depth is roughly d.oubled.
This circumstance is indeed desirable from the point of
view of explaining the frequencies encountered in the
nuclear photoeGect. "

The shells occur at the proper places with spacings
of about 6 Mev and hence are unmistakable. The over-
all conclusion is that a satisfactory neutron shell struc-
and level sequence can be obtained for a velocity-
dependent potential of this type.

Pb*„". Ce'".: Zr,", V,". K',;
POTENTIAL POTENTIAL POTENTIAL POTENTIAL POTENTIAL

69 TOP TOP TOP TOP TOP

2+1., 2'Fva 2dsze
M&a ~2 ps/s

65
I isgz&3p„-'z g" lf,„

5p fpvz~
If'„

iIIs/s

Ih„,!
Ld 55- ""-Zd -- 2
Lt-I grg,

f'sic

45—
SQUARE SQUARE SQUARE SQUARE

DIFFUSE DIFFUSE DIFFUSE DIFFUSE

DIFFUSE
'SQUARE

FIG. 4. Top neutron levels in nuclei with X=20, 28, 50, 82,
and 126. The parameters used to determine the energy levels in
the diffuse potential are: ~=1.16)&10" cm ', V0 ——69 Mev, a
=1.3A&)(10 "cm, and X=33; mef f=0.5mo at r=0. The square-
well level sequences for the same values of Vo, a, and X are shown.
Dotted lines indicate unfilled. levels in both the square and the
diffuse potential.

"S.Rand, Phys. Rev. 99, 1620 (1955).

(b) Protons

In the static case it is well known that the same
nuclear potential will not bind the correct number of
neutrons and protons. This can be seen, in the square-
well limit, by a Fermi-Thomas argument, showing that
the diGerence between the maximum kinetic energies of
the correct numbers of neutrons and protons is only
just over one-half the height of the Coulomb potential
at the radius of the nucleus. As has been pointed out by

McMillan, " it may also be seen from the symmetry
energy term in the semiempirical mass formula. "On
the other hand, a Fermi-Thomas estimate for a square
well in which one decreases the eGective mass of a
nucleon to approximately one-half of its free value
indicates that in this case the same nuclear well will
bind the correct number of neutrons and protons. '
However, as soon as the sides of the well are sloped,
the protons not only move in a well which is shallower
because of the Coulomb potential, but also one which
has a smaller radius. They are restricted to a smaller
volume than the neutrons" and therefore it is still
necessary to increase the proton nuclear well depth. In
fact it was found in Pb"' that, to obtain comparable
binding for top neutron and proton levels, it was
necessary to choose a proton well depth roughly 12
Mev deeper than the neutron well depth. In the static
case a diGerence of 14 Mev was necessary, which is, of
course, proportionally larger since the well depth for
neutrons was then only 42.8 Mev. In the static case,
this increase was also greater than estimated by a
Fermi- Thomas calculation.

That the neutron and proton well depths are diGerent
is perhaps not too surprising in view of the fact that
throughout all these considerations the exclusion prin-
ciple has been neglected. One can crudely estimate the
eGect of the Pauli correlations by assuming that in the
vicinity of a nucleon half of the like nucleons are suK-
ciently excluded (since half will have parallel spin) to
give no contribution to the force field. Since in a heavy
nucleus there are more neutrons than protons, this
would provide a deeper well for protons. Taking this
quite literally gives for the proton potential

p„(r)+ ',p„(r)-
V„(r)= V„(r)

-p.(r)+ap-(r)-
(12)

"%.G. McMillan, Phys. Rev. 92, 210 (1953).
"N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939);

E. Fermi, iVeclear Physscs (University of Chicago Press, Chicago,
1950); A. E. S. Green, Phys. Rev. 95, 1006 (1954).

»M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).
"This assumption also violates the contention that the meson

held is classical, since under these conditions the quantum fluctua-
tions are not obviously small.

where t/'„ is an appropriately chosen neutron well, and
p„(r) and p„(r) are, respectively, the neutron and proton
radial density d,istributions.

The factor one-half appearing in this argument is
certainly an upper limit on the exclusion eGect since it is
based on the assumption that the nucleon is essentially
a b-function source for the meson 6eld. 24 The exclusion
eGect is, of course, properly handled by introducing
nucleon densities derived from antisymmetrized wave
functions into the Duerr-Johnson-Teller field equations.
However, it is hoped, that some idea of the magnitude
of the eGect can be obtained from Eq. (12).

In general, if Eq. (12) is used, the top proton level
is suKciently bound compared to the top neutron,
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TOP PRQTQN LEVELS lN SELECTED NUCLEl
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FzG. 5. Top proton levels in selected nuclei. The top proton
levels in K", Ni" Sn"' and Pb" are shown for the parameters
o.=1.16)(10" cm ', @=1.3A&X10 " cm, and X=33. The well
depths have been adjusted according to Eq. (13) in the text. The
top proton levels in Pb and K for the parameters a= 1.45)&10'3
cm ', @=1.3A&&(10 "cm, and X=39.5 are also shown. The well
depths have been arbitrarily adjusted to bind the proper number
of protons. Dotted lines indicate unfilled levels.

since in addition to an over-all increase in depth, the
proton potential also has a larger eGective radius than
the neutron potential. This follows because the proton
density has less radial extent than the neutron density
when the potential radius is the same. Such a proton
potential appears also, in first approximation, to give a
characteristically unsatisfactory level sequence. This
latter effect arises because, compared to the neutron
density distribution, that of the protons has a hole at
the center and a steeper slope, both eGects being due
to the additional Coulomb potential. Thus the proton
potential is depressed at r=0 and has a larger surface

layer. This shape tends to undo the desirable eGect of
the Coulomb potential which, for example, in the static
case reversed the ordering of the proton 3s&/2 and 2d3/2

levels compared to the neutron ordering. If the densities

obtained in the static case" for Au"' are used to calcu-

late the proton potential according to Eq. (12), the
above-mentioned eGects obviously lead to a potential
of hopeless shape. These eGects are less pronounced

but still present even if the Fermi-Thomas approxima-
tion for the densities is used. Assuming Eq. (12) and a
Fermi-Thomas nucleon distribution, the last filled pro-
ton level in Pb"' is bound by approximately 1 Mev
more than the last neutron level, but the 1h9~~ and 2f7~2

levels appear in the wrong order. The full understand-

ing of this situation requires a self-consistent field

calculation.
For the present purpose, it has been assumed that

p„and p„ inside the nucleus are constant and that both
drop to zero simultaneously. Equation (12) can then

be rewritten as

V„(r)= V„(r)(E+ ', Z)/-(Z+ ,'sV)-, (13)

(2mo[V„(r) Uc(r) E—~j )'—
p~(r) = constl (14)

P9

where E~ is the "binding energy" of the last bound
level, gave a reasonable estimate of the actual densi-
ties."In this case we have made an estimate, replacing
mo by ns. It is less certain how accurate this is since it
does not distinguish between the diGerent forms of
Eq. (3), that is, the approximation does not distinguish
between the equation with (1/2m) p' and p (1/2m)p.
However, the changes in the wave functions from the
static case are not too drastic and hence it is probable
that an estimate based on Eq. (14) with mo replaced by

"This is really a smaller spacing than our accuracy can
determine.

where S and Z are the number of neutrons and protons
respectively in the nucleus. For convenience we have
used Eq. (13) in adjusting the depth of the proton
potential. Such a well does not bind quite the proper
number of particles since the radius is no longer en-
larged. It gives, however, a level sequence in close
agreement with experiment. The results obtained when
the proton well is adjusted according to Eq. (13) are
shown in Fig. 5. Where levels of interest are outside the
well, they are shown by extrapolating from their posi-
tions in a deeper well. The value of E, though chosen
arbitrarily in this work, is in principle determined from
saturation conditions. Therefore, it is taken to be the
same for neutrons and protons, which implies a smaller
eGective mass for protons than for neutrons.

From Fig. 5 it is seen that good shell structure and a
reasonably satisfactory level sequence are obtained on
the basis of the above assumptions. For example, the
required crossover of the 2d3/2 and 3s&/2 levels has
occurred. On the other hand, the 1hg/2 level is actually
0.1 Mev less tightly bound than the 2f&~2 level."This is
close enough so that if a self-consistent Coulomb po-
t;ential were used, it is probable that the desired cross-
over would occur, thus giving the correct assignment of
1h9/2 for the ground state of Bi'".

It has already been remarked that the surface thick-
ness of the potential has to be chosen approximately
0.8X10 "cm greater than in the static case in order to
achieve the same level ordering. It would be of interest
to know whether this is likely to bring the proton den-
sity into closer agreement with results from the high-
energy electron scattering experiments" which give a
radius of (1.07+0.02)X20 " cm and a surface thick-
ness roughly constant for all 2 and equal to (2.4&0.3)
)(10—"cm. In the static case the quantities

(2moLV (r) —E~j) '*

p„(r)= const~ and
)
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ns, will not be too unreasonable. According to this, the
proton distributions in Pb' and Sn" have radii of
7.56X10-" cm (ro=1.276X10 isAt) and 6.05X10 "
cm (ro=1.241X10 "A'), and surface thicknesses of
2.28)&10 " cm and 2.36X10 " cm respectively. The
difference in these two results is due partly to the
di6erence in "binding energies" of the top levels (7.33
Mev in. Pbsos and 6 1 Mev for Snuo) and partly to the
diGerence in the Coulomb potential. The increase in
the radii compared to the static case is mainly a conse-
quence of the difference in the radii of the potential and
the "effective potential, " which has already been
pointed out. Although these radii are larger than the
values obtained from high-energy electron scattering, "
they could easily be remedied without impairing the
level sequence by choosing a smaller initial potential
radius, ro. On the other hand, the surface thicknesses
compare quite favorably with the experimental results.

COMPARISON WITH DUERR'S MODEL

In this section we wish to examine the effect of using
Duerr's' relativistically invariant formulation of the
Johnson-Teller model. For this purpose we shall look at
the nonrelativistic limit of Duerr's Dirac Hamiltonian
for the nucleon, and try to estimate how much change
would be introduced in the results quoted in this paper
by the use of his equations. Using the Foldy-Kouthuy-
sen transformation, " Duerr shows that his Hamil-
tonian reduces to

has therefore been assumed that both fields have the
same radial dependence:

moad =— and
1+exp[cr (r —a)]

Ug
mpbpp (16)

1+exp[n(r —a)]

In view of the large surface thickness of the poten-
tial, Duerr's values for ~ and bpp shall not be used
since these numbers would probably not be the same if
surface terms had been included in his calculations.
Instead, it shall be required that the sum of the fields
(16) be 69 Mev, the neutron well depth, and that the
effective mass of a nucleon at r=0 be 0.5m, (which, in
Duerr's theory means that ~=0.5 at r=0). The con-
stants in (16) then become Vi ——469.75 Mev and
V2 ——400.75 Mev.

If we define f=mp/m, then Smo times the "kinetic
energy" operator in Eq. (15) becomes

2p fp+ p'f+fp'
=2p fp+ p fp+ p [p,f]+p fp+[f,p] p
=4p fp —O'V'f. (17)

Thus when the Hermitian form is taken in a sym-
metrized manner, a small correction which is effectively
a contribution of (Is'/Smo)V'f to the potential well
depth is introduced:

p+p' + p' 4
Smo 1 —ad 1—~ 1—~

b,' k' 2f'
V'f= +f"—

8nso 8mo- r
(18)

Vb4o—[amp& —bmoPo]P+ V.
8mp (1—ay)'

+— — ~ [V(~+by, )Xp]y=0, (»)
4m(1 —~)'

where b, and c have been set equal to unity, "p and po
are the scalar and vector meson fields respectively, and
a and b are constants which determine the strengths of
these fields. The term [bmgp —amp] corresponds to
the mean potential V (r). The last term in the equation
gives the spin-orbit coupling. The term containing V'

operating on g and pp has been omitted in the Hamil-
tonian considered in our paper.

The simplest assumption to make is that the two
fields @ and Po have the same radial dependence. This
is obviously not necessary but no direct information is
available about this, since Duerr neglects gradient
terms which give information on the meson masses. It
"L. L. Foldy and S. A. Wouthuysen, Phys Rev. 78, 29 (.1950).
'7 It should be noted that if the symmetrized form of the opera-

tor p'/2m had been taken, Eq. (3) would have contained three
terms similar to the first three terms in Eq. (15). See for example
H. Acyl, Gruppentheorie zsnd Quuntenmechanik (Verlag Von S.
Hirzel, Leipzig, 1928).

The first term in this equation is similar to the spin-
orbit term (forgetting temporarily the changed form
of the effective mass which we shall consider presently)
but acts equally on all energy levels. For the surface
thickness considered here, 6 3.8)&10 "cm, this should
have little relative effect between diferent levels, but add
an energy (mc'/)~Vo)[1/(2l+1)]X (spin-orbit splitting
of levels) to each energy level. For the h states in Ce'"
this amounts to approximately 0.33 Mev and for the
d states to 0.24 3lev, which does indeed appear negli-
gible. The second term makes the slope of the potential
appear slightly less sharp since f" is negative inside the
nuclear radius and positive outside. The change is very
small and for o.= 1.16)&10 "cm it leads to an apparent
increase in 6 of 0.1&(10 "cm.

On the other hand, the extra term

Vbgo
V f'Vf

8mp (1—~)' 16mo

f' „ f'f' f(f')'
f"+ +———(19)

2mo 4 4r 4

has the opposite effect from Eq. (18) since all terms are
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of opposite sign. Inside the nucleus it is of the same
magnitude as Kq. (18) and hence we can roughly neglect
the sum of all these terms.

Of far larger consequence is the change in form of the
effective mass itself. If the constants in the two formu-
lations are chosen to give the same eGective mass both
inside and outside nuclear matter, the eGective mass
will still have a considerably diGerent value in the
surface region in the two cases. In the Duerr formula-
tion, the eGective mass is

1 V(r)~
1ÃD —(1 ~)idio=

I
1+- I&« for

2 V, i
m =0.5mp at r =0,

whereas throughout this work an eGective mass de-
fined by Kqs. (6) and (5) has been used. Thus by
definition, for all r, mn) nz (e.g. , at the nuclear radius
'iND = 4~0 whereas m = 3mo). Consequently, the "ef-
fective potential, "

A&V, in Duerr's case for the same
V(r) is actually greater. One can get a rough estimate
of this eGect by examining the change in the "effective
potential":

V ffD (r) = mD (r) V(r),

V,pier (r) =m(r) V(r).

Duerr's eGective potential extends 0.1676, 0.0536, and
0.0186 further out at 9/10, 1/2, and 1/10 of its maxi-
mum value respectively than the effective potential of
Johnson and Teller. Thus it is obvious that this change
of form has quite an important eGect for the values of
6 considered. According to the above estimate, this
can be roughly split into two parts: an eGective change
in radius of approximately 0.056 with a corresponding
increase in the binding energy of all levels, and a de-
crease in the slope of the eGective potential for the
same slope in V(r), by an amount of the order of
0.156. For 6=3.8&(10 " cm this is not a negligible

eGect. Hence, to achieve the same level sequence, an
n of 0.99X10"cm ' (6=4.45X10 "cm) or less would
probably be necessary. To obtain the same binding
energies with the Duerr equation, the potential depth
would have to be decreased by amounts depending on
the change in the potential radius. Since this change is
a constant, (0.056), the e8ective potential depth should
have a slight dependence on A.

A final remark should be made about the spin-orbit
coupling term predicted by Duerr. This can be re-
written as

870.5 5' 1 dV(r) h' 1 dV(r)
e 1=12.6 el,

69 4m~'c' r dr 4m~'c' r dr

which differs from the expression we have used not only
in magnitude but also in form since the normal mass
has been replaced by the eGective mass. Unfortunately,
this means that it is not accurate to quote a single 'A to
which Duerr's expression is equivalent because this
equivalent X will vary from level to level. Since the
spin-orbit potential is a purely surface effect, a crude
estimate can be made by replacing m~ with ~mp, the
effective mass in the region where dV/dr is a maximum.
This gives X= 22.5, some 60%%uq of the value used in this

paper. Actually the equivalent X will be greater for
eigenfunctions which have their last maxima inside the
nuclear radius, such as those with only one node. How-

ever, the spin-orbit term predicted by Duerr is of the
right order of magnitude for the shell model, but it is
not clear whether the Duerr formulation is quantita-
tively suKcient to reproduce the experimental level
sequence.
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