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Previous calculations of the continuous absorption coe%cient of H were based on the use of ground state
wave functions obtained through the Ritz variational method. Such functions, although giving good values
for the energy, are not in general adequate for the determination of the dipole matrix element needed for
the absorption coefBcient. Initial and 6nal state functions are constructed for which the following necessary
conditions on the true wave functions are satis6ed: (1) equality of dipole length, velocity, and acceleration
matrix elements and (2) the (r')A„and f sum rules. The constructed ground state function is also shown
to be reasonable on the basis of energy minimization. The resulting absorption coefBcient for H is in
substantial agreement with the best previously calculated curves and with experiment. The curve for
Li is also obtained.

Chandrasekhar' ' determined the continuous absorption
coefFicient using the dipole velocity operator. This has
the effect of weighting the bound wave function more
heavily at smaller distances from the nucleus, where the
variational functions are more accurate.

In the present paper we will adopt a different
approach to this problem. Wave functions for the
ground and continuum states are constructed so that
they will satisfy certain necessary conditions, other
than energy minimization, which are required of the
true wave functions. As an additional test of our
constructed ground state function, a variational calcu-
lation is performed using a trial function of the same
form.

I. INTRODUCTION

HE theoretical evaluation of the continuous
absorption coefficient of H has long been of

great astrophysical interest. Since there is only one
bound state, the atomic absorption coefficient is
identical to the cross section for photodetachment of
an electron. The latter process has recently been
investigated in the laboratory. '

There have been numerous calculations of this
coe@.cient, the most improved being those of Chandra-
sekhar. ' All of these calculations have made use of
ground state wave functions which have been found to
give minimum energy in the Ritz variational procedure.
The final state wave function has generally been
taken to be a symmetrized product of the hydrogen
atom ground state function and a plane wave. It is
quite clear' that the magnitude of the absorption
coefIicient, particularly in the visible and infrared, is
extremely sensitive to the choice of ground state wave
function. It is seen that the use of a many-parameter
ground state function which may lower the best
previously obtained energy by about 0.1% may cause
a corresponding change in the absorption coeKcient
of as much as 100'Po over a large range of wavelengths.
This emphasizes the fact, which is generally realized,
that although one obtains a very good value for the
energy in a variational calculation, the resulting wave
function can be extremely poor for the calculation of
other atomic properties. This will be particularly true
for those properties which depend on the correctness
of the wave function at relatively large distances from
the nucleus. To attempt to overcome this difficulty,

II. CALCULATION OF ABSORPTION COEFFICIENT

The standard formula obtained from perturbation
theory for the atomic absorption coefficient"for radiation
of frequency v, in which an electron with velocity v; is
ejected in the Z direction and the atom is left in the
ith excited state, is

2 h

38C

The total absorption coefficient is then
where the sum extends over all energetically possible
states. We shall employ the atomic units for length
(Bohr radius) and energy (2 Rydberg units) throughout.
For a two-electron atomic system the dipole matrix
element has the form
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ment of the Navy.' L. M. Branscomb and S. J.Smith, Phys. Rev. 98, 1028 (1955).' C. K. Jen, Phys. Rev. 43, 540 (1933).' H. S. W. Massey and R. A. Smith, Proc. Roy. Soc. (London)
A155, 472 (1936).

4 H. S.W. Massey and D. R. Bates, Astrophys. J.91,202 (1940).' R. E. Williamson, Astrophys. J. 96, 438 (1942).' L. R. Henrich, Astrophys. J. 99, 59 (1943).
r S. Chandrasekhar, Revs. Modern Phys. 16, 301 (1944);

Astrophys. J. 100, 176 (1945).' S. Chandrasekhar, Astrophys. J. 102, 223 (1945).' S. Chandrasekhar, Astrophys. J. 102, 395 (1945).

in which the discrete and continuum wave functions
are solutions of the Schrodinger equation
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Chandrasekhar' has pointed out that when 4'~ and
0„. are exact solutions of 'Eq. (3), p„. may be also
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written as the so-called'dipole velocity and acceleration
matrix elements,

on the p's the dipole length, velocity, and acceleration
matrix elements become, respectively,

and

1 t t (a a)—+—[V„dTldT2,
Eg—E J J EBsl 8spi
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Hence, the equality of expressions (2), (4), and (5)
is a necessary condition for the correct wave functions.

Another set of necessary conditions for the correct
wave functions and total absorption coefficient are
the (r )p„and f sum rules":

and

3 PLC p rc„—8p=
22T k80J va V

Vd (Tl +T2 )4'ddTldT2 (6)

Ky&P= 2)
xe'~ v,

(7)

where pp and p& are eigenfunctions of the equation

f V2 —2V(r)+2E) sl=O. (10)

Our model for the level structure of H—is thus a set of
singly indexed states instead of the true doubly indexed
set. The spherical potential V(r) is chosen such that it
will yield only one bound state having an energy equal
in magnitude to the accepted electron amenity of the
hydrogen atom. The q's will then be orthogonal and
may be normalized such that J'~ 020~2dT= 1, and 022 is
made to become a free wave of unit amplitude at
large distances from the nucleus. %ith these conditions

"S. Chandrasekhar and M. K. Krogdahl, Astrophys. J. 98,
205 (1943)."T.Y. Wu, Phya Rev. 89, 629 (1953l.

where vp is the frequency of the absorption limit. These
sum rules have as their basis the fact that all the
solutions of Kq. (3) form a complete set and the assump-
tion that there is only one state in which both electrons
are bound (the existence of only one bound state for H
has not been proved but is generally accepted"). They
have been used by previous authors as a test of their
calculated valueg for ~„p. This procedure does not
appear to be strictly correct, however, since the exact
0'd and 4',p's do not form a complete set by themselves.
One must use the total absorption coeKcient in (6) and
(7) rather than the partial one which corresponds to a
particular final state for the hydrogen atom.

For 0 d and +„we construct functions of the form

«(Tl) 020(T2)

1—(«(Tl) ~.(»)+«(T2) «(rl))

which are identical because the q's are exact solutions
of Eq. (10) and Ed E.=Ep —Ep kv.—The——sum rule
conditions, (6) and (7), will be satisfied by virtue of
the y's forming a complete orthonormal set of functions.

The above requirements on p can be met by an
infinite number of types of potential wells for V (i.e.,
Square, Gaussian, Yukawa, etc.), and consequently
our choice will have no claim to being unique. In other
words, the conditions we have imposed on the wave
functions are necessary but not sufhcient. On the basis
of physical reasonableness and mathematical simplicity,
we chose the cut-o6 Coulomb potential, "

1
r ~&rp

V(r)=~ rp r

-0;

The fact that the potential vanishes more rapidly than
r ' at large distances insures that it will have a finite
number of bound states. Also it qualitatively resembles
the Hartree field of an atomic core."The parameter rp

is adjusted to give the desired bound state energy level.
The resulting bound state function is

2Vp

e ""1F1~ 1——;2; 2tpr ~; r ~&rp
2+2T 4 tp )
g ~

—
kyar

-A

,2+2T r
r &rp,

(12)

where Xp is the radial normalization constant, A is a
matching constant, tp —L(2/rp)+kgb&, and k0—2=2)E0(.
The continuum states may be expanded in terms of
Legendre polynomials as

~ 2'(2t+1)«= Q Pl(cose)gt(r; k), (13)

in which k~=2E~. The only partial wave which con-
tributes to the dipole matrix element is the p wave,

'2This type of potential was first used to describe atomic
fields by W. P. Allis and P. M. Morse, Z. Physik 70, 567 (1931)."H. S. W. Massey, Negative Ions (Cambridge University
Press, Cambridge, 1950), second edition, Chap. I.
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FIG. 1. Comparison of the cut-off Coulomb potential with the
Hartree potential of a hydrogen atom.

which has the radial form

1
Nir'e '"iFi~ 2 ——;4; 2tr ~; r & ro

t
X&

sin (kr+8i) —cos(kr+8i);

(14)

where Ni is a matching constant, t=[(2/rs) —k'j&,
and 6~ is the phase shift. The formula for the total
continuous absorption coeKcient, in terms of these
functions, becomes

III. VARIATIONAL TEST OF GROUND STATE
FUNCTION

As an additional check on the correctness of our
constructed ground state function for H, we perform a
Ritz variational calculation using a trial function having
a similar form. We take for the trial function

with
+de= poe(rl) goo(~s))

r ~&rp„

|Ic'pv =
e
—'"

A„; r ~&rp, .

To secure continuity of pp, and its derivative at rp„,
it is required that rs, ——(a—b)

—' and A„=e '(a—k) ',
leaving only u and b as the variational parameters.
The form of pp„ is identical to that of qp for large r
where there is the greatest contribution to the dipole
matrix element. For small r the form of q p„ is suKciently
close to that of pp because the confluent hypergeometric
function is slowly varying compared to the exponential
function.

The evaluation of the energy and normalization
integrals requires separate intergrations over the three

TmLE I. Calculated continuous absorption
coefficients of H and Li .

Li, we obtain rs ——8.78 (again assuming that there exists
only one bound state). The results of the calculations
are recorded in Table I and plotted on a wavelength
scale in Figs. 2 and 3.

32s-' kss+k'
gp= GGp

k ~p
VpXir dr ~

where a is the fine structure constant. The evaluation of
the integral occurring above is performed numerically
from 0 to rp and analytically from rp to ~.

The best value for the electron amenity of the hydrogen
atom is 0.747 ev. Using this as the binding energy of
a 1s level in Eq. (10) we obtain r&= 1.88 for the radius
of our well. The resultant potential (11) is compared
with the Hartree field, —e "(1+1/r), in Fig. 1. The
greater depth of V may be attributed to a polarization
of the core by the "outer" electron.

The primary difference between the treatment for
Li—and I is the requirement that the two outer
electrons in Li be in 2s orbitals. We regard the is
shell of Li—as essentially at the nucleus, making the
procedure of the calculation identical to that for H .
Vsing the value of 0.384 ev for the electron afFinity" of
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'4 For a review of the various evaluations of the electron
affinity of Li, see B.L. Moiseiwitsch, Proc. Phys. Soc. (London)
A67, 25 (1954).Using the latest spectroscopic data LC. E. Moore,
Atomic En+'gy Levels, National Bureau of Standards, Circular
No. 467 (U. S. Government Printing Office, Washington, D. C.,
1949)g in the quadratic extrapolation from isoelectronic systems,

0.733 ev and 0.377 ev are obtained for the affinities of H and Li,
respectively. If we accept Henrich's value of 0.747 ev as the true
affinity for H and assume that the extrapolation underestimates
the true value by the same fractional amount in both cases, we
obtain 0.384 ev for the electron affinity of Li.
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regions of r&rs space (since function is symmetric):
r1 and r2&~ro&, &1~&&o. an«2~~1'0 Y1 and r2 ~~0'
The integrals which arise are straightforward and
easily carried through. The energy minimum is found
numerically to be —0.4850, with the corresponding
parameters a=0.808 and b=0.259. Of course, this
energy is considerably higher than that obtained with
trial functions containing many more parameters.
In fact, this energy is too high to permit a bound state
of H to exist. However, what is important to establish
the validity of our calculated absorption coefficient is
the comparison of this variational function at minimum
energy with our constructed ground state function.
This comparison, given in Table II, is reasonably
favorable over the region of r which contributes most
to the dipole matrix element. It is also of interest to
note that r0„=1.82 as compared with ra= 1.88.

The principal difference between our present trial
function and those previously employed is its asymp-
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Fxo. 2. Calculated continuous absorption coefBcient of H
(solid line). Henrich's calculation' is with an 11 parameter
ground state function and the dipole length matrix element.
Chandrasekhar' makes use of the same 11 parameter function
and the dipole velocity matrix element.

totic form corresponding to complete shielding, r 'e ~,
rather than that of a screened Coulomb field, e '".
This type of asymptotic behavior is more reasonable for
the description of an electron in H—than it would be in
He because the electron-electron interaction is relatively
more important in the former case. It is this fact which
may cause the energy of H—to converge less rapidly
than that of He as the trial function is given more
parameters. ' It appears that the best ground state wave
function for H for the calculation of both minimum
energy and the absorption coeKcient would be a
Hylleraas-type function modi6ed so that it will asymp-
totically assume the completely shielded form.

IV. CONCLUDING REMARKS

The comparison (Fig. 2) of our present result for H
with the latest previous calculations (for s,s) shows
relatively close agreement. The experimental electron
photodetachment currents' were found to be consistent
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FIG. 3. Calculated continuous absorption coeKcient of Li .

TABLE II. Comparison of constructed and variational one-electron
ground state wave functions for H .
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0
0.5
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0.428
0.266
0.171
0.108
0.0689
0.0364
0.0216
0.00903
0.00425
0.00210
0.00109
0.000584
0.000321
0.000100

0.363
0.242
0.162
0.108
0.0724
0.0372
0.0216
0.00856
0.00383
0.00182
0.000906
0.000462
0.000240
0.0000685

"L.M. Branscomb and S. J. Smith (private communication).

with Chandrasekhar's calculation, but they would be
equally consistent with the present result to within
the experimental uncertainty. " The fact that our
absorption coeKcient exceeds the previously calculated
curves'' at small wavelengths is perhaps due to the
inclusion in our model of the average effect of transitions
to excited states of the hydrogen atom while previous
workers consider only the transition to the ground
state. The absorption coefFicient of Li—has not been
previously investigated, either experimentally or
theoretically.

A natural question which arises is to what extent the
methods employed here are applicable to other transi-
tions. The case of negative ions is particularly favorable
since the existence of only one bound. state (or very few)
makes the choice of V (r) relatively simple. In a neutral
atom or positive ion, the presence of an infinite number
of bound states would make the selection of a suitable
one-electron potential very diKcult. For a given discrete
transition, one could take a reasonably shaped potential
containing several adjustable parameters and 6x them
so that two of the eigenvalues coincide with the exact
energies of the initial and final states. This would
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insure the equivalence of the three forms for the
dipole matrix element between these particular states.
A diGerent transition in the same atomic system would

in general require the readjustment of the potential
parameters. The degree to which a given choice of

parameters yields the correct energy levels for all of
the important transitions may be used as a criterion for

the reliability of the results.
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The application of the perturbed free-electron approximation to a binary metallic solid solution leads to
an expression for the energy which includes a term dependent on the local order. As a consequence of this
term, and in the absence of other etfects, short-range order is predicted for solid solutions with an electron/
atom ratio of about one, and clustering for solid solutions with an electron/atom ratio between two and
three. The sign and order of magnitude of the eBect observed in several alloys where this approach may be
appropriate is consistent with that calculated by this method.

INTRODUCTION

'OR most purposes, metallic solid solutions are
usually regarded as being derived from a perfect

monatomic lattice by the random replacement of
solvent atoms by solute atoms. Although the existence

of nonrandom solutions has long been realized, the

importance of the deviations from randomness, "local
order, " has only recently been recognized. In current

theories of solid-solution hardening, however, local

order plays an important part. ' The kinetics of precipi-

tation may also be expected to depend to a considerable

extent on the local structure of the parent solid solution.

Direct experimental information from x-ray or neutron

di8raction about the amount and kind of local order in

an alloy is diKcult to obtain, and exists for relatively

few systems, while inferences based on electrical,

magnetic, or thermodynamic measurements, although

widely used, are unfortunately quite unreliable. It
seems worth while, therefore, to have a simple approxi-

mate theory, somewhat analogous to the Jones theory

of alloy phases, and with similar limitations, which

may make it possible in some cases to estimate the

kind and amount of local order likely to be present.

DEFINITION OF LOCAL ORDER

Before proceeding to the details of the calculation,

it may be well to discuss the de6nition of local order.

Historically, the term "short-range order" developed

out of a study of superlattices, and is generally associ-

ated with that type of deviation from randomness in

& J. C. Fisher, Acta Metallurgica. 2, 9 (1954).

which the average number of unlike nearest neighbors
is greater than the random number. The opposite
situation, in which the average number of unlike nearest
neighbors is less than the random number, sometimes
known as "clustering, " has been observed more re-
cently."Somewhat arbitrarily, both of these effects
and the generalization to other than nearest neighbors
will be referred to herein as "local order. " For the
quantitative description of local order, various param-
eters have been suggested. Perhaps the best known and
most convenient is that of Cowley. 4 His de6nition
(with a slight change in notation) is

n, = 1—(p,/re~),

where p, is the probability of finding an 2 atom
displaced by a vector r from a 8 atom, and m& is the
fraction of A atoms. For a random solution, all o.'s are
zero; for short-range order, the average value of the
alphas for the r vectors connecting nearest neighbors
is negative; for clustering, it is positive. If the roles of
A and 8 atoms are interchanged in the definition, the
value of 0. is unaffected. This symmetry of n may be
shown by the following alternative method of de6nition.
We will describe the local structure of the lattice in
terms of the correlation of atom positions, averaged
over the lattice, rather than in terms of the probable
neighbors of one atom, and show the two de6nitions
to be equivalent. We may specify the makeup of a

Walker, Blin, and Guinier, Compt. rend. 255, 254 (1952).
~ P. S. Rudman and B.L. Averbach, Acta Metallurgica 2, 576

(1954).' J. M. Cowley, Phys. Rev. 77, 669 (1950).


