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%'e outline some general methods of attacking the p-p scattering problem in the Bev range. We find that
a fairly definitive phase shift analysis can be made if the orbital quantum number is limited to three and
if j independence is assumed. For the 1-Bev case, the inequality o(0') &~ (ko&/4s) (the minimum theorem)
plays an essential role and facilitates the calculation. The phase shifts are found to depend on a single 6nite
parameter. Detailed results are tabulated. The ray optical theory and the complex square-well potential
are investigated and shown to be generally inadequate to describe the calculated phase shifts. A square-well
potential with a central core suggests itself as a possible successful model.

INTRODUCTION
' PROTON —PROTON scattering has played a central

role in our knowledge of the nucleon-nucleon
interaction. The highly precise data available for this
process yield in turn our most accurate information of
the nuclear interaction. Until recently, before the
experiments of Smith, McReynolds, and Snow' on the
angular distribution and of Shapiro, I eavitt, and Chen
on the total cross section for the p-p scattering were
performed, our principal information for the p-p system
was for the 'So and 'Po states. At Bev energies, the
higher orbital states are expected to enter prominently.
In fact, although we shall restrict ourselves to states
up to F for reasons of simplicity, we have no a priori
justification for this assumption. The Pauli exclusion
principle acts to eliminate a large number of states and
brings our analysis within range of feasibility. The
additional complication with which we have to contend,
of the complex phase shifts now required to explain the
large absorption cross section observed, is compensated
by the knowledge we acquire of the distribution, excita-
tion, and production of mesons bound to the proton.
Even with the minimal condition that only the orbital
states, 'S, 'D, 'Eo, i, 2, and 'F2, 3, 4, shall enter our dis-
cussion, we immediately see that our problem is in
general excessively underdetermined. We have eight
independent states and, as each state requires two
parameters (the real and imaginary part of the phase
shift), there are sixteen theoretical parameters to
evaluate. However, as we shall explicitly show later,
there are only five independent experimental data for
the case under consideration. The main purpose of this
paper is to investigate reasonable ways of reducing the
sixteen theoretical quantities to about five. The most
drastic assumption is to take the various orbital states
to be linked together by the use of a specific model,
such as the refractive and absorptive homogeneous
sphere of interaction, or equivalently a square-well
complex potential. But these highly specialized models
yield only three theoretical parameters to account for
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the five experimental data and can be only accidentally
an adequate description. Ke can assume, however,
different shapes for the potential and in principle we
should be able to fit the data in this way. An inter-
esting possibility of this type is to take a square-well
potential with a central core: a four-parameter family.
A less restrictive supposition is to take the various
orbital states as independent, not connected through a
common potential. Then we get eight theoretical param-
eters, which become reduced to six, only one in excess,
for the 1-Bev data, because of a fortunate circumstance
related to what we shall call the minimum theorem.
Our most definite conclusions concern this case. We
shall also look into the modification of the above
situation when instead of 'I'0 ——'P~ ——'P2 we allow 'I'0
with I'j= 82=0 and no change in the other admitted
states, Other more involved j dependences, patterned
on spin-orbit or tensor coupling, are worthy of study
but will not be discussed in this paper.

I. Classical Black Sphere Diffraction

At 1 Bev, it was found3 that the expression given by
Fernbach, Serber, and Taylor4 for the elastic scattering
of neutrons by a black nucleus, when adapted to the
p-p case, gave unusually good agreement. We have

o (8) Jts(kR sino)/sin'8, (1a)
o. = 2srR' k= (3fEL,/2A') :(1b)-

where EI. is the laboratory energy of the incident
proton. The wave number k is calculated for one of the
protons relative to the center of mass. The formula for
k written in this way is valid for all energies. The total
cross section a~ was taken as 48 mb from the data of
Shapiro, Leavitt, and Chen. ' We get directly that
M 3.1. We have a single adjustable constant in this
theory. The fit, as measured by 61 —= (1/n) (P

~
Ao/o

~
') &

at the six experimental points, is 1.0%.
However, the small value of kR 3 throws doubt on

the validity of Eq. (1a) which follows from a partial
wave analysis if we assume that large t values contribute
the major part of the scattering. The low value of kR
suggests that no higher states than D should occur.

s R. Serber and W. Rarita, Phys. Rev. 99, 629(A) (1955).
4 Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).
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II. Special Models

We saw in the previous section that the angular dis-
tribution for 1 Bev was satisfied extremely well for the
classical black-sphere model. The next approximation
would be to use the ray optical model or W.K.B.
method as discussed by Fernbach, Serber, and Taylor, 4

or alternatively to use the complex square-well potential
to fit the p-p data. These direct attacks led to very poor
results. The nature of these difficulties did not become
clear until we made a phase shift analysis, as we shall

discuss below in Sec. VI.

III. The Minimum Theorem

We proceed with a partial wave analysis. An im-

portant result, from both the experimental and theo-
retical aspects, is an inequality relating the forward
angle scattering o.(0') and the total cross section o i. For
p-p scattering, assuming no j dependence (or, in the
language of potentials, limiting ourselves to a central
potential), we can write

~(8)= I fi(8) I'+3
I fs(8) I', (2a)

= (2~/k) ImI f (o')+3f (0')1 (2b)

To get the total elastic cross section o.„wehave to
integrate o.(8) over the forward hemisphere or 2s.

steradians. For later reference, we include here the
explicit expressions for fi(8) and fs(8):

IV. Experimental Determination of the Total
Elastic Cross Section

Initially, we limit ourselves to states up to F; then

4k'o (8)=APe+BPs+CP4+DPs.

That no Legendre polynomial of odd order enters,
follows most readily from the indistinguishability of the
two interacting protons, which entails forward and
backward symmetry in the center-of-mass system. The
coefficients A, 8, C, and D are four parameters which
are determined by a least-squares fit of the experi-
mental data o (8). The measure of fit 61 defined in Sec.
I is 0.66%%uo. The total cross section o.i is the fifth experi-
mental datum. For 1 Bev, we find that the inequality
of Eq. (5) is not satisfied; i.e., o(0') is less than the
minimum required by 0-&. It was decided that the most
suitable solution of this dilemma would be to use o-~

to give an additional point in the forward direction for
o (8); i.e., we assume that o.(0') = (koi/4r)'. The least-
squares fit is done again for this new situation to rede-
termine the four parameters of Eq. (6). The (R value
with the imposition of the minimum theorem is now
1.63%%uo. From this analysis, the total elastic cross section
0, is 22.3 mb. Without the use of the minimum theorem,
the value of o-, is 19.8 mb and agrees with that given
by Smith, McReynolds, and Snow. ' But we feel that
our estimate is more reliable. Also, 0- =25.7 mb and
o,/a, = 1.15.

fr(8)=2&i and fs(8)=2&„
L=O

(3a) V. Phase-Shift Analysis

where —(2t+1) (1—e"")
P i (cos8) .

2ik
(3b)

as we expect.
Returning to the proof of the minimum theorem, we

have
o (0') ) I

Imfi(0')]'+3LImfs(0') j'. (4)

The minimum of the right-hand side of Eq. (4) under

the condition of Eq. (2b) is attained when Imfi(0')
=Imfs(0'). As a consequence, we get

o (0') &4LImf t (0')$'= (ko i/knr)'. (5)

This inequality, which we shall name the minimum

theorem, was obtained independently by Karplus and
Ruder man. '

' R. Karplus and M. Ruderman (private communication).

The summation for the singlet scattering phase ampli-
tude fi(8) is over even t and the triplet fs(8) is over
odd l values. It is instructive to consider the "black" S
state i.e. e"'&—+0. Then

o(8)=1/4k' and o,=2s'/4ks&

a'i= (2s'/k) (1/2k) =2rr/2ks,

o.,=op —o.,=2m/4ks=o
„

Below 400 Mev, the scattering and polarization
experiments of protons by protons' can be interpreted
in terms of the components of the triplet 'Po, ~, ~ having
diGerent phase shifts with the 'Po dominating the other
two 'P~, ~ states. The components of the triplet 'P~, 3, 4

are required to have small phase shifts. We shall see
that we can make a complete analysis of the 1-Bev data
by making the simple assumption that the triplet states
are independent of j and that no states higher than F
occur.

In Eq. (3b), let

(2t+1) (1—e"' )—=L,+&M,=g, .

In the Bev range, as we are dealing with large absorptive
processes, 8~ is complex and L~ and Mg can be treated
as independent quantities, which in turn determine the
real and imaginary parts a& and ~& or 8&. This method is
especially applicable in our case, but even for purely
elastic scattering some advantage is gained by pro-
ceeding in a similar way. The device' of L& and M& is
of course not limited to p-p scattering and has been
applied to s.-p scattering. '

From the experimental side, we have the five data

R. Thaler and J. Bengston, Phys. Rev. 94, 679 (1954).' W. Rarita, Phys. Rev. 100, 1241(A) (1955).' W. Rarita, Phys. Rev. 102, 486 (1956).
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TABLE I. Phase-shift analysis for 1 Bev.
3'= -Mp, M3= —Mg.

' TABLE II. Phase shifts for 1 Bev.

I Mol ap Kp aR '
Km al Kl al Kl

I Mol

0
0.5
1.0

Lo

0.3920
0.5073
0.9g24

4.211
4.095
3.620

Ll

3.053
3.030
2.935

1.550
1.573
1.66g

lMll

1.467
1.443
1.332

0.0 0 0.2488, 0 0.9229 0.8034 0.3573 —0.1315 0.10700.5 0.3964 0.1769 —0.2524 0.7881 0.7957 0.3660 -0.1299 0.11021.0 0.7766 0 —0.3136 0.5382 0.7609 0.4055 —0.1224 0.1210

g, 8, C, s,nd D of p. (8), and 0 i. The available theoretical
parameters (Li,Mi) are eight with our assumption of
no j dependence. Thus even with what look like highly
restrictive conditions of maximal value of l equal to
three and no j dependence, we still have an excess of
three free parameters. But the minimum theorem again
enters the picture. We saw in Sec. IV that the require-
ment o.(0') = (ka i/4r)' was the best way to resolve the
experimental situation, but we shall see that this con-
dition will impose two additional independent relations
on our parameters. In all there will be but a single free
parameter. In this way we will lnd no unique set of
phase shifts, but in fact continuous sets of permissible
solutions expressible in terms of a single parameter.

At the energies of our study we shall ignore Coulomb
eGects, or for suKciently small angles we assume that
correction has been made for the Coulomb interaction,
so that 8i or (Li,M&) can be considered as purely nuclear
in nature.

In terms of L~ and M~, we have

Q =—k'«/or = (Lo+Lp)+3 (Li+Lp). (8)

Ye LoLp+MoM p,
——

Yr=L,Lp+MiMp.

(11b)

(11c)

In order that 0(0') be fitted at the minimum, we
saw in Sec. III that Imfi(0') = Imfp(0'). Also a
glance at Eq. (9) shows that the terms involving Mi
must be set equal to zero for 8=0'. Summarizing the
equations for a minimum in the forward direction, we
have

Lp+Lp=Li+Lp= k'og/4',

Mo+M p=Mi+Mp=0.

(12a)

(12b)

Equation (8) is Eq. (2b) rewritten in our new notation.
Further, Eq. (2a) becomes

4k'o (8) = (LpP p+LpP p)'+ (MpPo+MpPp)'
+3(LIPi+L3P3)'+3(M1Pi+MpPp)'. (9)

Comparing Eq. (6) and Eq. (9), we get

A =Xo+o'Xi+Xi+ (3/7)Xp) (10a)

8=2 Ye+2Xi+ (18/7) Yr+ (2/7)Xp+ (4/7)Xpy (10b)

C= (24/7) Yr+ (18/35)Xp+ (54/77) Xp, (10c)

D= (100/77) Xp, (10d)

where
X,=Lp+M p; l=0, 1, 2, 3, (11a)

It appears that we have eight equations: four in Eqs.
(12) and four in Eqs. (10) to determine the eight
quantities L& and M&. But A, 8, C, and D are not
independent. They are restricted by A+8+C+D
=4(Lp+Lp)'.

The parameter MD occurs in our equations only in
the form Mp'. Thus we find it convenient to use

l Mpl
as our free parameter. Further, —1&MO&1. We have
made calculations at 1 Bev for three values of lMpl.
Our results are entered in Table I. We used A = 17.124;8=40.543; C= 21.150, and D=5.915.

For a given Mo, we observe that the Lg and M2 are
unique but that M& and M3 have some sign freedom.
However, M1 and M3 must have opposite signs from
Eq. (12b).

From Eq. (7) we can now calculate Bi or ni and iii.
The absorptive coe%cients ~~ will be unique but the
refractive coefficients o, ~ have various possibilities. We
give the simplest set of phase shifts in Table II for Mo
and M3 positive.

If we remove the restriction of no j dependence, we
have up to D states for o (8).

4k'~(0) = lQ,P,+Q,P, lp

+3( l Qoi I'+3
l Q» l'+5

l Qip l'}Pi'
—-'(4I Q» —Qpil'+9l Q i—Q» l'}P„

where Q;i= (1—e"&') and Qi ——(21+1)(1—e"'~) as in
Eq. (7). Also we have, defining I.;,+pM, ,=Q... that

Z —=k'0i/~= (Lo+Lp)+Loi+3L»+5Lpi,

4k'a(0') & (Io+Lp)'+ (Lpi+2Lpi)'
+ (9/2) (Lii+Lpi)' (15)

The minimum of the right-hand side of Eq. (15) with
the restriction of Eq. (14) requires

Lo+L2 Lpi+ 2L21—
p (Lii+ L21) p

Loi= p (3L»—Lpi).

(16)

We see that j independence or Lo&=L»=L» is a
special case that gives a minimum 0 (0') for the P-state
phase shifts.

Let us consider in detail the instance when 'Po&0
and 'P1='P2 ——0 and there is a single phase shift for
the 'Il states, or 'F2='P3='F4=—'F. We get

4k" (~) = lQ.P.+Q.P.I'+ lQ-P.+Q.P.
I

+ l Q» I'(1—Pi')+ 2
l Qp

I'Pp' (17)
and

k'0 g/or = (Lp+Lp)+Loi+3Lp.
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The minimum for p. (0') is obtained when
'

Ip+I s=Ipi+La= Ls, o«pi=0, (19)

and is the same as in Eq. (5). For 1 Bev, we find easily
that no solution at all then exists.

VI. Conclusions

A. Ray Oytical Mod.el

We are now in a position to understand the difFiculties
encountered with the ray optical model (Sec. II). The
principal results of this model are that

bp ap sp ((kR)' —(1/2)']l sp
(20a)

82 rr2 K2 L(kR) (5/2) g* $2

L(kR)' —(3/2)'$' si
—=—)1. (20b)

L(kZ) —(7/2) ]:
The phase shifts 8~ are proportional to their effective
path lengths sE through the refractive and absorptive
sphere of interaction. To test these requirements we
concentrate on the ~~, as the e~ are indeterminate and
can be adjusted by adding factors of x. We note that
the triplet states fulfill Eq. (20b) but that the singlet
states are in gross disagreement with Eq. (20a). Thus
this form of the optical theory of the interaction
between two protons is bound to fail. Using the triplet
absorptive coefficients, we get kR 3.6 to be compared
to 3.1 from Eq. (1b). At the beginning of this study, a
direct attack using the optical ray model led to very
poor agreement. Our phase-shift analysis enables us to
understand the failure.

B. Complex Square-Well Potential

Even if we assume that the singlet states '5 and 'D
are connected through a potential and that the triplet
states 'I' and 'P are connected by a diferent potential,
we conclude that in general no such potentials exist.
The singlet states have four phase quantities (xp Ko,

n2, ~2 to be determined by means of the potential which

has three adjustable parameters: one is R, its range of
interaction, and the other two are the real and imagi-
nary parts of the potential. Of course, we can take
general shapes for the potential and get the extra
freedom we need. In this conjunction, a square well
with a central core, suggested by the singlet data, is an
especially attractive possibility. Further, it has the
right number (four) of available parameters. The
square-well complex potential (S.W.C.P.) and the
homogeneous refractive and absorptive sphere of inter-
action (H.R.A.S.) both have three parameters but the
potential seems to have a greater diversity of solutions.
For instance, the ray model (H.R.A.S.) requires zs(lrp
but the potential (S.W.C.P.) can have ss)zp. In fact
we shall discuss in the next paragraph the condition
for a2—+~, for the potential case.

In our study of the complex square-well potential,
we investigated the conditions for which a given state
becomes opaque, or e""~0. In the notation adopted
by Kessler and Lederman, ' we find with x —=M for the
5, I', and D states that

S:sp ——1+ix,

P:s,= 2—x'/(1+ ix),

(21a)

(21b)
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D:ss ——3+x'(1+ix)/(x' —3—3ix) . (21c)

The complex functions s are related to the wave function
inside the complex potential well.

The task of obtaining a complex square-well potential
to fit the given '5 and 'D phase shifts 80 and 8~ can be
easily formulated, but such a solution can exist only
by accident or in a best-fit sense.

In summary, we have outlined some general methods
of attacking the p-p scattering problem in the Bev
range and have given detailed calculations for 1 Bev.
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