
NEUTRON DIFFRACTION STUDY OF Mn FERRITE

account for this anomaly and it was hoped, at the
outset, that the neutron diGraction results might decide
which of these was correct. There are, however, a
number of uncertainties which limit the accuracy of
the method and rule out the possibility of a precise
measurement of the individual moments of the ions
on A and 8 sites. As has been noted, the nuclear and
magnetic Bragg reQections are superimposed. Thus,
any errors in the determination of the parameters
which 6x the chemical unit cell are rejected in the
magnetic scattering pattern, which is obtained by dif-
ference. Furthermore, the magnetic scattering has a
form factor dependence which cannot be determined
independently and must therefore be treated as a
parameter in the analysis. In addition there are uncer-
tainties in the stoichiometry. An over-all estimate of
these errors rules out the possibility of deciding any

subtle questions such as partial oxidation-reduction of
Mn+'-Fe+' which would account for the anomalous
moment.

SUMMARY

The neutron diGraction data are in good agreement
with the Neel model of ferrimagnetism. The large
diGerence in the coherent scattering amplitudes of
iron and manganese enables one to fix the cation dis-
tribution rather precisely. The observed. magnetic
scattering is consistent with the measured saturation
magnetization at both room temperature and liquid
helium temperature.
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The lattice scattering of holes within and between the two valence bands of germanium, degenerate at
4=0, is calculated. Scattering by both acoustical and optical modes is considered. The electron-lattice
interaction Hamiltonian is seen to be separable into two parts: the first, associated with acoustical modes,
arises from vibrations of the unit cells as a whole and the other, associated with both acoustical and optical
modes, arises from the relative motion of the two atoms in the unit cell of the germanium lattice. The matrix
elements for scattering are expressible in terms of two constants, C& and C4, associated respectively with
the two parts of the interaction Hamiltonian. The wave functions used to calculate the matrix elements are
determined by k y and spin-orbit perturbations and assume spherical surfaces of constant energy in k-space
and a parabolic relation between energy and wave number. For the terms in Ci the scattering is treated
using both the deformable and rigid ion models. The angular distributions for scattering are such that
heavy holes are scattered predominantly in the forward direction and light holes in the backward direction
for the deformable ion model, whereas the opposite is true for the rigid ion model. The scattering resulting
from transverse and longitudinal phonons is about equally important for deformable ions; for rigid ions
scattering by transverse modes is less signi6cant. The matrix elements depending on C4 are obtained from
the rigid ion model alone. The transition probabilities for scattering are presented in a form which can be
applied readily to the transport properties of germanium.

I. INTRODUCTION

HE temperature dependence of the lattice scat-
tering mobility of holes in germanium has been

determined experimentally' as about T ", in a range
of temperatures, extending roughly between 100'K and

*Preliminary accounts of this material are given in the following
references: H. Ehrenreich and A. %. Overhauser, Phys. Rev. 98,
1533(A) (1955); H. Ehrenreich, Bull. Asn. Phys. Soc. Ser. II, I,
48 {1956).

t This work was begun at Cornell University and is based in
part on a section of a thesis submitted (by H.E.} in partial
fulfillment of the requirements for the Ph.D. degree.' F. J. Morin, Phys. Rev. 93, 62 (1953); M. B. Prince, Phys.
Rev. 92, 681 (1953);F. J. Morin and J.P. Maita, Phys. Rev. 94,
1525 (1954).

300'K, for which the lattice vibrations are the dominant
mechanism for scattering. This result is in disagreement
with the theoretically predicted temperature depend-
ence of T ", obtained by assuming that conduction
takes place in a single valence band whose wave func-
tions and energy surfaces near the band edge, at k=O,
have spherical symmetry. '

Because of this disagreement, it is necessary to
reconsider the problem of the lattice-scattering mobility
of holes in the light of the information concerning the
valence band structure that is now available. The

'F. Seitz, Phys. Rev. 73, 549 (1948); J. Bardeen and W.
Shockley, Phys. Rev. 80, 72 (1950).
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cyclotron resonance experiments, ' and the calculations
of Herman, 4 have demonstrated that the model of the
valence band used in earlier mobility calculations is too
simple. It has been established that the upper band
edge does occur at k=0, but that the energy surfaces
are multiply sheeted in this region. Two bands with
associated eGective masses of 0.33 and 0.042 electron
masses are degenerate at the center of the Brillouin
zone. A third band, split oG from the degenerate pair
by spin-orbit coupling, is lower in energy by about
0.3 ev. It is clear that both degenerate bands must
take part in the conduction process. The third band
however is energetically too far removed in germanium
to contribute significantly.

The electron-phonon interaction Hamiltonian em-

ployed in the earlier calculations also requires general-

ization. In addition to the expression used previously,
two further terms arise that result from the fact that
there are two atoms per unit cell. One of these terms
is associated with optical modes and the other
arises from acoustical modes as a result of small phase
differences in the vibration of the two atoms of the
unit cell.

In this paper we shall derive expressions proportional
to the di6erential cross sections for scattering of holes

in the valence bands of germanium by acoustical and
optical phonons. Section 2 is concerned with the calcu-
lation of wave functions describing holes in the valence
bands near k=0. The electron-phonon interaction
Hamiltonian is developed in Sec. 3 and applied to the
germanium lattice. In Sec. 4 the matrix elements and
transition probabilities for lattice scattering are derived.
The application of these results to the mobility will be
deferred to a subsequent paper.

2. CALCULATION OF THE WAVE FUNCTIONS

The theory of the energy surfaces in the valence
bands of germanium and silicon has been treated by
Dresselhaus, Kip, and KitteP and others. ' In this
section, an extension of the arguments of reference 3
will be used to obtain the correct wave functions at
k=0 corresponding to these energy surfaces.

When spin is neglected, the Schrodinger equation to
be solved approximately is

[He+ (5'k'/2m)+ (A/m)k pj's~(r) =E(k) vI, (r), (2.1)

where the periodic potential V(r) is included in the
unperturbed Hamiltonian, He, and»(r) is the cell-
periodic part of the wave function.

The correct valence band wave functions
I et), I es&,

je3) at k=O belong to the symmetry group represen-
tation I'»+ and satisfy the unperturbed Schrodinger
equation Hel e,)=Esje,) (s=1, 2, 3) exactly. The wave
functions at k=O belonging to other bands will be
denoted

I
sn», the index s labeling the state belonging

to the representation n in band X, and together with
the

I
e,) form a complete orthonormal set.

The functions Ie,) are degenerate at k=0. The
perturbation (h/m)k p removes the degeneracy in
second order. Perturbation theory must be used to find
the linear combinations

»(r) =f'tier&+f*sj es)+f'sl e &, (2 2)

which give the wave function correctly in a small
region about k=O.

It was shown by Shockley' and by Dresselhaus,
Kip, and Kittep for the diamond lattice, that the
coeKcients b;&, b;2, b;3 as well as the second-order energy
correction m; are obtained as solutions of the eigenvalue
equation

'Lk, '+M (k„'+k,')
Ek k„
Ek k,

Ek„k
Lk„'+M (k,'+k,')

Ãk„k,

Ekk, bj bg

Skulk,

)

Lk,'+M (k,'+k„'). .b;s. .b;s.

(2.3)

Q= (A'/m') Q (Es—Eg ) '(&er
I p I

sn»&sn)%.
I pv I es)

eaX

+&et I p. I sa»(snX I p*l es&).

Equation (2.3) may be written more concisely as

Sb;= m;b;.

The operator S is the Shockley matrix.

(2.4)

(2 ~)

' Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
4F. Herman, Phys. Rev. 95, 1214 (1954); Physica 20, 801

(1954).

where i= 1, 2, 3 denotes the three solutions of (2.3) and

I.= (its/ms) p (E,—E,.)-t&e,
I p. I sn»&sn~ I p, I e,&,

When spin is introduced, the degeneracy under
consideration becomes sixfold. The extra factor of two
arises from the two possible orientations of electron
spin. Introduction of spin-orbit coupling reduces this
degeneracy since the eigenvalues corresponding to
diferent values of the total angular momentum j are
split. A representation of the wave function in terms of
the quantum numbers (l,s,j,m;) is diagonal in the spin-
orbit interaction. It is desirable to change to this
representation since we wish to include the spin-orbit
perturbation in this treatment. It can be shown' that
the quantities L, 3f, and 3l appearing in the Shockley
matrix will remain unchanged under the unitary

~ E. N. Adams, Chicago Midway Laboratories Report CML-
TN-P8, September 1954 (unpublished); R. J. Elliott, Phys. Rev.
96, 266 (1954).' W. Shockley, Phys. „Rev. 78, 175 (1950).
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transformation to the new representation if spin-orbit
splitting of the excited states is neglected.

The Shockley matrix in the (e„tte,) representation is
symbolically 'S 0

0 S

The column vector of the b's in Eq. (2.3) is then
replaced by a vector b having the six components

b,r(g), b;2(g), b;s(t), b;r(g), bt2(g), b,s(g) where g and

g denote positive and negative spin, respectively.
The transformation to the (l,sj,rN,) representation

is easily accomplished with the help of the well-known

Clebsch-Gordan coefficients. ~ The normalization and
phase have been chosen in accordance with Condon and
Shortley. ' Abbreviating the wave functions ~lsjrrt;) by

~
jm, ) we have, in matrix form,

0
i/v3

—i/v2

0
i/Q6—
0

—1/v3

0

v'(2/3)
0
0

—1/VS

0
0

—1/v'6
0
1/v2

—i/v3
0
0
i/—g6
0
i/W2—

0 (eg)

I est)
0 ( erg)
V'(2/3)
0

(2.6)

or more concisely,

+=BQ~ (2.7)

as the relationship between the wave functions in the
(e„rtt,) and the (l,sj,rrt;) representation.

The Shockley matrix in the new representation must
now be expressed in terms of S and the unitary transfor-
mation matrix B. It is easily shown that S' is given by

S'=B*SB, (2.8)

where 8 is the transpose of the matrix B.

The matrix S' may be schematically written

0 0'

0 0
(2.9)

and

-', (L+2M) k'
o'

0
0

—', (I.+2M)k' ' (2.10)

where o(sr) and o(se) are the submatrices associated,
respectively, with j=2 and j= ~ alone. The calculation
indicated by (2.8) gives for these submatrices:

—',(L+M) (k,'+k„')+Mk, '
—(1/v3) Nk, (k,+ ik„)

(1/2~3 (M L) (k '—k ')——(i/v3) Ek.k„
0

—(1/~3/k, (k, ik„)—
(1/6) (L,+5M) (k '+k ')+-,'(2L+M)k '

0
(1/23 (M—L) (k '—k ') —(i/~3Xk. k„

(1/2v3) (M—L) (k '—k ')+ (i/v3) 1A,k„ 0
0 (1/2&3) (M L) (k '—k —')+ (i/VS)Sk, k„

(1/6) (L+5M) (k '+k„')+-', (2L+M) k,s (1/V3) Xk, (k, ik„)—
(1/~3zk. (k.+ik„) —;(L+M)(k;+k„)+Mk.

(2.11)

Er s Ak'W$B'k'+C'(k ——'k '+k 'ke'+ke'ke')$& (2.13)

where
A = ttt'/2m+-'(I-+2M),
B= ', (L—M), -
C'= -', [E'—(L—M)'j.

' E. O. Kane, Int. J. Phys. Chem. SoMs (to be published).

(2.14)

The surfaces of constant energy in k space are
obtained using the approximation, discussed in reference
3 and in more detail by Kane, ' that it is justifiable to
neglect the off-diagonal blocks o(—'„rs) and o(s,s). The
secular determinants to be solved for zv; are then,

o (-',)—Iw;= 0, o.(-',)—l(w;+ 6) =0, (2.12)

where 6 denotes the spin-orbit splitting of the states
j=~ and j=2 at 4=0.

The energies associated with the bands degenerate at
k=0 are found to be

For the split-o8 band,

Zs ———6+A k'. (2.15)

The quantities A, (
B~, and

~
C~ are determined experi-

mentally by the cyclotron resonance experiments. ' The
minus solution in Eq. (2.13) should be associated with
band 1, having the lighter mass m~=0.042m and the
positive sign, with band 2, having the heavier mass
m2=0. 33nz. The eGect of a nonzero, positive C' is to
warp the energy surfaces outward in the $111jdirection
for the holes of mass m2, but inward along the same
direction for the holes of mass m~.

The wave functions x corresponding to bands 1 and
2 are most simply expressed as linear combinations of

r E. U. Condon and G. Shortley, The Theory of Atomec Spectre
(Cambridge University Press, New York, 1951), second edition,
Chap. 3, paragraph 14.

~ Reference /, Chap. 3, paragraph 3.
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the
I jzzz;) belonging to j=$ as defined by Eq. (2.6). It

is convenient to introduce the four-component wave
function

(2.16)

Here p is given by
P

Xkl

Xk2x=
Xk3

Xk4

By an argument converse to that used to establish
(2.8) a matrix 2* which diagonalizes o(3z), that is,
which has the property

where the 6rst two elements refer to band 1 and the
remaining ones to band 2. The components Xk; depend
on the direction, but not the magnitude of k.

Before giving the explicit form of A, let us simplify
the notation by introducing quantities a, b, c, d, 8, P
such that

'E1 0

A ~o (-,')2 =
0 0
.0 0

0 0
0 0
E2 0
0 E2

(2.17) ~(z)=
d

.0

ggi8 dt,"&

0
b

~e
—i8 g

0

(2.19)

y=AC;. (2.18)

will also determine the correct linear combinations The definitions of these new symbols are obtained by
direct comparison with Eq. (2.11).One can then verify
that the matrix

'(c+id)e " (Ei—a)

i (c id)e '4 — i(Ei—a)e-'&4 4&

—(Ei—a) (c id) e"—

.i(Ei a)e '&'+4'— i (c+id)e '4—

i (Ei a) e—'(4 e)—
(Ei—a)

i (c id) e'4—
—(c+id) e

Z(c+—id)e'4 '

—(c—id) e"
i (E, a) e'&'+4'&-

—(Ei—a)

(2.20)

where
6'= (E a)'+—c'+d'

satisfies Eq. (2.17). In writing (2.20) use hs, s been
made of the easily verified identity (Ei—a) = —(Ez—b).
The even more abbreviated form

A=[a;,j (2.21)

3. ELECTRON-PHONON INTERACTION

Before.proceeding to considerations of the interaction
Hamiltonian for electrons and lattice vibrations, it may

will be used in the following section to represent the
elements of this matrix.

Explicit expressions for the wave functions to be used
in calculating the matrix elements of the electron-
phonon interaction are now easily obtained. By defi-
nition

xi =a,iI-'-')+a zI-'-'&+a zI-' —-')+a 4I

for i=1, 2, 3, 4. (2.22)

Using Eq. (2.6) we then obtain

xg; ———2—*(I4i&)+zI ez&&)a;i+(3) I ezra&a, z

—6 '*(I ei4)+z I ezra&)a'z+ (3)'I

ezra)a'4

+6 (I eit& zl t&)a4—z'z+2 ~(I eig) i I ezra&)a—;4 (2.23).
The coefhcients a;; contain the dependence on k. When
writing 6nal state wave functions, which depend on k',
we shall denote the expansion coeScients a; .

be well to review some of the features that characterize
the current carriers and phonons in p-type germanium.
The holes in the valence bands of germanium lie in a
small sphere surrounding the origin of the Brillouin
zone in k space. The number of holes at room tempera-
ture and below, for samples having fewer than 10'~

acceptors per cm', is suSciently small that Boltzmann
statistics can be used to describe their distribution in

energy.
A phonon will scatter a hole by being either absorbed

or emitted. When dispersion can be neglected, the
conservation laws for energy and momentum show that
either process can take place as long as the velocity of
the hole is larger than the velocity of sound; however,
only absorption can occur for hole velocities smaller
than the sound velocity. Holes in the heavy mass band
can undergo both processes for temperatures greater
than about 1'K. The limiting temperature for light
holes is about 10'K. It follows that holes in germanium
can absorb or emit acoustical phonons throughout the
lattice scattering range. The conservation principles
show further that a hole can interact only with phonons
of wave number q such that q~& 2k. Taking k to be the
wave number of a hole at room temperature, it is seen
that the phonons that can interact with holes have q
much smaller than the Debye wave number. This
means that dispersion can be neglected for acoustical
phonons. The dispersion curve for optical phonons, on
the other hand, has zero slope in the region about q=0.
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Hence the frequency of the optical phonons interacting
with holes can be taken to be constant, independent of q.

The energy of an acoustical phonon of polarization
I' and velocity I&, is much smaller than that of a hole
at room temperature if q~&2k. The phonon energy can
be neglected therefore in an emission or absorption
process, and the scattering considered as elastic. The
number of acoustical phonons of wave number q,
polarization I', and velocity I&, at a temperature T is

qtqp= (e"ap« —1)'=&T/kgpq. (3 1)

Since rtqp)&1, it follows that rtqp=rtqp+1
The frequency co of optical phonons near q=0 is

independent of polarization in nonpolar crystals. De-
fining the optical mode temperature 0 by the relation-
ship ttoo= EO', one finds the number of optical phonons
of given polarization and wave number to be

rt= (eetr —1)
—'. (3.2)

' F. Bloch, Z. Physik 52, 555 (1928)."L.Nordheim, Ann. Physik 9, 607 (1931).

Umklapp processes will be unimportant provided
that k((J, where 2qrK is a reciprocal lattice vector.
This condition is well satished for the magnitudes of k
encountered in the lattice scattering range since
2xE~10' cm '. Therefore, Umklapp processes need
not be considered further.

We shall now treat the electron-phonon interaction
in a crystal having two atoms per unit cell. The index
1=0, 1 will be used to label the atoms in the unit cell.
I.et the position of the nuclei with respect to a fixed
origin be gt, where g is the index labeling the unit cell.
The displacement of a point r will be written u(r).

Either of two hypotheses has been commonly made
concerning the displacements of various points in the
unit cell during lattice vibrations. The first of these,
introduced by Bloch," assumes the atoms to be com-
pletely deformable while vibrating. The second physi-
cally quite diferent hypothesis of Nordheim" supposes
the atoms to be totally rigid and displaced as a whole.
Concerning these hypotheses, Seitz' points out that it
is not clear which of them is better for nonpolar crystals
like germanium since the degree of polarizability of the
electron cloud is uncertain. In the present paper we
shall attempt to treat both the deformable-ion (DI)
model and the rigid-ion (RI) model simultaneously by
adopting the arti6ce of writing the displacement of a
point r in the form uLgt+ii(r —gt) j where rt is a param-
eter having a value 0&~ g ~& 1. In the limits of q=0 and 1
the displacements reduce to those given by the RI and
DI models, respectively. For intervening values of p,
there is some displacement in all parts of the atomic
cell, with the largest amount occurring at the point gt.
It seems reasonable to suppose that the actual physical
situation will correspond to some value of g in this
range, since one would expect the inner cores of the

gl, l g), l

gi, l

The higher order terms in the expansion will be unim-
portant for small displacements.

We proceed in the usual fashion"" by Fourier
analyzing u in terms of the normal modes of vibration

qt(r) =G & P [a,p„e'q' exp(ip„t)8„p(q)

+ aq»te-'q' exp( —ip„t) e„p*(q)]. (3.5)

The index p, takes on values 1 and 2 for acoustical and
optical modes, respectively. The number of unit cells
of mass M (twice the atomic mass) in the crystal
volume t/' is O'. The quantities a,~„~ and a,~„are the
creation and annihilation operators respectively and
satisfy the commutation relation

[+q'p'o'&oqpo ] (~/2~&op)~qq'~os'~pp' (3.6)

The polarization vectors e„p(q) may be complex, as
will be seen presently. They satisfy

e.p*(q) &.p (q)=&pp" (3 &)

Finally, e'&~~ is a phase factor that distinguishes
between acoustical and optical modes, where

Cot qr~oq~tq. (3 g)

For infinite wavelength, the two atoms of the unit cell
will then vibrate in phase for acoustical modes and x
radians out of phase for optical modes. The phase
difference that exists between the two atoms when

q/0, is included in the polarization vector and will be
discussed presently. It should be emphasized however
that these terms, arising from nonvanishing phase
differences between the atoms of a particular unit cell,
will be treated here by means of the RI model only.
The DI model is ambiguous for modes of this type,
and in any case would require a more complex definition
of @„tthan (3.8).

Since we shall want to consider the di6erent vibra-
tional branches and polarizations independently, we

"A. Sommerfeld and H. Bethe, Hundblch der Physi (Verlag
Julius Springer, Berlin, 1933), Vol. 24, Part 2, p. 509.

~q A. H. Wilson, The Theory of Metals (Cambridge University
Press, Neer York, 1953), second edition, p. 254.

atom to be displaced rigidly, and the outer shells to be
deformed.

If we let U(r —gt) represent the potential at point r
due to the atom centered at gt for the electron configur-
ation with which the atom enters the crystal, then the
crystal potential is

(3.3)

The interaction Hamiltonian for the electrons and
lattice vibrations is

II'= P U(r- g, -u) - g U(r —gt)



336 H. EHRENREI CH AND A. W. OVE RHA USE R

introduce the notation

uLgt+n(r —gt) 3= 2 u.pLgt+n(r —gi) j,
II„P

Hr= PH„p.
p, P

(3.9)

where fk; G&x——s, (r)e'k" is a Bloch function corre-
sponding to a hole having wave number k in band i.
The normalized phonon wave function y(nq p „.) de-
scribes the 6eld containing nq P „Phonons of Polar-
ization I"and vibrational mode /M' having wave number
q', and satishes the equations

a,p„tqr(n, p„)= (/t/2M'„p)'(n, p„+1)&p(n, p„+1),
(3.11)

a,p„y(n, p„)= (h/2Mco„p)'(n, p„)&p(n,p„1).—
The matrix element corresponding to a transition

from a state represented by the wave function
qk;(r nqp„, {n;p „))toa state% (kr, n q+p1, {n;p „))
or %k;(r, n,p„1,{—n, p „)),(qPts/q'P'ts'), is

f
(i, n&1~H„p~j, n)= 4'&.;*(r,n, p„&1, {n,p.„.))

XH„p+ss(r nqp„, {nq p „))dr
where the upper sign corresponds to an absorption and
the lower to an emission process. Evaluating H„P
using Eq. (3.4), (3.5), and (3.9) and inserting this
together with the wave function (3.10) into the pre-
ceding expression, we find, with the help of Eq. (3.11),
that

(i, na1~H„p~g, n}=G &P(hn„p—'/2M'„p)&

X, ps,*l:Z exp(+~„t) e„p (q l) V U(r g,)—
g/, l

Xexp(+iq gt) exp[+irtq (r—gt)]]i/&;dr. (3.12)

We have introduced e»' which equals e» for absorp-
tion and n„p+1 for emission. The asterisk in brackets
signifies that the complex conjugate of e„p(q,l) is to be
taken only for the emission process.

It can be shown that if the solid is sufficiently large
and the atomic potential of short range so that surface
terms can be neglected,

,

'

ks '*L 2 exp(+i&et)esp'*'(q, /) VU(r —gi)
)r g/, l

Xexp(&iq «) ex. pt ~iraq (r—g )2|/' td

=/tp, k+p-k' X&'' LZ eXp(+A'o&)esp (ql)
J p p s$, t

vU(+g) pl.+ ( —1)q (+g)Z;~
=bp, kgs k J„p+(/'). (3.13)

The wave functions of the electron-phonon system are

q'k'(r {nq p'))=6'(r) II p(nq po) (3 10)
p, ', q', P'

The corresponding expression for optica/ modes, assum-
ing n independent of q, is

(i, n~1(H»( j, n) = (&n'/2MG'~}'

Xp ~p, k+q —k'(esp+(1)+&2P+(2)7. (3.15)

The present treatment of the electron-phonon inter-
action will take advantage of the predominance of long
vibrational wavelengths. Accordingly the matrix ele-
ments will be approximated by including only terms to
lowest order in q. Following Born and Huang's treat-
ment of "long waves"" we shall write the polarization
vector in the form

e„p(q,l) = ep(0)+iqapo„p(/), (3.16)

where 2ao is the edge of one of the two interpenetrating
face-centered cubes which generate the diamond lattice.
The vector o„p(l) is real. The polarization vector (3.16)
need satisfy Eq. (3.7) to first order in q only so that

~
e„p(q, /)

~

'=
~
ep(0) ('. The meaning of a complex polar-

ization vector for Gnite wavelengths is simply that the
particles no longer vibrate through their centers of
mass, as is the case for g=0, but in an ellipse thus
mixing polarizations slightly. The dependence of (3.16)
on l rejects the existence of a phase difference in the
vibration of the two atoms of the unit cell along
similar ellipses.

Let us now consider in detail the interaction of holes
with acoustical phonons. Equation (3.14) can be simpli-
fied, as is shown in the appendix, with the help of the
notation introduced below. For the sake of simplicity,
we shall assume that the atomic potential is large over
a single cell only, so that U(r —0i) = V(r) for values of
r lying in the cell labeled 0&, and U(r —Oi)=0 for
points outside the cell.

Introducing the symbols

tholp olp(1) oip(2),

8/ctsp ——ep(0) V,

8/Bs, = (q/q) v,
4p—= ep(0) q/q,

(3.17)

r' M. Born and K. Hnang, Dymalsicat Theory of Crystat Lattices
(Clarendon Press, Oxford, 1954), paragraphs 26—27.

The subscripts l' or 0, l' on the integral sign de6ne the
region of integration as either all of the l'th atomic
cells in the crystal, or the l'th atomic cell which is
part of the zeroth unit cell, respectively. It will be
unnecessary for the present purposes to indicate the
dependence of J„p+(/) on k, k', i,ja, nd q explicitly.

Thus, for acolsticul modes where nqP is given by
Eq. (3.1), we obtain

(i, n&1 ) H» (j, n) = (ET/2MG'I p') &

X& q '~. +.-'P '(1)+~ '(2)j (3 14)
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and the matrix elements

(i (Fp I j)= (k'/m) (Bxs;*/r)sp) (Bxs~/Bs,)dr, (3.18)
J0

(i(Fsl j&=) xs,*xs;V(r)dr,
0

(3.19)

(iles'I j&=a x~;*x,;o vvd. ,
1, 0

(3.20)

(3.21)

o~(0) = (2aopto~s) '8'e~(0), (3.23)

0 q, q„'

Ao» ———
I

—
I q, 0 q, e~(0).

2q &n)
gy gg 0

(3.24)

S' is a matrix having the same structure as the Shockley
matrix de6ned by Eq. (2.3), but with q replacing k
and the following de6nitions for I., M and E:

L=n+8p,
M =n —P'/n+4@,

&=0(2 0/ )+n8p—
(3.25)

The quantities n, P and p are functions of the elastic
constants to be given explicitly in Sec. 4.

Let us now consider the case of optical modes. In
the approximation, used before, that U(r) is of suffici-
ently short range, we have, to lowest order in q,

and also that
0, l

Js~+(1)=Jsg+(2).

Thus, Eq. (3.15) becomes

(i, ~~1
I
Esp

I g, e)= (2''rs'/p VE Dao') l(i
I
F4

I g). (3.27)
"Helen M. J. Smith, Trans. Roy. Soc. (London) A241, 105

(1948).

we obtain to lowest order in q

(i, m+11+»I j e &=+ i(ET /2s~ pV)l[(i(at I j)
+ (I—»~~~(i(Fs(j&+(i(Fs'I j&l (3 22)

where the density p=MG'/V.
The preceding expression for the matrix elements

can be evaluated explicitly if e~(0) and o» are known.
We shall use the general results of Born and Huang'4
as applied to the diamond lattice by Smith. " This
treatment considers interactions with nearest neighbors
without approximation, and interactions with second
neighbors assuming that the forces are central. In our
notation, the equations of reference 15 giving 8+(0)
and ho~p are

4. CALCULATION OF MATRIX ELEMENTS AND
RELATED QUANTITIES

This section will develop the explicit quantum-
mechanical results needed to calculate the lattice scat-
tering terms of the Boltzmann equation. In addition to
the approximations already made, we shall need three
further assumptions if tractable expressions for the
matrix elements are to be obtained. They are:

(1) The solid will be assumed elastically isotropic, so
that longitudinal and transverse sound velocities will
be independent of direction, but not necessarily equal
to each other. The numerical values of the velocities to
be taken as isotropic can be obtained from a suitably
weighted average of the measured velocities over
crystallographic directions. From these values it is
possible to define average elastic constants c;; by the
relations

Cyy= pNI, ~ C44= ply . (4.1)

The third elastic constant c~~ is determined from the
relationship which holds in an elastically isotropic
medium,

(4.2)Cyy
—

Cy2 = 2C44.

(2) The surfaces of constant hole energy in k-space
will be taken to be spherical. This is achieved by
de6ning a Shockley matrix involving averaged quanti-
ties L, M, and g which satisfy g=L M In spirit, — .
this approximation is the same as that involving the

By applying symmetry arguments to Eqs. (3.18)
through (3.21) we arrive at the following conclusions
concerning transitions involving acoustical and optical
phonons in the diamond lattice. From Eqs. (3.18) and
(3.19) we observe that for a cubic lattice, without a
basis, there is no coupling between current carriers and
transverse phonons if the wave functions have s-
symmetry. For carrier wave functions having p-
symmetry, however, transverse phonons are effective
in scattering. If we now consider the diamond lattice,
the preceding statement still holds, but in addition the
integrals (3.20) and (3.21) play a part in the transition
amplitudes. Interestingly enough, however, these inte-
grals vanish for carrier wave functions having s-
symmetry. Thus, in a homopolar semiconductor having
the diamond structure, it is impossible for optical modes
to contribute to the same order in q if the band has
s-symmetry and an extremum occurring at k=0. This
suggests that a calculation of the temperature depend-
ence of the mobility of e-type InSb, whose conduction
barid probably satis6es the preceding requirements,
would yield an estimate of the polar character of this
material, since our remarks concerning the effectiveness
of optical modes do not apply to the electron-phonon
interaction in polar materials.

In p-type germanium the valence band structure at
k=0 permits transitions due to all types of phonons
within as well as between the two bands degenerate at
this point.
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elastic constants. In fact, Eq. (4.2) corresponds to
precisely the same relationship, %=I.—3f, among the
quantities (3.25). This approximation is easily seen to
be justi6ed since the warping of the actual energy
surfaces is small in comparison to the radius of the
best sphere with which one can replace the actual
energy surfaces in k space. The energy of the degenerate
bands can thus be written E,= f1'k'/2ri4, . The constants
nz, are interpreted as the effective masses belonging to
bands 1 and 2, and will be given their experimental
values: m~ ——0.042 and m2 ——0.33 electron masses.

(3) In calculating FP and Fp, it will be assumed
that e~, e2, e3 transform like x, y, and z, i.e., we shall
replace e&, e2, and ~3 by functions X, I', and Z given by
X=xf(r), Y=yf(r), Z= sf(r), respectively Th.e func-
tions f(r), for a particular atomic cell, depend only on
the distance r from the center of that cell. Furthermore
each atomic cell will be assumed spherical. In effect a
signer-Seitz approximation is made in treating the
atomic cell. This manner of treating the wave functions
cannot be used in calculating the matrix elements
involving P3~ and F4, since these latter quantities
vanish in this approximation.

The erst step in calculating the matrix elements
consists of finding the polarization vectors e~. These
are obtained by inserting approximation (1) into (3.23)
and solving the resulting equation. Smith" shows that
coefFicients n, p, and p are related to the elastic con-
stants as follows:

2OpC11= n+ 8@,

2apC44 ——n —p'/n+4@,
2apcip ——2p n+4I4. —

(4.3)

Use of (4.2) then shows that p=(p/2)(p/n —1) and
from (3.25) it follows that X=L M. The secular—
equation obtained from (3.23) yields the relationship
~&=N&q between frequency and wave number. The
solution for the eigenvectors is

q,.
gy

c»= (q'+q') ' —q-
0

(44)

gxgz

c» q (q*+qw ) qp&

.—(q'+q. ').
In order to determine Aoii (to be abbreviated d oi,

since we do not need to consider hopi in this treatment)
from Eq. (3.25), one needs to know p/n. This is obtained
from Eqs. (4.3) which are quadratic in n and P. The
physically significant solutions give

p c11+2c44+3(Cii C44) *

(4.5)
n cll+4c44+4(cllc44) '

One Ands, if the x, y, z axes are taken along the cubic
axes of the crystal, that

gygz

601,= (B/q ) q~qg

»»= (B/2q) (q*'+q') '
9'u 9'*.

(4.6)

»»= (B/2q') (q'+qp') ' q*(q*'—q' —q.') .
-29' M

The quantities (iIF+Ij) defined by Eq. (3.18) may
be evaluated by expressing the operators (B/Bs&) and
(B/Bs,) in terms of (B/Bx), (B/By) and (B/Bs) with the
help of Eq. (4.4) and by use of the wave functions
(2.23). Of the matrix elements that arise in computing
(iIF1~I j), only those of the following type do not
vanish:

Ii= (I /rrl)(pi I (B/BS) (B/BS) I 41)p)

Ip= (&'/ri4)(41
I (B/By) (B/By) I 41)p, (4.7)

Ip= V'/~)(41I (Bl») (BIBr) I pp)p

We have added a subscript 0 to indicate that the
integral extends over a single unit cell rather than over
all space. Furthermore, we have dropped the explicit
dependence on the spins in the bra and ket vectors.
We shall assume that the spins involved are always
parallel, for only in this case are the quantities (4.7)
nonvanishing. The matrix element (iIFpI j) can thus
be expressed in terms of three quantities, which must
be considered undetermined since explicit knowledge
of the wave functions is lacking. In order, however, to
reduce the number of constants for the present purpose,
we shall make approximation (3). With this approxi-
mation, it can be shown that

I2=I3 (4.8)

2I3——Ig—I2. (4.9)

We shall express the integrals (4.7) in terms of the
single constant I2 from which we can henceforth omit
the subscript.

The matrix elements (iIF&I j) can be expressed in
terms of a single integral

&p=(pil Y(r) I pi), (4.10)

which will also be treated with the help of approxima-
tion (3). This approximation, when considered in
conjunction with (1) and (2), permits a choice of the
x, y, z, coordinate axes along some arbitrary direction
in the crystal, and not just along the cubic axes.
Therefore, if the matrix elements depend only on the
angle of scattering, and not on the azimuthal angle, it
is possible to choose some convenient initial direction
of propagation for the hole that is to emit or absorb a
phonon.
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c= (1/v3) Ek, (k.'+ ky') '*,

d = (1/231V (k.'+ k„'),

Ei—a= (1/6) X(k'+3k ')

sin8= —k„/(k, '+k„')&,

cos8= —k /(k '+k ') &

sing = —2k,k„/ (k,'+k„'),
cosy= —(k.'—k ')/(k '+k ')

(4.12)

which are obtained by using approximations (1) and
(2) and Eqs. (2.11) and (2.19).

For this initial direction the quantities (4.12) simplify
so that the matrix A of Eq. (2.21) for the initial wave
functions, becomes

0 1 i
0 i 1A=——1 0 0

i 0 0

0

(4.13)

It is seen that a hole moving along the z direction in
band 1 or 2 is described by a linear combination of the
wave functions corresponding to nz;= &—,

' and m,
= &-'„respectively. In forming the probability that a
hole in a given band makes a transition to another
state within that band or into the other band, we shall
average over the initial degenerate states and sum over
the final degenerate states. Instead of (4.13), one may
take

0 1 0 0
0 0 1 0
1 0 0 0

,0 0 0 1.
(4.14)

and consider the elements of this matrix as giving the
values of the a;; to be used in calculating the matrix

The quantities (iIF3PI j), (iIF4PI j) can be written
as functions of

Ca=(h/2)ao(eiI&V/BsIE2&l, oy C4 (2/8)C3. (4.11)

Since symmetry arguments, which depended on the
condition that x, y, z coincide with the cubic axes of
the crystal had to be used in obtaining the expressions
(3.20) and (3.21) and since the quantities (4.11) vanish
for spherical unit cells, it is necessary to retain the
restriction on the orientation of the x, y, z, axes in the
treatment of the scattering terms resulting from the
relative motions of the two atoms in a unit cell. In
this case, the matrix elements for scattering will there-
fore depend on the initial direction of propagation of
the hole in question.

In evaluating (i IFi I j) and (iIF2I j), we may take
the initial direction of propagation along the z axis so
that k,=k„=0 and k, =k.

The coeKcients a;; in Eq. (2.21) determine the wave
functions corresponding to the initial state. These
coefficients may be evaluated with the help of the
relationships

elements. The use of (4.14) corresponds only to a
diGerent choice of basis functions for treating the initial
state.

The same matrix (4.14) will be used to determine
the initial state wave functions for calculating (i I

F3p
I j)

and (iI F4p
I j). It is thereby assumed that initially the

hole is propagating along a L100$ direction. In the
application to transport theory we shall assume these
results to be representative as well of the scattering
obtained from other initial directions.

The wave functions describing the 6nal state of a
hole propagating in the direction (k,', k„', k, ') depend
on the a; which can be obtained with the help of Eq.
(4.12) if primes are added to the k„k„,k,. In transport
theory one is interested in the probabilities, propor-
tional to the absolute squares of the matrix elements,
for transitions within and between bands.

The transition probability from band s to band r
due to emission or absorption of an acoustical or optical
phonon (@=1,2) of polarization P, obtained by aver-
aging over the initial degenerate states and summing
over the final degenerate states, is proportional to

W„P(r, m&1; s, ri)

=2 2'~.& 2 &.~l(i N~1I& pl j ri&l' (415)
The notation j(s), i(r) means that we are to sum over
the two degenerate states labeled by i and j belonging
to bands r and s, respectively. It is seen from Eq.
(2.17) that the values of i corresponding to r= 1 and 2
are 1, 2 and 3, 4, respectively, and similarly for the j
corresponding to s= 1 and 2. Since I(i, I&1

I II„pI j, rI& I'
for acoustical phonons is the same for emission and
absorption, we can abbreviate the quantity defined by
Eq. (4.15) as WiP(r, s) for @=1.

The total transition probability due to transverse
phonons is equal to the sum of 8'„~' and S'„~&, and
will be written

W '= W '~+W '*

We can show with Eq. (3.18) that I= (2/5)Ci, where
Ci is the kinetic energy at k=0 if we use the definition

Ci ——(h'/2m)
I grady~ I

'dr
4p

C~ can be considered as the coupling constant for
acoustical modes. If we define

G.'(, ) = l 2;&.) 2 (.) I( IF-'I j& I'/c-'
G-sP(r, s) =l 2'i) 2 &.)((' IF-PI j&(jlFsPIi& (4 16)

+('IFs I j&(jlF- I'&)/C-Cs,

then, from (3.22) and (4.15) we have for acoustical
modes

Wi (r,s)= (kT/2Np'pV)[Ci'Gi (r,s)

+ (1 g)'bzpC2'G2(r, s)+C3'Ga (—r,s)

+(1—g)bz, pCiC2Gi2 (r,s)+CiC3Gia (r,s)

+ (1 g)bz pC2CgG23P (r,s)j.—(4.17)
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where

k2'2=nki2, (1~2),
ki'2= n 'k22 (2~1),

n = (2222/224, ) .

(4.19)

(4.20)

For scattering within a band

k,"=k,2 (s= 1, 2). (4.21)

In Eq. (4.17) the total contribution due to transverse
modes has been written

GT GT—&+GT2

For optical modes,

W2 (r, 22&1; s, n) = (2A'24'/pVEO~u2') C4'G2 (r,s) (4.1.8)

The results of these calculations will be presented by
giving explicit expressions for the G, (T,s) and the
G s (r,s) T.hese expressions simplify considerably if
one has introduced conservation of momentum and
energy into the calculations since it is possible thereby
to eliminate the explicit dependence on q. To distinguish
between initial and final states in the two bands, we
shall write the wave numbers as k, and k„', the sub-
scripts s and r denoting that the hole is in band s
before and in band r after having interacted with the
phonon. Since AN~q&&ET, for the temperature range
where lattice scattering is the principal scattering
mechanism, the equations giving conservation of energy
for transitions between the bands by acoustical phonons
are

term

g2T (r,S) = 2[G2L(r,S)+G2T'(r, S)+G2T2(r,S)]
=-'2G2(r, s) (4.26)

depending on an averaged sound velocity

242 224—L2+ 2 NT2 (4.27)

GiT (1,1)= GiT (2,2) = (1/25) sin'P

GiT(1,2) = (4/25) [(2/3) —{(n+1)/2o ) sin'P

+ (n/0') sin4p].

G2 (1,1)=G2(2, 2) = (1/4) (1+3 cos'P),

G2(1,2) = (3/4) sin'P.

(4.29)

(4.30)

For the sake of convenience in the application to
transport theory, we have divided this resultant scat-
tering term equally among the three polarizations.

We shall neglect those interference terms G p~ for
which either n or p is 3.This means that we are ignoring
the interference between the term o„~ and the other
acoustical terms, and are thereby considering g2T as
an independent scattering process. We shall estimate
the effect of these neglected terms on the mobility in
a subsequent paper. The results for the quantities
G T (r,s) and G pT(r, s) considered in this treatment are:

GiL(1,1)= (4/25) [(29/18) —(11/6) cosp+2 cos'p],

GiL(2, 2) = (4/25) [(1/2)+ (3/2) cosP+2 cos'P]

Gi'(1») = (4/25) L(7/4)+ (7/3n) —(n/~)
(4.28)

—(n/a') sin'p] sin'p.

(A'k "/2224 ) = (A'k 2/2222 )aEO. (4.22)

the upper sign being associated with phonon absorption
and the lower with emission.

The conditions for conservation of momentum are

In the case of optical phonons it is not legitimate to
neglect the energy of the phonon in comparison to that
of the hole. The principle of conservation of energy is
therefore

G„(1,1)= (2/5) [(7/6) —cosP+ (5/2) cos'P],

Gi2 (2,2) = (2/5) [(1/2)+cosP+ (5/2) cos'P],

Gi2(1,2) = (2/5) sin'P[(5/2)+ (1—n)/0].
G2(1,1)=G2(2, 2) = (1/2) sin'p,

G2(1,2) = (1/6) (1+3 cos'P)

G4L(r, s) = (1/2) G2(r, s).

(4.31)

(4.32)

(4.33)

k,'=k,aq (4.23)

for both acoustical and optical photons. By introducing
a polar coordinate system with the polar angle p
satisfying

(4.24)cosp= k„'/k, '

and the convenient symbol

0=1jn —2n& cosp (4.25)

the dependence on q can be eliminated.
If the matrix elements are to depend only on the

angle of scattering, two further assumptions are neces-
sary in treating those G„T and G sT for which n or p
is 3, since they depend on the azimuthal angle even
when the initial state is chosen along a [100] direction.
We can eliminate the dependence on azimuthal angle
in the G3~ by grouping the quantities corresponding to
the three polarizations together into a single scattering

G4T(T,S)=G2(r, S). (4.34)

It is a consequence of, the dependence of the G's on
scattering angle only, and also of the hermiticity of
the Hamiltonian matrix, that G T(r,s) =G T(s,r), if we
take the left-hand side to refer to a transition from k,
to k„' and the right-hand side to a transition from k,
to k, , the initial directions in each case being taken
along the 2' axis.

To facilitate application of the preceding results to
transport theory we shall define quantities VP„T(r,s),
such that the probability of a transition from band s
to band r due to one of the scattering processes con-
sidered here (denoted by the index 4), is

(22r/A)'N „T(r,s) p„, (4.35)

where p„ is the density of states in band r.
Since we have neglected the interference between

terms in Ci and C4 we may write Eq. (4.17) in the form

Wi (r,s)=%72 (r,s)+VP2 (r,s), (4.36)
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where

'Nq (r,s) = (KT/2N, J pV)$CPGj (r,s)

+ (1 ri) ClC2~LPG12 (r s)

+ (1—q)'C2'erg G2(r,s)], (4.37)

for a single nondegenerate s band the scattering is
isotropic and the electrons are coupled only to the
longitudinal phonons. The matrix element is

(P'
~

HI'
~
k) = & (2/3)iCqq5r~(hn'/2p Vcr,)» (4 43)

and
%"P(r,s) = (KT//2N'pV)C32gg(r, s). (4.38)

and the quantity with which we wish to compare 'N&"

as given by (4.40) may be written

In order to treat the DI and RI models simultaneously
in the transport calculations, we shall introduce a
parameter

and also
i = (1—q) (C2/C, ), (4.39)

g~"(r,s; q) =G, (r,s)+I'br, r G,2 (r,s)

+/br, pG2 (r,s), (4.40)

so that we may write more simply

W,~(r,s) =VIP(r, s; g)—
=CP(KT/2m~'pV) gP(r, s; ri). (4.41)

We have here introduced explicitly the dependence on
q. To obtain a consistent notation we shall also put
W,P=W, &, and G,&= bg.

We shall now examine the dependence of the'N „(r,s)
on scattering angle. This is of interest, since the
transition probabilities are related to VP„~(r,s) through
Eq. (4.35). It should be noted, however, that in
discussing VP„~(r,s) as a measure of the amount of
scattering taking place, we are leaving p„out of con-
sideration. This quantity bears considerable weight in
determining the importance of a given scattering
process, since the density of states is so diferent in the
two bands.

Let us erst consider the effects of '%q~(r, s) alone.
This corresponds to the assumption that C3——C4=0,
which would be the case if there were only one atom
per unit cell. The terms involved are analogous to the
expressions used to describe lattice-scattering in the
theory of monovalent metals"" for nondegenerate
conduction bands whose wave functions have s sym-
metry. In the present treatment these terms, besides
taking into account the correct zeroth order wave
functions for the germanium valence bands, have been
dealt with somewhat more generally in that a quantity
g has been introduced which gives the results for the
RI and DI models in the limiting cases q=0 and 1
respectively.

In order to compare the two models one would like
to have an explicit value for the I of Eq. (4.39). A
rough value of I can be obtained by use of the virial
theorem which relates the average potential energy C2
to the kinetic energy C&. Thus,

2.0—
mi =.042m

mq 0.33 m

K

o: l.s—
I-
m
IX

a"
4J
K

I .0
CF
CO

W

~ 05
X

Wo —=
i
(k'i Hi

i k) i'= (2Ci/3)'(KT/2pVNI, '). (4.44)

The results are shown in Figs. 1 and 2. In Fig. 1 the
curves giving %P(r, s) as a function of scattering angle
P computed from the DI model are shown for transitions
due to longitudinal and transverse acoustical phonons
within as well as between bands 1 and 2. One observes
that longitudinal phonons inQuence scattering within a
given band more than transverse phonons, whereas
both types are equally important in the scattering
between bands. Further, one notes that the light holes
are predominantly scattered backwards, whereas the
heavy holes are scattered forward. Figure 2 compares
the results for longitudinal modes obtained from the
DI and RI models. The two models give the same
contribution for transverse modes. It is seen that the
relative importance of longitudinal modes compared to
transverse modes is much greater for the RI model. In
addition, the angular dependence of the intraband
scattering obtained from the RI model is opposite to
that of the DI model: the light holes are now predomi-
nantly scattered forward, and heavy holes backward.

The probability for interband transitions is influenced
heavily by the density of final states. Thus, in referring
to Fig. 1, it should be remembered that the probability

2Cg =—C2. (4.42)
po 60 I 20'

SCATTERING ANGLE, DEGREES

For purposes of comparison it is advantageous to
express % & in dimensionless units by taking the ratio
of 'N~ to the expression for the absolute square of the
matrix element obtained by Sommerfeld and Bethe."
Their calculation uses the DI model and shows that

FIG. 1. Matrix elements squared, in arbitrary units, eersls
scattering angle for scattering of holes by longitudinal (L) and
transverse {T) phonons, according to the Dl model, within and
between bands 1 and 2. The horizontal line at 1 represents the
spherically symmetric angular distribution for scattering of holes,
having s-symmetric wave functions, by longitudinal photons.
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FIG. 2. Matrix elements squared, in arbitrary units, versus
scattering angle for scattering of holes by longitudinal phonons
within and between bands 1 and 2 according to the DI and RI
models. Solid curves correspond to the DI model and dashed curves
to the RI model. The horizontal line has the same significance
as in Fig. 1.

of a transition, say, from band 1 to band 2 produced
by a transverse phonon compared to that for a transition
within band 1 produced by a longitudinal phonon is
larger by a factor of 20 than one would suppose from
the graph. Interband scattering therefore plays an
important role in transport processes.

Turning now to the angular dependence of the terms
involving C0 and C4, we see from Eqs. (4.18), (4.38)
and (4.32)—(4.34) that it is the same for the terms
V70P(r, s) and %70P(r,s). We note that the scattering is
symmetric about P=90', and is maximum in the for-
ward and backward directions for interband scattering
and zero in these directions for intraband scattering.
It should be noted that the angular distributions would
be more complicated had we not chosen the initial
state along a [1007 direction. In each case, transverse
modes are twice as effective as longitudinal modes. The
relative importance of these terms and VP iP (r,s) depends
on the ratio (C4/Ci).

These results have been applied to the transport
properties of p-type germanium. The calculation of the
hole mobility is the subject of a subsequent paper.

APPENDIX

We shall show how Eq. (3.15) may be simplified if
the atomic potential is of suKciently short range that
V (r) = U(r) for r in the atomic cell Oi.
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From Eqs. (3.8) and (3.13) it follows that

J,p+(1)+J,p+(2) = x0,,*[ep(0) . Q VU(r+g, )
p gt, &

Xexp[~i(~ —1)q (r+gi)77x. ;d.

+iqao p X0,*[&oip(l) V'U(rygi)
=1,24 p )I gI, l

X p[+'(g —1)q ( +g)77x;d .

We shall not need to make the approximation concern-
ing the range of U(r) in the first term in an expansion
to lowest order in q only. Integrating this term by
parts yields

8—
~

~ U(r+«)
"o g~~ Bsy

X(X0 '*X&;exp[+i(g —1)q (r+gi)7)dr.
The surface terms vanish because of the periodicity of
the integrand. We carry out the indicated differentiation
and then set exp[&i(g —1)q (r+gi)7=1, since further
terms in the series will correspond to higher order
terms in q. Using the following identity, proved by
Sommerfeld and Bethe,"

V(~) (~/»p) (x"*x~)d
Jp

r=a (A'iq/m) (BX0.;*/Bsp) (BX0~/Bs0) d r
Jo

and Eq. (3.3), we find, without further approximation,
that the first term becomes

f
W (iVPq/m) (Bxg;*/Bsp) (Bxi„/Bs,)dr

0

f
&i(1—q) 8r,pq Xi;;*X0;V (r)dr.

0

If the range of U(r) is limited in the way already
described, then the second term becomes

+iqa0 p Xi, ,*oip(l) V'U(r)e+'&0-''0'X»dr.
l=1,24p )

We observe from the behavior of yg, ; and yg„ for
k= 4'=0 and V under the symmetry operation of the
germanium lattice in which a nonprimitive translation
a0(0i, —,',—,') is followed by an inversion, that

oip(l) 'VVQ'0jdr — xi ' oip(l) 'VVgfgjdrQ A

4o, c 0, 1

Then to lowest order in q, this term may be written

~zq@o Xpl s 60]~ ' V Vxy g87 .
~O, 1

Insertion of the definitions (3.18)—(3.21) yields

~»+(I)+~ip'(2) = ~iq(&ilFiP li)
+ (1—n) ~»&il ~iles)+(il ~0'li))


