
P H YSI CAL REVIEW VOLUME 104, N UM B ER 2 OCTOB ER 1$, 1956

Acoustodynamic ESects in Semiconductors

GABRIEL WEINREICH
Bell Telephone Luboratories, 3fgrruy Hill, See Jersey

(Received July 5, 1956)

The presence in a semiconductor of both signs of current carriers makes it possible to disturb the spatial
distribution of these carriers appreciably without giving rise to electrical space charge. As a result, the inter-
action of particles with acoustic waves leads to certain effects which, at least at low frequencies, are peculiar
to semiconductors; these include a (complex) addition to the elastic modulus and the "acoustoelectric eRect."

I. INTRODUCTION

'HE concept of a "deformation potential" has
proved very fruitful in discussing the motion of

electrons and holes in a crystal in the presence of
acoustic deformations of the crystal. Stated in its
simplest form, which is in fact applicable to low-energy
electrons and holes whose bands have a "simple"
structure, the assumption is that such a particle has a
potential energy V& proportional to the dilatation of
the crystal:

~1=—@i~,

where 8~ is a constant and 6 the dilatation. This inter-
action leads not only to forces exerted on particles by
acoustic waves, but also in certain cases to radiation of
acoustic waves by particles. The word "acousto-
dynamics" has been coined for the description of the
motion of this 6eld-particle system.

The theory of the effect of conduction electrons on
acoustic propagation has been studied by a number of
people, ' ' all of whom, however, directed their attention
to metals rather than semiconductors. The peculiar
feature of semiconductors is that, with both signs of
carriers present, it is possible to produce appreciable
spatial "bunching" of carriers without concomitant
space charge. Since the effects to be described here
depend on such bunching, they would be very much
smaller for metals at frequencies well below the dielec-
tric relaxation frequency (as presently attainable ultra-
sonic frequencies are).

The "acoustoelectric effect" is a related phenomenon
which was named and 6rst discussed by Parmenter;
the term refers to the appearance of a dc electric current
when an acoustic wave is passing through a conducting
medium. Parmenter's treatment seems de6cient in two
respects. First, he applies a Boltzmann factor to 6nd
the distribution of electrons among states which are
not eigenstates of energy. In fact, the situation under
discussion is not an equilibrium situation but a "steady
state, "which has to be treated by a transport equation
or some equivalent formalism which contains transition

rates. Second, he uses a one-electron approximation,
and thus does not consider the space-charge forces
which strongly resist the bunching of electrons (see
previous paragraph). This leads him to predict an
acoustoelectric effect in metals, where it may in fact
be expected to vanish. *

In the present paper, we shall treat all phenomena
classically; moreover, since attainable acoustic wave-
lengths are much larger than carrier mean free paths
(and the periods much longer than mean free times),
we can describe the net particle currents j in the usual
macroscopic way as being composed of a drift term and
a diffusion term:

j =D(P/zT' v)n, — (2)

where n is the particle density, Ii the force applied to
the particles, ET the termal energy, and D the diffusion
constant. The single constant D thus incorporates the
result of solving the appropriate transport equation for
the rate at which transitions occur. Equation (2),
together with the equation of continuity, will allow us
to calculate the redistribution of carriers which takes
place when an external force 6eld, in the form of an
acoustic wave, is applied.

To avoid space-charge difhculties, we shall have to
consider not only the deformation potential force
—V'V&, but also the force exerted by electric fields
resulting from the redistribution of charges. Here we
shall avail ourselves of a good (and common) approxi-
mation which is valid when the period of the waves is
much longer than the dielectric relaxation time and
their wavelength much larger than a Debye length, and
which states that charge neutrality is maintained
exactly, the electric 6elds necessary for this purpose
being set up automatically and instantaneously. For
small sinusoidal disturbances we can further state that
this induced electrostatic potential is proportional to
the deformation potential of the applied acoustic wave
(the proportionality constant being in general complex).

The change in the acoustic propagation properties of
the medium can be thought of as the continual addition

' A. Akhieser, J. Phys. (U.S.S.R.) 1, 289 (1939).
s W. P. Mason, Phys. Rev. 97, 55'7 (1955).' R. W. Morse, Phys. Rev. 97, 1716 (1955).
4 C. Kittel, Acta Metallurgica 3, 295 (1955).
~ A. B.Pippard, Phil. Mag. 46, 1104 (1955).' R. H. Parmenter, Phys. Rev. 89, 990 (1953).

*Note added ee proof. Acalculation of the aco—ustoelectric
effect similar to the one given here has also been made by T.
Holstein (unpublished). In addition, Van Den Beukel PAppl.
Sci. Research, BS, 459 (1956)) has calculated the eEect, hut
without tpQng &n&o account the spatial redistribution of
carriers,
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to the original wave of a wave which is radiated by the
redistributed carriers. To solve this problem, we shall
6rst formulate the 6eld equations of acoustodynamics,
i.e., the acoustic field equations in the presence of
sources which are coupled to it by the deformation
potential, Eq. (1). This derivation will be followed by
a discussion of the carrier bunching which takes place
in the presence of an acoustic wave. In fact, the problem
will be generalized somewhat by the inclusion of an
applied constant longitudinal electric 6eld, since the
dependence of the results on this applied field are rather
interesting. We shall next derive the acoustodynamic
effect on the acoustic propagation properties, and con-
clude with a brief discussion of the acoustoelectric
effect.

II. FIELD EQUATIONS

We assume that the deformation potential is cor-
rectly given by Eq. (1),and that the crystal is isotropic.
Also, in writing the Hamiltonian density of the field
we shall omit the shear energy. This omission will not
lead to any difficulty as long as there are no boundaries
which can couple compressional waves to shear waves,
and in the problems which we shall solve the boundaries
will all be perpendicular to the propagation vector of
the waves.

In terms of the displacement R, the density of the
crystal p, , and the sound velocity c, it is convenient to
define

Equivalently, if we de6ne a new field quantity

O'=—C —p,

we can introduce a potential II such that

e'—:VII, (10a)

C'= (1/c) BII/Bt, (10b)

V211—(1/c') B'II/Bt'= (1/c) Bp/Bt . (11)

With these equations we are in a position to calculate
the 6eld radiated by an arbitrary acoustic charge
distribution.

III. BUNCHING OF CARRIERS IN A
COMPRESSIONAL WAVE

We consider a semiconducting body which is trav-
ersed by a plane compressional wave,

C,—C e%(~—c~)

moving in the positive x direction. In addition, a
longitudinal constant electric field is applied such as to
give electrons a drift velocity Pc in the positive x
direction. Let n, p be the concentrations of electrons
and holes, respectively, and b the ratio of their mobili-
ties; we can then write for the particle current!densities

(nD„y B l9sj „=ntac+
I I (q C+~&C)—D„, (13a)—
(ETj Bx 8$

%'—=p~d R/dt,

Q—=plR,

C—=cV' Q.

(3)

(4)

(5)

ppc (pD i B
+l I

—(q.c-~.c)
b EbETj Bx

D~ Bp
(13b)

b 8x
%' and Q can be regarded as canonically conjugate
field quantities. The set %', C is what we shall regard as
the "6eld strengths"; note that %' and C' both have
dimensions of energy density.

The interaction energy between field and particles
can now be written

Ur = —Q,q,4;, (6)

B%'/Bt =cd' cVp, —

BC/Bt=cV %'

(sa)

where C; is the value of C at the position of the ith
particle, and q; is the deformation potential of that
particle divided by p'*c. We shall refer to q; as the
acoustic charge of the particle. If we choose to think of
the particles as a continuous distribution, Uz becomes
an integral containing the acoustic charge density p.

The Hamiltonian density for the 6eld which includes
the interaction is

a=-', e'+-,'( cQV)' —cpV Q, (&)

from which the following field equations for %' and C

can be derived:

where q, q„are the acoustic charges of an electron and
a hole, We the electric charges, and yA,C is the induced
electrostatic potential discussed in the introduction.

The continuity equations take the form

n Bj„1- ( q C—+ +—n —np) 1+
~

=0, (14a)
Bt Bx r & 1+sETj
BP Bj„1 t' sq C )-—+ +- p —

poi 1+ —

i
=0, (14b)

Bt Bx r & 1+s ETj
where s=—np/po is the ratio of equilibrium concentrations
of electrons and holes, r is the lifetime, and q=q„+q„.
The last term expresses the first-order change in equi-
librium concentrations due to the fact that in a field 4
the energy gap is decreased by the amount qC.

If we assume n —no«no p pp«po and let

n =no+ n~e+&~"&
7

p
—

p +p eQ(x—eo

(15a)

(15b)

we obtain expressions for n~ and p~, at this point we
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can invoke charge neutrality, which implies that rti= pi, does not vanish, but approaches the constant value
and eliminate the unknown yg, . The result is

q No pro(Po —P) 1—s

where

tZO

'Si pi 3f,
1+s KT

(16)

B. Extrinsic Material with Long Lifetime

1+pop (1+sb)/poor (1+s)
M=-

1+~o(1ysb)/~'r(1+s) —i(Pp —P) (1—s)~o/(1+s)~'

co= kc)

Mp= 6 /D~)

Pp—= (1+sb)/(1 —s).

The factor 3f incorporates the dependence of the
bunching on frequency, applied field (through P), and
properties of the material. We shall discuss this de-
pendence for a few cases in connection with the resulting
acoustic propagation properties.

If we assume s((1, sb«1 (strongly p-type material);
also k(D„r)&))1 (diffusion length long compared to
wavelength), we find

We conclude that, as P is varied, (a) the phase velocity
of waves is always decreased; the maximum eQ'ect
occurs at P = 1 and is given by

bc/c =q'rto/2ET

(b) the wave-carrier interaction endows the system with
a finite Q; the maximum effect occurs at P=1&o~/opp
and is given by

Q= %2ET/q'Np.
IV. ACOUSTIC PROPAGATION PROPERTIES

The fact that the attenuation is negative when P)1
From Eq. (16), we can immediately obtain the is somewhat analogous to the amplifying action of an

acoustic charge density: electromagnetic traveling-wave tube.

p= (q„n,+q„pi)e'

qrtp qC'p
~~ikx—i cot

1+sET

This can be inserted into Eq. (11),the solution of which,
if we assume it harmonic in space, turns out to be
linearly increasing in time; this radiated wave is then
to be added to the original wave. Since, however, p is
proportional to the acoustic amplitude, it will itself
change as the wave changes, giving rise to a change
with time which is exponential rather than linear. By
carrying out the appropriate calculations, we find that
the variation of the wave can be represented by the
exponential

exp[ik pc io~ (1+p+—irt) t],
where

c= —(q'rto/2ET) Re[M]/(1+s), (18a)

g= —(qoep/2ET) Im/M]/(1+s). (18b)

Quantitatively, p is the fractional increase in phase
velocity of the wave, and p the fractional increase in
amplitude per radian of oscillation, or half the inverse
negative "Q." The meaning of Eqs. (18) will now be
illustrated by some simple examples.

C. Intrinsic Material

By setting s=1, we obtain

1+op~/ol t
3E=

1+pi,/odor ioi;/(v—
where

&u,—=—',c'(1/D„+1/D~).

We conclude that the acoustic behavior of intrinsic
material is unaffected by an applied electric field.

V. ACOUSTOELECTRIC EFFECT

The material of Sec. III enables us to calculate the
acoustoelectric eBect, i.e., the electric current which is
caused by an acoustic wave. Because of the requirement
of charge neutrality, no net ac electric current can be
carried by the wave. However, there is a possibility of
a nonvanishing dc current; from Eqs. (13) we see that
it will appear in our perturbation calculations as a
second-order effect in gC/ET. The actual calculation
is performed by substituting (15) into (13), using the
solution (16), and computing the time-average value
of the middle term of (13).This yields the dc particle
currents j„and j„; the net acoustoelectric current is
then given by

A. Limiting Frequencies

As co—&0 and as co—+~, M—+1. We conclude that in
both cases (a) the phase velocity of waves is decreased

by a fractional amount q'np/2ET(1+s); (b) the at-
tenuation, as measured by the equivalent "Q",vanishes.
However, (c) for oi—+op, the attenuation per Nuit tertgth

Before this calculation can be done one has to re-
consider Eqs. (14), since the recombination term there is
only correct to 6rst order and thus inadequate for a
second-order calculation, However, rather than en-
cumber our arithmetic, we shall here assume that ~ js
very large, so that the whole recombination term is
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negligible. The result is

clpc ( g@pP
Iae = —

z
(1+s)' &KT)

(1—s) —P(1+s/&)
X (19)

1+(0p—0)'[(1—s)/(1+s) 7(~p/~)'

The following conclusions are then easily verified.
A. Extrinsic material, eo applied field. If p—=O, the

direction of the current is that of minority carriers
carried with the wave; that is, I,(0 if s&1 and I„)0
if s(1. If s((l (strongly p-type material), I„becomes
simply proportional to eo and independent of s, showing
this to be a pure minority carrier eRect. This may be
understood from the following argument. The ac con-
centrations of holes and electrons are equal; but if
there are many more holes than electrons, the ac force
which brings about this concentration is much smaller
for the former than for the latter. Thus the second-order
eRect, which is a product of ac force and ac concen-
tration, is much greater for the minority carriers. If

there are no minority carriers, the acoustoelectric eRectvarnishes.

B. Irltrirlsic material, No aPPlied field .—It is equally
easy to see that for intrinsic material (s=1) the effect
vanishes. This is not surprising, since we know I„to
reverse sign when going from lp-type to P-type material.

C. Egeet of aPPlied field T.h—e acoustoelectric effect
can be thought of as a drag by the wave on the particles,
and will depend on the relative velocity between the
wave and those particles. The application of a field will
pull one type of carrier against the wave, and the other
type with it; it will thus increase one acoustoelectric
particle current and decrease the other. Since, how-
ever, the associated electric currents have opposite
signs, the two eRects on the net electric current will
add. Thus, for example, Eq. (19) shows that even in
intrinsic material an acoustoelectric current is to be
expected if P does not vanish.
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The Overhauser effect may be used in the spin multiplet of certain paramagnetic ions to obtain a negative
absorption or stimulated emission at microwave frequencies. The use of nickel Quosilicate or gadolinium
ethyl sulfate at liquid helium temperature is suggested to obtain a low noise microwave amplifier or
frequency converter. The operation of a solid state maser based on this principle is discussed.

OWNKS and co-workers" have shown that micro-
wave amplification can be obtained by stimulated

emission of radiation from systems in which a higher
energy level is more densely populated than a lower one.
In paramagnetic systems an inversion of the population
of the spin levels may be obtained in a variety of ways.
The "180' pulse" and the "adiabatic rapid passage"
have been extensively applied in nuclear magnetic
resonance. Combrisson and Honig' applied the fast
passage technique to the two electron spin levels of a
I' donor in silicon, and obtained a noticeable power
amplification.

Attention is called to the usefulness of power satura-
tion of one transition in a multiple energy level system
to obtain a change of sign of the population diRerence
between another pair of levels. A variation in level

*Supported by the Joint Services.
Gordon, Zeiger, and Townes, Phys. Rev. 99, 1264 (1955).

~ Combrisson, Honig, and Townes, Compt. rend. 242, 2451
(1956).

populations obtained in this manner has been demon-
strated by Pound. 3 Such eRects have since acquired wide
recognition through the work of Overhauser. 4

Consider for example a system with three unequally
spaced energy levels, E3&E»E1. Introduce the
notation,

h&31 +3 +1 h&32 ~3 ~2 h&21 +2 +1~

Denote the transition probabilities between these spin
levels under the inhuence of the thermal motion of the
heat reservoir (lattice) by

w» ——wp& exp( —hr»/kT), wlp ——wsl exp( —hapl/kT),
wsp ——wps exp( —hr, s/kT).

The m's correspond to the inverse of spin lattice
relaxation times. Denote the transition probability
caused by a large saturating 6eld II(rpl) of frequency

P R. V. Pound, Phys. Rev. 79, 685 (1950).
4 A. W. Overhauser, Phys. Rev. 92, 411 |',1953).


