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A 6xed-source analysis of the s-wave pion-nucleon interaction is constructed along the lines of the Chew-
Low-Wick formalism. A bilinear s-wave interaction of the form Xe fo io+Xs ( teXsr) is added to the usual
p-wave coupling (47r)&(f/p)a p' s to. Scattering equations are developed and solved in the one-meson
approximation. Values for the renormalized coupling parameters )0 and ) are determined which give
reasonable agreement with the s-wave phase shifts up to ~100-Mev pion kinetic energy. This s-wave
interaction with the parameters 6xed by the scattering analysis is then applied to the discussion of the x+
and m' photo-production cross sections. A Kroll-Ruderman theorem is proved for the above nonlocal
interaction and it is shown that the contributions to s-wave neutral and charged photoproduction are
consistent with experiment. Other experimental implications, in particular as to the possible role of m-m

forces, are discussed.

I. INTRODUCTION

I~HEW and Low' have shown recently that a simple~ fixed-source theory of the p-wave pion-nucleon
interaction is quite powerful in correlating low-energy
pion scattering and photoproduction data. With a
formalism based on a nonrelativistic approximation
(which neglects antinucleons and recoil) to the equa-
tions of Low," they have especially emphasized

*This work was supported in part by the Once of Naval
Research and the U. S. Atomic Energy Commission.

f' The term "pion" is used in discussion of the physical and
experimental aspects of the scattering and photoproduction. In
the more formal and theoretical developments we prefer the word
"meson" for the nuclear field quantum. It is not intended that
this duality of terms convey a basic reservation on our part as
to the identity of these two.

1' Now at the Physics Department, Stanford University,
Stanford, California.

f Now at the Physics Department, University of California,
Berkeley, California.' G. F. Chew and F. E.Low, Phys. Rev. 101, 1570, 1579 (1956);
hereafter referred to as C-L. We use the units A=c=1. Unless
specifically displayed, the pion rest mass tM, =1.

2 F. E. Low, Phys. Rev. 97, 1392 {1955).' G. C. Wick, Revs. Modern Phys. 27, 339 (1955).

important conclusions in their work which are inde-
pendent of the details of their model. We report here
a fixed-source analysis of s-wave pion-nucleon inter-
actions constructed along similar lines. In particular we
study the elastic scattering of s-wave pions at low
kinetic energy (&100 Mev) and the s-wave photo-
production of low-energy charged and neutral pions.

In C-L, the p-wave pion-nucleon coupling is taken
to be

0

H, '= (4sr)&— (Ir v~. q (x))s(x)dsx,
ts J

with a source density

dx
s(x) = "u(E) exp(t'sc x)

(2sr) s

On the basis of Eq. (1) and in the "one-meson approxi-
mation" a low-energy effective-range theory of the
p-wave scattering phase shifts is developed. The (3,3)
phase shift (T= ss, f= s) emerges as the dominant one.
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II.'= I {Xooq 9+&o~. (9 Xoo)}s(x)dox, (2a)

with x the canonical momentum of the pion field.
The terms of this form in the Dyson-Foldy trans-

formed Hamiltonian appear with definite coefficients in
relation with Eq. (1):

Xo'= 4s.(f')'(2M/p') ) '= 47r (f')'/p' (3)

Nevertheless we treat these constants as free param-
eters in this paper. Our dual motivations for this are

(a) Equation (2a) is considered to be an approximate
phenomenological representation of the low-energy
s-wave pion interactions contained in a relativistic
ps-theory, whereas Eqs. (3) are relations valid' only
to order (f')'

(b) Equations (3) express relations between the
unrenormalized coupling constants. These ratios are
changed in an unknown way by the diferent coupling-
constant renormalizations.

As written, Eq. (2a) includes scattering of waves of
all angular momenta. In the interest of simplicity of
calculation, we replace it by a separable source version:

with
P,'=)ooy q+)o~ (s Xoo), (2)

oo= q (x)s(x)dsx.

The separation of the individual pion absorption and

' S. D. Drell and E. M. Henley, Phys. Rev. 88, 1053 (1952).

C-L also apply the interaction in Eq. (1) to a discussion
of single-pion photoproduction. Electromagnetic gauge
invariance for a point source theory requires the sub-
stitution

V~V —ieA,

when operating on the charged pion field y in Eq. (1).
This added term gives rise to photoproduction of
s-wave charged pions which is the dominant contribu-
tion to the cross section for the process y+~e+or+
at low energy. Neutral-pion photoproduction occurs
only in the p state.

In this paper we introduce a specific interaction to
describe the s-wave pion scattering and study its con-
tribution to photopion production cross sections. The
possibility of charge exchange pion scattering leads to
a prediction for the cross section of neutral-pion photo-
production in the s state.

It is clear from considerations of parity that a pion-
nucleon s-wave interaction in a static source theory
must be at least quadratic in the pion field. Guided by
the form which is obtained upon application of the
Dyson-Foldy4 transformation to the relativistic theory,
we add to the p-wave coupling the two terms

emission points serves to suppress all but s-wave
interactions. '

Our first aim is to fit the low-energy s-wave scattering
phase shifts for the T=2' and 2 isotopic spin states.
A close fit to the data for pion kinetic energies up to

100 Mev is achieved in the one-meson approximation
with suitable choices of the three parameters Xo and X

(the two renormalized coupling constants) and the
cut-off energy oo, = (~, s+y')'. The experimental
phase shifts are taken from Orear's' analysis and can
be approximately represented at low energies as linear
functions of the pion momentum

br ——0.16(K/jllc) 8s= —0.11(K/jtkc). (3')

In this connection, we remark that an additional
contribution to 8 arises when nucleon recoil is taken
into account. However, the recoil contribution to the
scattering matrix elements and phase shifts varies as
K and ft', respectively for f(:—+0, and can thus be ignored.

We also note that both interaction terms in Eq. (2)
must be present. This statement is proved in Appendix
II in the framework of the one-meson approximation.
We can make it plausible here by observing that the
first term (Xo) gives no isotopic spin dependence
(8r ——8o), and the second one P.) in Born approximation
gives 8»= —253. A more accurate treatment of the X

term increases 8» and decreases 53, because the former
is an attractive and the latter a repulsive phase shift.
Hence both terms are necessary to fit the observed
ratio.

It is also clear that, in the one-meson approximation,
the s- and p-wave scattering problems can be solved
independently because of the opposite parities of the
states involved. Their mutual inQuence lies solely in
the definitions of the renormalized coupling constants.

We consider next the s-wave pion photoproduction
cross sections with the coupling parameters in Eq. (2)
fixed by the scattering analysis. The two questions of
primary importance are: Does a Kroll-Ruderman7
theorem hold, and what is the effect of s-wave rescat-
tering of the photoproduced pions on the charged and
neutral photoproduction cross sections?

The Kroll-Ruderman theorem states that the zero-
total-energy limit of the matrix element for pion
photoproduction has the same form as the Born-
approximation result,

M.E.(7~+, or-, or' )

(ief) e e (-,-",0)~2, (4)
& p, ) (2k) &(2ar,)&

with the renormalized pion-nucleon coupling constant,

~ In both the weak- and strong-coupling limits, the scattering
solutions for the scalar pair term with and without the separa-
bility assumption are identical. See G. Wentzel, Phys. Rev. 86,
802, (1952) and reference 4.' Jay Orear, Phys. Rev. 100, 288 (1955).

r N. M. Kroll and M, A. Ruderrnan, Phys. Rev. 95, 2&& (1954).
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f, being the same as that operating in the p-wave
scattering. This theorem has been proved in a variety
of ways for the relativistic local pseudoscalar theory,
an especially simple proof appearing in Low's' work
which makes use of the charge-current continuity
equation. It is well known that there exists a continuity
equation

V j—iLp,H]=0
in a gauge-invariant formulation of electromagnetic
processes. In a covariant local theory of pion-nucleon
processes, the gauge-invariant introduction of electro-
magnetic interactions is simply effected by replacing

p—+p —eA,

when operating on the charged fields.
In a cutoff, nonlocal model of the pion-nucleon inter-

action, however, the prescription, Eq. (6) is not gauge-
invariant and therefore the continuity equation fails
within the source. Various methods of remedying this
situation have been discussed, especially by Sachs, ''
a,nd collaborators who introduce current threads to
provide instantaneous charge transfer within the source
functions as required by Eq. (5). We analyze this
situation in Sec. III where we prove that, for arbitrary
nonlocal interactions II, the theorem expressed in Eq.
(4) follows as a direct consequence of the existence of
a continuity equation alone. This proof is an extension
of previous ones which used Eq. (6) to introduce elec-
tromagnetic interactions. In the work of C-L, the
emergence of a Kroll-Ruderman theorem follows from
the fact that the photoproduced pions at threshold do
not rescatter because of the absence of any s-wave
interactions.

We feel that it is of importance to establish the
validity of the Kroll-Ruderman theorem in our work,
since we consider the added s-wave interaction Eq. (2)
to be an approximate low-energy representation of
s-wave pion processes as contained in the relativistic

theory, to which the Kroll-Ruderman theorem
applies.

The photoproduction cross sections calculated in this
work differ from the results of C-L in two ways. First
of all, rescattering of the s-wave photoproduced pions
serves to increase the cross section for x+ photoproduc-
tion by 15 jo above the C-L prediction. Secondly, charge
exchange scattering leads to an s-wave neutral-pion
photoproduction which contributes 3% of the charged-
pion cross section near threshold. The data" are not
suKciently precise to support or discourage these
predictions.

The following sections of this paper present a further
discussion of the experimental and theoretical numbers.

Two other cross sections involving low-energy s-wave

R. H. Capps and R. G. Sachs, Phys. Rev. 96, 540 (1954).' R. H. Capps and W. G. Holladay, Phys. Rev. 99, 931 (1955).' Goldschmidt-Clermont, Osborne, and Scott, Phys. Rev. 97,
188 (1955); F. E. Mills and L. J. Koester, Jr., Phys. Rev. 9S, 210
(1955).

II. SCATTERING

The Hamiltonian is written as the sum of two terms:

where
H=Hp+H',

is the Hamiltonian of the free-meson field, and H'
describes the interaction between meson and nucleons.
In Eq. (8), s labels both the momentum and isotopic
spin state of the meson. The source is restricted to
being Axed in position, but otherwise B is left com-
pletely unspecified. The scattering equations are then
developed in a manner completely analogous to the
C-L treatment.

The starting point is the scattering matrix

where%';~+& is an eigenfunction of the total Hamiltonian
Il. It represents a plane-wave meson incident on a
physical nucleon (the two being in a state characterized

by i), plus outgoing scattered waves. Similarly, %f' &

represents a plane-wave meson and a nucleon in the
state f, plus ingoing scattered waves. Thus

where in writing Eq. (10) the physical nucleon has been
chosen to have zero energy. Representing the physical
nucleon by f& (and suppressing the spin and isotopic
spin indices) we note that

p=0.

Thus, in complete analogy to C-L, we find

(12)

"A. M. Bincer, Ph.D. thesis, Massachusetts Institute of Tech-
nology Physics Department, 1956 (unpublished).

'~ Mare Ross, Phys. Rev. 95, 1687 (1954); F. J. Dyson, Phys.
Rev. 99, 1037 (1955); Gyo TaIteda, Phys. Rev. 100, 440 (1955).

pious can also be studied in connection with Eq. (2)
and the work reported here. These are the double
s-wave pion photoproduction by magnetic dipole
gamma rays and the inelastic scattering of an incident
p-wave pion into two s-wave pions: near threshold
these processes should dominate over those involving
slow outgoing p-wave pious, because of phase space
factors. Accurate cross sections for these processes have
not yet been measured. They have been calculated on
the basis of Eq. (2) by Bincer," whose work will be
reported shortly.

The success or failure of Eq. (2) to account for this
class of processes can serve as a basis for arguing the
possible role of short-range pion-pion forces such as
have been conjectured in other connections. "
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Similarly, we obtain

a.go= CH', a'.')fo
H+Mrj

This is identical to the C-L form if we set

V.;=CH', a.,t].

FIG. 1. Diagrams re-
f I

(13) presenting Tr;, Sr; and
Sf;* respectively. The
blob means the com-
plete physical interac-
tion.

(14)

Here, however, V&, is a function of meson 6eld operators
in addition to the nucleon spin and isotopic spin
matrices. Substituting into (9) for%';i+&, and proceeding
in the manner of C-L, we find

where
Sr;=8g;—2rri6(Ey E~)Tr;—, (15)

T,;= (~&'-
I
CH'", ,tE la.&=(~"-'

I
V 'la. &, (16)

and on the energy shell is the conventional transition
amplitude. We now insert (12) into (16) and, using
closure, introduce the complete set of states %„t & (the
index n characterizes the state of the mesons as well as
the number present). The equation for T is

Ti'=Q.
I C'i, v jl~.&

HI HI+H I (21)

as given in Kqs. (1) and (2).
In line with this choice, V.; may be divided into

two parts
V.;=V. +V.p, (22)

where V.,'= CH, ',a.,t] and V.,&= CHr', a.;tj The s-wave
contribution to To; and So; then vanishes; that is,

from f to i. On the other hand, S~;(S~;*)is the amplitude
for creating (annihilating) two mesons in the states i
and f. Diagrams for the amplitudes T~; and S~; are
given in Fig. 1. Figure 2 shows the one-meson approxi-
mation to Eqs. (19) and (20).

In order to proceed further, it becomes necessary to
specify the interaction B'. We take

Qol v 'le-& &)(e-' '
I
v 'lyo&

E„+(og and s„= (4, I
v.,tip—,&= (P, l

V.;t1—4,&.

(23)

O'.
I
v ~t

I
+-'-'&(+-'-'

I
v 'l 0o&

E~ GOf
—Z6

It is convenient to use the following notation:

T-= (~-'-'
I
v 'I ~.&

= (~-'-'
I
CH', "tE

I ~.&,

s-= —(e-& &

I
v "lyo&=(e-'-'

I
CH', ~ 'jl&&i &

Thus

(17) Ts; represents the amplitude to emit (or absorb if
V.,t) a meson from a physical nucleon. Since the meson
is pseudoscalar it must be in a p state to conserve
parity. (A detailed proof of this is given in Appendix I.)
We thus obtain Ts, Ss;, and Eq——s. (19) and (20) thus
become

Tof Toi Toi Tof
Tr'= Vol C~ ~, v"'llew&+

Tf (AI C~r', v 'PI@&

Tnf Tni S„,*S.g
I+ . (19)

E~ M&' —ze E„+M—y

S~,*S~f+
n&1 Ez cv&' ze En+GJ f

Toi Toi Tof
s~'= (Al E~ ~, v—"hl&o&+

(24a)

If H' is just the p-wave interaction o' V ~ p(x), the
inhomogeneous term vanishes, S;=T;, and Eq. (19)
reduces to that considered by C-L. However, for the
general case T„iand S„iare distinct, and it is necessary
to develop an equation for Sf;. This is done in the very
same way as the development of the Tf; equation,
giving

s .= -
(&&i'.

I C', v"*S
I

&&t'.&

[
Tnf Sni Tax Snf

I (2O)
+

{0)

{bj

T„;*S„f+
E„&vy se E +&uy— —(24b)

FIG. 2. Diagrams of the one-meson approximations to the Ty;
Fquations (19) and (20) for Tg; and Sg; have the and Sr;equations. The

first

picture (withnoblob) represent the

following simple interpretation. T; scatters a meson T„f*T„;and S;*Sf in the one-meson approximation to Tf;, and
from the state i to the state f, while Tr;* scatters one T„r*p„;and 7' ~~8,r in the one-meson approximation to Sr;.
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We shall show that the first term on the right of
(24a) is the renormalized s-wave scattering in first
Born approximation. The second term is identical to
the inhomogeneous term of the C-L equation and is
just the renormalized p-wave scattering in the first
Born approximation. "

We now make the one-meson approximation'4 to Eqs.
(24) by dropping all but the one-meson states (v=1).
This restriction gives two coupled integral equations
for T~; and SJ; and has the simplifying feature of com-
pletely separating s- and p-wave parts. Interference
eGects are present only in higher approximations in
which odd-parity states (relative to the physical
nucleon) can be constructed with an odd number of
s-wave and any number of p-wave mesons.

In terms of creation and absorption operators, the
s-wave interaction is (restoring the isotopic spin
indices)

v.„'=
I H, ',a.,t5

s(io) i (r.')
=drool„p {i4 +i4 t}

(co~„)&

These definitions are consistent with the fact that NO

and fo both transform in the same way under rotations
in (isotopic) spin space. With this notation, we find
that the inhomogeneous term of the T~; equation
becomes (omitting "bare" spinors No in the right side)

= (Q;b' ~(~') ~(~~)
- (oo'ioi)

"*

Xo X f (o~t) * (oo,) *)

,+-I
I

—I+I —
I I

. (29)
(co;~,)& 2E &~;) &~,) )

As previously noted, this is just the renormalized
first Born approximation. The inhomogeneous term in
the S~, equation is

= (Q-:b' o(~') o(~t)—
(~ ~t)'*

(~"i '
—

I

—
I +I —

I
~"s' (2~)

&co„) &oo„.)

we write

(Q:b'= os r'
(Qt) f' = ~f' srfr'— (26)

Repeated indices are to be summed. e p~ is the anti-
symmetric isotropic tensor equal to (+1, —1) for
(even, odd) permutations of it indices. Introducing the
projection operators for the isotopic spin —,

' and —', states,

Xo X ( (iot) ~ (co;) *)
,
—-I

I

—
I
—

I

—
I I (3o)

(oi;iot)' 2 E (oo,) Cion)

It is now useful to carry out a series of manipulations
with the aim of reducing the one-meson approximation
to (24) to convenient form for solving. First we split T
and S into their two isotopic spin parts:

and
~t'= (Q.bi+ (Q:b'

ooiaira= 2(Qt)fi (Qkq)fi ~

(27)

The renormalization of coupling constants is effected
in (24) with the definitions"

Tg;——P t (orat, oo;)(Q.b,o(oit)v(oo;),
(M jib) '

(31)

X( IrNoI Qo)=X (lfoI r Italo),
(28)

Xo(uo I No) =&oo(po
I
4'o) ' (&o=&o ).

"As in C-L, the renormalized p-wave coupling constant f is
defined by

P&fo lo'r lioo& =f&mo lo' r Iiiol,

where eo is the bare spinor corresponding to &0. Though formally
identical with the ratio given in C-L, our f/f' is different from
theirs because of the presence of s-wave mesons in $0.

'4 There is no quantitative criterion to justify the one-meson
approximation. It is hoped that the larger energy denominators
in matrix elements for low-energy processes involving more than
one "intermediate" meson make them unimportant. We have
just received a preprint of a paper by Dr. Earle Lomon (to be
published) which presents an exact scattering solution of Eq. (2)
with diferent ranges of coupling constants and energy cuto8's
than used here.

and

h
—

((os) =I t ((os,(o,) —s (cod,co,)5,
(32)

Here the summation index 0, takes on the values ~~

aild g.
We see in Eqs. (29) and (30) that t~ and s~ are non-

factorable functions of the energies coy and cv, , in
contrast to the p-wave case. In order to get around
this difhculty, we construct the combinations T„;+S„;
and T;—S„;,which depend on co; in a trivial manner.
Explicitly, introducing the functions

(iof) (oofloo )L~ (oof )+io(~'sf oo)5'
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and inserting (29), (30), and (31) into (24), it follows
that:

X Mf II KdM

I(a+(Mf) = I aMf ' 'v (K)
7I 27I ~ M

&=(M)+ (Mf/M)&'( M) 3*&-'(M)

GO G)f Z6

t. Kd(O a.(M)~b„(M)
ba((df) = CO+MfDa

7l ~ GO GO
—

COf
—Z C

ap(M)bp(M)*
+A p

—v'(K), (37b)

where the identity

hp'(M)*l:bp (M) —(Mf!M)hp'(M)1—A p

(d+Mf

Xo X 1
ha( (Mf) =—+—I aMf — Kd(dv (K)

7r 7r 2'

L.h=(M)+ (Mf/M) &-'(M)]*&=(M)
X

CO
—

Gay
—Z6

hp (M)*l:bp (M) —(Mf/M)bp'(M)1
A p-

1 q 1 1
I=—+

Mf (M Mf) Mf M Mf

(33) has been used.
Ill Eqs. (37) Cp C(I', and D are defined by

7(o

-(~-p+A -p) I khp I'v'(K)

f KdM

C,i' —=—I' ——
1 (b, —A )(I Ir

7l 7l QP

(3'8)

(39)

M+Mf

The indices for A p are such that the 6rst row and
first column refer to the —', state, while the second row
and second column refer to the + state. Correspondingly,
I'~= —1, and I';=~~. A p is the crossing matrix and
plays the same role as the analogous quantity in the
P-wave theory. It exhibits similar properties:

+4(&p *hp'+&p hp'*))" (K) (4O)

f KdM

, ((b-p A-p)—I lhp I' (b-p+—A-p)
X' ~ GO

X-,'(&p-*up+ —hp-hp+*) }v'(K). (41)

The first of Eqs. (37) represents our final result. It
gives a single integral equation for the quantity a (M),
which is related to the phase shift 5 by

ZPA PIp=

Pp A.p=1. so that

Im a (M) = —Kv'(K)
I
a (M) I

',

sinb ((o) exp' (M)$
Go M

Kv'(K)

(42)

and

b. (M) =-,'Lb.+(M) —7r.-(M)).
(35)

In terms of t and s,

tMf
(Mf) =-

I
—+1 l~-((of M )+ I

1 Is ((of,(o,) . (36)
2 (M; ) E(o, )

Thus a ((of) =t (Mf,Mf), which is precisely the quantity
of interest. In terms of a and b, Eqs. (24), or (33),
become

a ((df) =Cp+C(1 Mf
Ia.(M) I'

M 03—COf Z6

I ap(M) I',
+A p v'(K), (37a)

M+(Of

Our 6nal step is to construct linear combinations of
h+ and h, one of which reduces to the scattering am-

plitude on the energy shell and thereby obeys a uni-

tarity rela, tion.
Dehne

a.((o) = —,'Lh.+(M)+h.—((o)),

(43)

Equation (37a) is identical to the dispersion-theoretic
result of Goldberger, " obtained on more general
grounds. With our speci6c model of the s-wave inter-
actions, we have in addition the equation (37b) for b

and the relations (39)—(41), the solutions to which
relate the parameters Co and C~ to the coupling constants
Xo and X. Kith) 0 and) and the cut-o6 energy~, „fixed
by the scattering analysis, the interaction Hamiltonian
of the model may be applied to a discussion of other
low-energy processes, and thus its specific predictions
may be compared with experiment.

A solution of the nonlinear integral Eq. (37a) for a
gives the behavior of the scattering phase shifts in
terms of the three parameters Co, C~, and ~,„.The
first two terms of this equation describe the zero-total
energy limiting behavior of the phase shifts. This limit
differs from that in the p-wave theory in several
important respects. First of all, Eqs. (37) and (43)
show that

8 (K)/K—&Cp

"M. L. Goldberger (private communication) .
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Let us define p (s)=1/a (s). Then

Fia. 3. Diagrams contributing to the aero-energy limit of a (ca).

in the limit co—4. That the phase shift is independent
of isotopic spin at zero total energy is as required by
the result of Deser, Goldberger, and Thirring. '

However, in contrast with the C-L case, Eqs. (39)-
(41) show that this low-energy limit does not directly
measure the renormalized coupling constants. Because
of the pair nature of the interaction, the co ' singularity
as 'co—&0 which is responsible for this very powerful
result in C-L is not present here, and all orders in ) 0

and A. contribute to the zero-energy limit, as illustrated
ln Flg. 3.

Another important new feature of the low-energy
behavior of the solutions for the s-wave phase shifts is
apparent in the comparison of Eqs. (3') and (44).
Whereas the phase shifts are independent of isotopic
spin in the limit co=0, the experimental values for low
kinetic energy are of opposite sign for the —,

' and —,'
states, indicating either a zero or a discontinuity in
one of the phase shifts between co=0 and co= i.

As a first step in constructing a solution to (37a),
we very primitively approximate a by

a.(a)) =Cp+CII'.oI. (45)

This solution provides a satisfactory fit to the data at
low energies ( & 100 Mev, with the parameters)
Co——0.04 and C~=0.14. These were chosen to match
the experimental data at 60-Mev kinetic energy.

It should be noted that (45) is not the first Born
approximation. All orders of rescattering contribute to
the integrals which relate the renormalized coupling
constants Xp and X to Cp and Ci. Equation (45) is to be
used as a guide in constructing approximate solutions
to (37a) which satisfy more of the formal properties
required by this equation.

We now examine Eq. (37a) further with the methods
discussed in C-L. Consider a (pp) to be a function of the
complex variable s, with

a (Ip)= lim a„(s),
8~ca+$6

and list the properties of a (s) as given by its integral
equation:

I: (i) as s—4, a (s) is regular;
(ii) as s—+pe, a (s) diverges with s;

(iii) a (s) has branch lines from &1 to &~ on the
positive and negative real axis;

(iv) Reality: a (s*)=a (s)*;
(v) Unitarity: a (&o+ie) a( ioe)I—

= —2'(a. (pp) (';
(vi) Crossing: a (—s) =A sas(s).

"Deser, Goldberger, and Thirring, Phys. Rev. 94, 711 (1954).
The result is proved here for a covariant local pseudoscalar renor-
malized theory.

II: (i) as s—4, p, (s) is regular;
(ii) as s—+~, p (s)—4 like 1/s;

(iii) p (s) has branches from &1 to &po;

(iv) Reality: p. (s)*=p (s*);
(v) Unltai'ity: p (M+ is) —p (M —ie) = 2iK '

(vi) Crossing: Lp (—s)) '=A sLps(s)) '.

In addition, p (s) has a pole at every point in the
complex plane at which a (s) has a zero.

As C-L have shown, the function p (s) satisfying
the above properties may be written in the form

1
p(g(s) = JtKdMS (K)

( 1 1 p. (—oI) 'i
+ P A.p (+M.(s), (46)

E(d —s oI+s s PP(oI)

where the added meromorphic function M (s) repre-
sents the contribution to p (s) coming from zeros in
a (s)."The arbitrariness of this extra term results from
the fact that the conditions II are not sufFicient to
uniquely specify p (s). In order to determine M (s),
the zeros in a (s) implied by Eq. (42) must be known.

In the p-wave theory, the requirement was made that
the solution reduce to that obtained from perturbation
theory, in the limit f~0. This condition is replaced
here by the demand that the solution reduce to the one
obtained by applying perturbation theory to Co and C&,

namely Eq. (45). We thus require that

p-(s) ~
Cp+CII' s

as Cp, Ci—4. This means that a (z) vanishes at s=
—Cp/CII', so that 3E (s) cannot be dropped. In fact
it can be seen from (37a) that a (0) is independent of

n, and a (po) I' s, so that either a; or a; vanishes
somewhere between a=0 and s= ~, or else a resonance
appears.

The simplest choice which reduces to the perturbation
limit, then, is to assume that a (s) has only one zero
between s=0 and s= ; thus

M. (s) =A /(s —B.).
The constants 2 and 8 introduced here are not
entirely arbitrary, but must be chosen to be consistent
with conditions II. It should be noted, however, that
they contain the coupling constants, and therefore all
the information of the theory. Without M (s), Eq. (46)
is a self-contained equation for p (s) which does not
involve Xo and X.

"Castillejo, Dalitz, and Dyson, Phys. Rev. 101, 453 (1956).
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Equation (46) may be rewritten in the form
20'

A1
t

t'11
p. (s) = —+— xcoj

I +
s—8 s' ~ ioj—s oj+s)

1
I

«~ 4lpi —psI'

~" ~+s I4pi —psl'

«d~ 2Ipi-psI'
+—

~& ~+s I2p, +p, I''
Q=3o

(47)

(QO

goo

b (s) = —0.04+(&0.011' s),

and the coupling constants are

Xjj——0.4/p, X=0.4/y'.

(48)

"B.T. Feld, "Meson physics, " lecture notes, Massachusetts
Institute of Technology, 1955 (unpublished); H. A. Bethe and
F. de Hoffmann, 3fesoes and Fields (Row, Peterson and Com-
pany, Evanston, 1955), Vol. II, Sec. 33. Both these sources
contain comprehensive discussions of the low-energy s-phase shifts.

As a first approximation, we drop the last parts of
Eq. (47) and set A =A/I', 8 =8/I', in order to
satisfy conditions II (i)—(v). This corresponds to
putting the crossing terms equal to unity. Corrections
to this solution from the last parts of (47) are calculated
to be less than 10%%uz for oj&2 and are included in the
curves of Fig. 4. A reasonable fit to the data is achieved
with the parameter 2 =6.8, 8= —0.57, and ~,„=4.5.
As is evident in Fig. 4, the crude low-energy approxi-
mation, Eq. (45), is a fairly good representation of the
solution at low energies.

For larger oj(oj&2), the deviation of the crossing
term from unity begins to alter the pi (and a&) solution
considerably. As can be seen from (47), the corrections
are such as to decrease a~. We therefore expect the
exact solution to (47) to look very much like the one
drawn in Fig. 4 but with an effectively smaller cutoG
which will serve to prevent u~ from growing too large.
The parameters A and 8 for the curve in Fig. 4 were
chosen to Gt the scattering data for pions in the 40—60
Mev kinetic energy interval. This gives a threshold
value of (jest

—
jets) =0.19r) in agreement with the Panofsky

experiment. ' Because of a partial cancellation of
terms in the solution for u&, the high-energy (oj 4)
contributions in the integrals in Eq. (47) affect the
behavior of 5~ at the high-energy end of the curve in
Fig. 4. Therefore the large value of 5~ at g=1.5 reQects
the cutoG and the one-meson approximation as well as
the physics in the model being discussed. This is not
the case for 83.

By using Eq. (45) for a, approximate solutions to
the equations for 6, Xo, and P may be constructed. The
results are given here for a cutoB of or,„=4.5 and are
found to be very insensitive to this choice. To a good
approximation, fj (s) is a constant at low energies:

These values change by less than 10% when oj,
varies between 4 and 5 p, and are unaffected by the
weak s dependence in b .

III. PHOTOPRODUCTION

As in the case of pion scattering discussed above,
equations for pion photoproduction may be derived
in an analogous manner to that of C-L. We add to
the Hamiltonian (7) a term —fj.Ad'x, describing the
coupling of the entire pion-nucleon current j to the
electromagnetic field. The quantity of interest is the
transition amplitude, to first order in A, from a state
of a free photon of momentum k and polarization of e
together with a physical nucleon, to a one-meson 6nal
state. This transition amplitude is

BE~jp)= I', ~ ' — j A, d x p,),f.

where Aa ——(2k) &e exp(ik x). Using (12), we have

(49)

BR„(pj=(l4 a„—~j A,d'x j,)
m, (js) m„(N)*S„„

~ !E„ojr ze E„+oj&——(50)

The current j appearing in these equations may be
most conveniently defined as the coefficient of —A in
an expansion of the Hamiltonian density in powers of
the electromagnetic field. The vector potential A is
inserted into the original meson-nucleon Hamiltonian
(7) in a local theory with the prescription Kq. (6); this
automatically insures gauge invariance. In a nonlocal
theory, however, such as a finite cutoG gives us, this
replacement is not sufhcient. The nonlocal property of

-20'

FrG. 4. S-wave phase shifts By and B.*, as functions of meson
momentum g=x/jjc. The experimental points are taken from
Orear (reference 6). The dashed curve represents the approximate
solution, Eq. (45). The solid curve is the solution constructed
with Eq. (47).
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the coupling allows a meson to be created anywhere in
an extended region, and the above prescription does not
provide a current describing the transfer of charge from
the nucleon core at the center to the point of creation
of the meson. This prescription then gives gauge-
dependent results as expressed by the violation of the
continuity equation within the finite source.

If the static theory is viewed as the replacement of
the nucleon fields P(x) .P(x) in a local relativistic
theory by a source density s(x), then the transformation
properties of the nucleon at the point x under a gauge
transformation are lost. These transformation proper-
ties may be imitated by replacing P f by

( . 1+ t*
P(0) expl ie—

~( A ds
I

holds for any gauge-invariant, local, covariant, and
renormalizable pseudoscalar field theory. ~

We now prove the Kroll-Ruderman theorem, re-
writing Eq. (49) as

and studying its k, cv„—+0 limit.
Using the identity"

1

0
1

—i[(.yl )y x] t ) dXe'» *, (52)

t 1+5-p

&&@(0) expl ie A ds
I

E 2 &p

times s(x), instead of just s(x).' ' Equivalently, we may
replace P(x) P(x) by P(0) )5t (0)s(x) if we multiply
the meson fields [j()(x),p*(x), (pp(x)] by the factors
exp[(—1, +1,0)eJp*A ds].

With this modification, then, the Hamiltonian has
been made gauge-invariant. The presence of such line
integrals means an extra contribution to the current
beyond that appearing in a local theory. In the
coupling terms of (2), such factors would cancel out
except for the fact that a separable source is being used.

These extra currents represent exactly the propaga-
tion of charge from the origin to the point x at which
the coupling to the electromagnetic field occurs, the
charge traveling along the path along which the line
integral is evaluated. The line integral Jp*A ds is
independent of path only in the limit of zero photon
energy, where V&(A—+0; thus only in this limit is such
a method of constructing a gauge-invariant theory
unique.

The use of a gauge-invariant theory, with the con-
sequent introduction of such extra line currents, gives
us an equation of continuity V j+i[H,p]=0 (the
operators appear in the Schrodinger representation
throughout) holding everywhere, inside as well as
outside the source. Furthermore, since the extra currents
represent the instantaneous transfer of charge, their
presence does not affect the charge density. The quan-
tity p(x), therefore, is still given by e[(1+5-p)/2]()(x)
+ie(ir*(p*—irp5), aS in a lOCal theOry. (FOr further
discussion of this, see Appendix III.)

Once an equation of continuity is established every-
where, the Kroll-Ruderman theorem follows. It is
essential that this theorem hold, since we should like to
view the static cutoff theory as an approximation to
a complete local relativistic theory. The static theory
should therefore imitate such properties of a covariant
theory as are known, and the Kroll-Ruderman theorem

and the equation of continuity, we obtain, in the limit
k~0:

BR),(P)= 4' ( ' —
~

d'xj(x)
(2k) '

V ex die'"' d,). 1

J, J

d 'x[H, p(x)]e
(2k)'

x ~ dke'"' P )
Z f

~ d'xe x d)(e'"'* (53)
(2k)i & ~ p

X 0 Gy) H)p x

1—[H',~.']t . LH, p(x)]
H 07~ ZE

(dd', e,) d ). (55)+[H,p(x)]
H+(d„

Taking next the limit pd„~0 and using Hl fp) =0, there
results

5K), (p) = ~' d'xe x dXe'
(2k)' & p

&&8 o I [~.[Hp(x)7]+ [[H',~.],p(x)] I A) (55)

Z I

d'xc. x dhe'""'
(2k)'*~ "p

x(y, I [.„,[H.,p(.)77

+[H', [a.,p(x)7]16& (56)

The first term here is proportional to Ir, and vanishes
in the limit k—+0. The second term may easily be

' R. H. Capps, Phys. Rev. 99, 926 (1955).
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calculated directly, using should be approximately Qat up to fairly large momenta,
this term will also be small in the region of interest. We
therefore drop the gauge terms. It should be em-
phasized, therefore, that the importance of the gauge
terms lies in the fact that their presence is required for
an equation of continuity, and hence a Kroll-Ruderman
theorem.

We now specialize to the one-meson approximation.
As in the scattering problem, the equation then
separates into s- and p-wave parts, and the photo-
production amplitude may be written as the sum of an
s-wave and a p-wave contribution. C-L have discussed
the p-wave term, and treated the s-wave term in per-
turbation theory. Since only s-wave mesons will be of
interest here, T and 5 in Eq. (50) will be the quantities
determined from the s-wave scattering, and we may
pick out from the inhomogeneous term only those parts
contributing to s-wave photoproduction. These will all
be of the form 2r s multiplied by a function f(k2,P2).

The s-wave scattering amplitudes T and S are spin-
ay write

p(X) =e[(1+r 2)/2]8 (X)+ie[pr*(X) jp*(X)—2r (X) p2(X) $.
(57)

Only the second term here contributes to the com-
mutator [av,p(x)]. Since p is bilinear in the meson field,
the commutator is proportional to a„with an amplitude
+1, —1, or 0 for positive, negative and neutral mesons,
respectively. Then, from the identity

(if j ir p
(4o I

[&', .jlko) = —(4 )'I —
I ., (5g)

(tA) (2pj„)

where f is the renormalized p-wave coupling constant,
the Kroll-Ruderman theorem follows. We find, Anally,
by performing the integral over d'x and letting k—+0,

( 2ef'j e e (rvrp rpr„)
»m m, (p)=(4 )~I

I
tA ) (4kpj„)& ( 2

independent, and therefore we m

Let us next look at the photoproduction equation
obtained from the Hamiltonian [Eqs. (1), (2), (7), ~k(p) = (42r)'I
(8)j. The inhomogeneous term is easily calculated: jj. jjA ) (4kPjv)'

fs„— j A,d'x P,) where

&(p 22r3E (p,k)(plQ I3), (60)

2jr (p —k)s p
v(l p —k I)+

2
Mp

e pa p
p"(p)

( Xp K dpj
ya sv(p)l — v(K)v'(K)

I

32r2 ~ pp )

( X j Kpdpj ~1ye sv(P)l ~, j
v(K)v'(. ) I)6~' ~ (o

(ie ~ 1
+(4~)&I I tj,, pe e

L jA ) (4kpj„)&

(ief ) 1 (rvrp rpr„)—
=(4 )'I I I I

~ ev(lp —kl)
& t ) (4k~,)'& 2 )

F
M (p,k) = —f(kp, p2)—

1 t t (pj,pj,)M (pp, k)
Kd pjv2 (K)

GO
—

GO&
—Z6

Mjj(pj, k) *se (pp, pj,)
A jj . (61)

07+pjv

If the gauge terms are neglected, f(kp, p2) is just the
s-wave part of the e e and meson current contributions;
thus, with y—= (cd„2+k2)/2pk,

p ( y' —1 y+1y
f(k', p') =1——

I y —— log I; (62)
2k' 2 y —1)

at low energies (k=1),
( X f Kkd

xv(p) I ~, j v'(.).(.) I. (59)
E 3~2 ~ ~ )

p'
f(k2 p2)

3 Ep& '+k') (63)

The first two terms in (59) have been discussed by
C-L in connection with the p-wave theory; the remain-
ing terms come from the line integrals used in making
the theory gauge-invariant. They arise, respectively,
from the p-wave term, the Xpppp term, and the last two
from the X~ (q Xpp) term. Using the values of Xp and X

determined from the scattering theory, we see that the
last three gauge terms are quite small for any reasonable
choice of the cutofF. The contribution of the p-wave
gauge term is proportional to v'(p); since the cutoff

1
M (p, 1)= ——I' +—(—0.07I' +0.13), (64)

the first term in the right-hand side being the lowest
order result, The correction is very insensitive to the

Since the s-wave scattering is small, a perturbation
expansion of Eq. (61), using the values of t and s
determined from the scattering analysis, may be
expected to be valid. One iteration of Eq. (61) gives
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This is easily seen by comparing the equation for 3f &'&

with Eqs. (37) for a and b, Near threshold the con-
tribution of the interaction term dominates, the meson
current contribution vanishing with Ps in Eq. (63).
Thus if M &" can be neglected, we can calculate
M (p,k) directly in terms of a, b, and X. Doing this
gives results in reasonable agreement with the iteration
solution,

1.1
M &'&(p)= — I' . (66)

A more accurate solution for a introduces an n-inde-
pendent contribution which corresponds to x' photo-
production.

The experimental implications of the above photo-
production calculation are evident with Eq. (64) ex-
hibited in terms of pion charge states:

1
M y, , p (p, 1)=+ (1.07r, —1 07r+, 0.1.8). (67)

(24-)

First of all, there is a 15% increase in the charged-pion
photoproduction cross section at low energies as a
result of the s-wave rescattering. This means a 15%
reduction in the magnitude of the renormalized p-wave
coupling constant, f', which is assigned to fit the low-

energy photoproduction data. In C-L, the effective-
range approximation to the p-wave scattering gives"
f'=0.076, and the analysis of charged pion photo-
production" gives f'= 0.073&0.007. When s-wave scat-
tering is now included, this latter number drops 15%
to f'=0.064&0.006, and the agreement between the
scattering and photoproduction analyses is less striking.
However, we feel that it would be premature to interpret
these numbers as indicating a disagreement. In par-
ticular, the value for f' in the scattering analysis is
uncertain by 20% due to the extrapolation pro-
cedure. "It also remains for a criterion to be given for
the quantitative validity of the "one-meson approxi-
mation" which underlies this discussion.

The neutral-pion photoproduction predicted in Eq.

~ S. J. Lindenbaum and L. C. L. Yuan, Phys. Rev. 100, 306
(1955).A similar number is obtained by U. Haber-Scbaim (to be
published) from the dispersion relations of Goldberger at' al.

~' 6. Sernardini as quoted in reference 1.

effective cutoff and is calculated for the parameters in
the discussion of scattering. The validity of the iteration
procedure may be checked by the use of the following
theorem. We write M (p,k)=M &'&(p,k)+M &'&(p, k)
corresponding to the two inhomogeneous terms in Eqs.
(61), (63). The first arises from the interaction current
and the second from the meson current. The following
identity relates the first term with the scattering cal-
culation:

1 a ( ro„)+b.( cp)

M n&(pk)=M &'l(p)= —— . (65)

(67) arises from s-wave charge exchange scattering and
has a low-energy cross section of 3% of that for 7r+

production, or
2 s

(d .o),= (0.03)
i ii

—idQ.
&137) Ek, )

(68)

This contribution is evaluated to be 1pb (1pb=10 "
cm') for (E~)i,b ——150 Mev (5 Mev above threshold),
rising to 2pb for (E,)i,b ——160 Mev, and to 3pb for
(Er)i,b ——180 Mev. In their analysis of the threshold ~P

production experiments of Mills and Koester, "Bethe
and de Hoffmann" give 1&1pb as a rough estimate of
(o 0), near threshold. They arrive at this number by
extrapolating the cross sections to threshold with the
characteristic p-wave energy variation. In order to
compare Eq. (68) directly with ~P production data in
the energy range 160—180 Mev, it is necessary to know
the p-wave contribution as calculated in C-L; this is

2.5yb for (E~)i,b ——160 Mev and 10pb for (E~)i,b
=180 Mev. However, these numbers from C-L for the
p-wave contribution are obtained by using the full
static magnetic moments for the neutron and proton
and may be a significant overestimate. "

All that one can say at this time, then, is that Eq.
(68) is not inconsistent with experiment. It would be
of great value to measure accurately the excitation
function for the m' production cross section in the
energy range from threshold [(E„)i,b=145 Mev] up
to 180 Mev. Kith such information the s-wave con-
tribution can be determined independently of the
major uncertainties in the p-wave analysis. It is an
elusive feature of such s-wave, effects that they are
visible only at energies near enough to threshold so
that the generally stronger p-wave interactions are
suppressed by phase space. At such low energies the
cross sections are usually very small and accurate
quantitative data exceedingly hard to obtain.

IV. CONCLUSION

To summarize brieAy, a fixed-source description of
the s-wave pion-nucleon interaction has been con-
structed along similar lines to the Chew-Low' work.
With the bilinear s-wave interaction of Eq. (2), it
proved possible to reproduce the low-energy scattering
phase shifts bi and bp. This interaction, with the (renor-
malized) coupling parameters Xp and X determined in
the scattering analysis, was then applied to a discussion
of the photoproduction. First of all, a Kroll-Ruderman
theorem was established. The proof of this theorem
was based upon two facts, the pseudoscalar property
of the mesons and the possibility of introducing elec-.

tromagnetic interactions into a nonlocal Geld theory in
a gauge-invariant way. Secondly, it was shown that
the contributions to the photoproduction cross sections

"Reference 18, Sec. 36.
"See discussion on p. 1586 of reference 1 and reference there

to earlier results.
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at low energies due to s-wave rescattering are consistent
with experiment. However, more precise data very
near threshold are required before it is possible to say
whether these s-wave contributions aid or injure the
agreement.

In that we have constructed a fixed-source theory,
there are no nucleon recoil currents in the above con-
siderations. Hence the plus-to-minus ratio in the two
processes

y+P+rt-+ +,

y+std+ sr,

is predicted to be unity, in disagreement with experi-
ment. A study of the plus-to-minus ratio does not lie
within the scope of a no-recoil theory. "

By way of orientation, it is interesting to compare the
values of )ts and X given in Eqs. (48) with the unrenor-
malized perturbation relations, Eqs. (3), as derived
from the Hamiltonian of a relativistic &5 theory. The
definitions of the renormalized coupling constants in
Eq. (28) and footnote 13 di8er for the three constants
Xo, X, and f. In the absence of any relation between the
unrenormalized and renormalized constants, Xo, X, and

f cannot be compared with Xos, X', and fo in a consistent
way. Ignoring this fact, we have that Xo is smaller by
a factor 0.04 and A is smaller by a factor of 0.4
than 'the values in Eq. (3) for ) s' and )ts. It is thus seen
that the ratio )to/X must be about one-tenth the ratio
of Xso/V given in Eq. (3) in order to reproduce the
observed isotopic spin dependence of the s-wave phase
shifts.

Finally we note that the static theory developed in
this paper can, in principle at least, be confronted with
two additional cross sections involving low-energy
s-wave pions. These are the magnetic dipole photo-
production of two s-wave pions" and the inelastic
scattering of an incident p-wave into two s-wave pions. "
Comparison with measured cross sections for these
processes very near threshold will help define the
possible role of a pion-pion interaction. In particular,
if such an interaction exists and is characterized by a
short range, it will be most eGective in processes with
two s-wave pions.

APPENDIX I
We wish to prove that gal V„, 'Ifo&=0. To do this

we formalize the previous parity argument. Let I be

'4A study of the n+/v ratio and of the entire s-wave photo-
production problem based on relativistic dispersion relations has
been carried out by Chew, Goldberger, Low, and Nambu (to be
published); see also Proceedings of The Sixth Aststuo/ Rochester
High-Energy Conference (to be published). In this work rela-
tivistic features of the theory lead also to s-wave ~' production.

"This is to be contrasted with the predominantly electric
dipole photoproduction of one s- and one p-wave pion discussed
by R. Cutkosky and F.Zachariasen (Phys. Rev. 103, 1108 (1956)j.
In analogy with the magnetic and electric dipole cross sections for
the deuteron photodisintegration, the double s-wave production
will be significant at threshold.

the inversion operator for a pseudoscalar field:

where S is a scalar operator; that is, it is a function of
Ho, H, ' and H„' only, so that

Since

Therefore,

LI,S]=0.

I
I Ns& =

I No&,

I4,)=ISIN,)=SI~,)= IA

(I-3)

(&oI v, -'Ilo)=(AIIv, -'I'I&o&

=(0o
I
L& 'I~.

, -I'] IA&
= —(4oIL& ',o-., -]lifo)

But,
V„, '=V, ,

' (I-6)

as can be seen by referring to Eq. (25) for V„, '. Hence,
the required result follows.

APPENDIX II

We wish to verify the statement made in Sec. I
that both the Xo and the )t terms are necessary to fit (3').

Consider, the function

Then from (37a),

(II-1)

(II-2)

(II-3)

OPy I K&CO

a +(tot) =Co—— v'(tr)
GP GO/ Z6

X{I~.l'+4., lo, l ). (II-4)

Referring to (39), we note that if Xs——0 then Co&0.
This together with Eq. (II-4) show that a +(1)&0.

I=exp ——P(a„ 1+a „,„t)(a„, +8 „, ) I.
~,e

Then
II~=ItI= 1,

Ia„, It= —a „, ,

Ia„, tIt= —a „, t,

Iy(x)It = —y(—x);
Isr {x)It = —n. (—x),

I a, ',I]=l a„',1]=LII„I]=0.
The above conditions express the fact that we deal

with a pseudoscalar meson field. We now note that if
INs& represents a bare nucleon and Igo) a physical
nucleon, then
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However, from (II-3), (43), and (3') we note that

a +(1)= —-', {0.16—0.22) &0

is required by experiment. Hence we conclude that in
the one-meson approximation we must have both
Xo/0 and X&0.

APPENDIX III

A gauge transformation, A—&A+vx, in any field-
theoretic Hamiltonian H(A)= J'K(A)d x, is equiv-
alent" to the similarity transformation exp(iD)H(A)
Xexp( —iD), with D= J'p(x)x(x)d'x; p(x) is the
charge density operator.

Consider first an infinitesimal transformation ex. We
have

is the required charge density. For a nonlocal theory,
the only modification needed is to multiply each field p,
m* in H(A) by exp( ieJO*A ds) and each field p*, m.

by exp(ie JO*A.ds). The charge density (III-5) will
still be correct if the similarity transformation produces
the required gauge transformation on the line integrals.

Sy charge conservation, the fields q and x always
occur in combinations of the form v.+p, yy*, r q*, etc.
For any Hamiltonian H(A), then, which is a poly-
nomial in p and s we have, writing H= f(r~rp, .):
e "~H(A)e 'D

= f~ e'Dr~@exp( ie—A ds (e 'D, [. (III-6)(,. t'

J ) ' )
d' se(A+ v )=H(A) — d' v j, (III-1)j We wish to verify that this is

where by definition, j is the total current operator.
Furthermore,

e" H(A)e " =H(A)+iftD, H(A)], (III-2)

and hence

(
f~ r~pexp~ ie —A ds

) exp] ie —vx ds ),) E )' )

Now, using the charge density (III-5) in D,

f
d'xVx j=i td'x (x )xQ(x),H]. (III-3)

4 and

Integrating by parts, and observing that p is arbitrary,
we obtain

siD+(x)s ~D g ~ex(x) +(x)

iD7- e
—iD &iex ( 7.+ +

(111-7)

(III-8)

V j(x)+iLH,p(x)]=0. (III-4)

Thus, if the Hamiltonian is gauge-invariant, an equa-
tion of continuity holds everywhere.

It remains to determine the form of p(x) required
for static cut-o6 theories of the type considered here.
If a p(x) can be constructed for which the similarity
transformation

exp(iD)H(A) exp( —iD)

produces the required gauge transformation, then this

p(x) must satisfy the continuity equation with the total
current.

We first observe that for a local theory

p(x) =eD1+r3)/2]5(x)+ie(s*q* aery) (III-—5)

e' 7+ exp[ ie i A —ds ]ye "

= r~qr exp ie (—A+vx) ds . (III-9)

The charge density (III-5) therefore produces the
required gauge transformation in the Hamiltonian even
with the presence of the extra line integrals. It is
easily verified that the remaining combinations of ~,
q, and m also transform properly.

The local charge density, then, satisfies the equation
of continuity in a nonlocal theory. However, the current
density is modified by the added source terms.


