
PH YSI CAL REVIEW VOL UM E 104, NUMBER 6 DECEMBER 15, 1956

Norsllalization of Bethe-Salpeter Wave Functions
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The scalar product between any two bound states is expressed covariantly in terms of the Bethe-Salpeter
component of the one, and the adjoint Bethe-Salpeter component of the other.

1. INTRODUCTION propagator G,

G(*,*.; y. ,y.)=(0ITO(")e(x )O(y.)O(y.) I0) (3)V ARIOUS authors' have suggested that the co-
variant integral equation which Bethe and Sal-

peter' introduced for the treatment of bound states
must be supplemented by a normalization condition
which, as for the nonrelativistic Schrodinger equation,
will serve to distinguish the physical solutions by their
normalizability. Moreover, a knowledge of normaliza-
tion integrals is always essential in finding the physical
probabilities predicted by the theory. Once the nor-
malization problem is solved, the construction of cor-
rectly normalized transition amplitudes and expectation
values is formally very simple, as has been shown by
Mandelstam. '

In the present work, a general covariant expression
for the scalar product of two bound states is derived by
studying the connection between the Bethe-Salpeter
wave functions and the appropriate propagation
function.

The containing interaction responsible for bound states
is taken properly into account by noting that the exact
G obeys an integral equation of the form, 4

G(xl xs yl ys) Gp(xl x2 yl y2)

+ Gp(xl x2 yl y2 )&'yl'd'y2 If (yl y2 xl x2 )J
Xd xl rf x2 G(xl x2 yl y2) ~ (4)

We may abbreviate (4) as follows:

G= Gp+GpIM.

We also have

G=G0+GIMp. (4b)

In practice suitable approximations must be made for
Qo and E; and then the same approximations should
presumably be understood to hold throughout the
following, irrespective of where Go and E appear.

It was recognized by Nishijima' that the rich content
of the covariant theory of propagators can only be
uncovered with the help of another kind of wave func-
tion, which we shall call an asssp/itmde and denote by
the letter f State vecto.rs are to be built up by applying
various operators to the true vacuum with the complex
amplitudes f as weighting factors. s This aspect of the
formalism can be greatly simplified by bringing in
integrations over large but finite time intervals w in
addition to the usual space integrations of the Tamm-
Danco6 theory. v 8 Thus we shall build up our two-
fermion bound state

~ a) by using the following time-

2. AMPLITUDES AND COMPONENTS

The method will be illustrated by a bound state of
two fermions. The extension to other bound systems is
quite trivial, apart from the necessity of generalizing
the de6nitions (1)—(3) in such a way that Eq. (4) and
Eqs. (11)—(15) are still applicable.

This section will be largely devoted to the establish-
ment of a formal framework within which the problem
can be held.

A two-fermion bound state ~a) is characterized in
a relativistic theory by a Bethe-Salpeter corlsPorsersi

y. (xl,x2),
(1)x (x,x ) =(0iTP(x,)1P(x ) ia).

The symbol (0~ stands here for the true vacuum state,
1P(x) is a renormalized Heisenberg operator, and T de-
notes the usual chronological ordering with Fermi sign.
The state may also be characterized by the adjoint
Bethe-Salpeter component X,(xl,x2),

4 As is shown in references 2 and 6.' K. Nishijima, Progr. Theoret. Phys. (Japan) 10, 549 (1953);
12, 279 {1954).' This seldom used distinction between the words "amplitude"
and "component" is suggested in lieu of Nishijima's terminology of
"contravariant components" and "covariant components" re-
spectively. In general, the amplitudes are closely related to the
familiar expansion of a state vector in terms of probability ampli-
tudes and basis vectors, while the components are related to the
scalar products between basis vectors and the state vector. In
relativistic formulations with interaction the basis vectors are

ot orthogonal, so that the distinction between amplitudes and
mponents is very necessary.
7Time averaging was introduced by R. Karplus and N. M.
roll, Phys. Rev. 77, 536 (1950), and was used in the treatment
bound states by Gell-Mann and Low.
2 M. Gell-Mann and P. E. Low, Phys. Rev. 84, 350 (1951).

Information on many of the properties of the two-
fermion system is contained within the appropriate

n
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The amplitude f, (y&,y2) must satisfy certain simple
conditions in order that (5) shall represent a bound
state. These conditions are connected with the transla-
tional invariance of the theory, and may therefore be
expressed succinctly in terms of center coordinates I"&

and relative coordinates yI'. For the present problem
we de6ne

I'"=( y~"+ y")/( +~) (6)

y Ijt —y &P—y 2Itt (7)

so that I'& carries all the translational dependence.
Here t)t) and n2 are real numbers such that nt+n2/0
Their choice is a matter of convenience. We require,
first and foremost, that f,(y~,y2) is a positive energy
solution of the following Klein-Gordon equation,

(8'/8F"BF„+M',')'f, (y„y,) =0,

where 3f, is the rest mass eigenvalue of the bound
state

l
(t). The time averaging in Eq. (5) will then auto-

matically ensure that only states with the correct rest
mass appear in (5), and that (5) is independent of the
time t about which the integrations are carried out.
It is of course necessary that v be su%ciently long to
reject to a high accuracy all contributions from neigh-
boring states. This is simply a manifestation of the
uncertainty relation between energy and time.

Another important requirement is set by the existence
of rotation, inversion, and other invariance groups.
These are liable to lead to degenerate mass levels in
which case the correct degenerate state must be picked
out by a suitable choice for the dependence of f, (y&,yt)
on the internal coordinates y. Accidental degeneracy
will entail similar conditions.

Apart from the aforementioned requirements, the
dependence of f,(y, ,y~) on y does not matter. The
precise form taken by the time averaging is also irrele-
vant, provided the time used is suKciently long. Thus
it will be seen that the amplitudes f are far too arbi-
trary to be taken as a suitable basis for the final for-
mulas of the theory. They must ultimately be elimi-
nated in favor of the components X. In the initial for-
mulation of the problem, however, the introduction of
amplitudes f is very desirable, since one cannot easily
discuss normalization integ rais without an explicit
representation of the state vectors concerned. The
present way of using the f is particularly well adapted
to their eventual elimination from the theory.

3. EXPRESSION OF SCALAR PRODUCTS AND
COMPONENTS IN TERMS OF AMPLITUDES

If we take the Hermitian conjugate of Eq. (5), the
chronological product changes into an antichrono-

averaged operators, with weighting amplitude f, (yt,y2),

p ta+Ta

d'yi&'y2(TP(yt)0(y2))f. (y~,y2) I0& (5)
27,~ t, —r,

++b 1 p ta+~a

&'xi&'x2 d yl~ y2fb(xl)xt)*
2rb~ tb rb —2Ta~ ta ~a

XP(1)I8(2)G(x1 x2 y1 y2)f (yl y2) ~ (11)

In a similar manner, we have

ta+&a

xa(xl, x2) = lim G(xl, x2,' y],y2)"2~.I t.—..
X(t'yA'y2f. (yi, y~), (12)

and
p tb+&b

xb(y&, y2) = lim I fb(x&,x2)"~"2~b" tb-~b

Xp(l)p(2)(t xl(t x2G(xl x2' y&,y&). (13)

The limits t,~ ~, tb ++~—are ta—ken so that Eqs.
(12) and (13) will be valid for (bl/ values of x,, x2, and
y&, y&, respectively. Otherwise they would be valid only
fOr X(', X2') ta+7 at and y(') y2 + tb

If we insert for G in Eq. (12) the right hand side of
Eq. (4a) and take note that G() has no asymptotic be-
havior characteristic of a rest mass M, we obtain

and similarly,
x.=&o&x,

x =x.&co

(14)

All four-fold integrations in Eqs. (14) and (15) extend
over the whole of space time.

The above proof of the Bethe-Salpeter equations
rests on essentially the same ideas as those used by
Gell-Mann and Low, ' although in appearance it is
rather diferent. It is to be noted that we are interested
only in the positive energy solutions of (14) and the
negative energy solutions of (15).

With these preliminaries settled, the nature of our
task becomes clear. We must use the information con-
tained in Eqs. (4), (12), (13), (14), and (15) to elimi-
nate fb* and f, from the normalization integral (11).

At this stage it must be admitted that it is rather

logical product. This rather awkward feature may be
overcome here by stipulating that f (y&,y&) shall be
zero for time-like relative coordinates.

f, (y&,y2) =0 when (yta —y2") (y&„—y») & 0. (9)

With this proviso (which in no way curtails the general
suitability of the formulation), conjugation of Eq. (5)
gives

1 ~
ta+ra

(~l = ~'y~d'y2f. (»,y2)*
2r, ~ &,—r~

XP(~)tt(2)(01'(y2)4(y~) (1o)

The scalar product (bl(t) is now easily expressed in
terms of G, fb*, and f,. Taking tb rb) —t +r„we have,
using Eqs. (3), (5), and (10),
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unsatisfactory that no explicit expression of the rela-
tionship between z& and z& has yet been discovered.
For practical applications, however, we may take note
that xb(x~,xo) is that solution of Eq. (15) which re-
duces, for spacelike x~—x2, to yo(xi, x2) Pp&P&o) T»s
prescription is expected to lead to a unique relation
between x and x, although we cannot be quite sure
until a more explicit treatment is available. This tem-
porary inadequacy of the formulation will not however
hamper our further investigation of (b

~
u); we shall just

take
~
b) to be characterized by g& rather than by z&.

Since (b~ a} is obviously zero for 3E&WM„we shall
in the following take 3f~=3II„=M say.

and with similar Fourier expansions for Go(x&,x&,' y&,y&)

and +(xl x2 y1 y2), Eq. (4) becomes

G(p, x,y) =Go(p, x,y)

Go(p, x,y')&4y'&(p, y', x')d G4x(p, x',y), (17)
~J

(17a)

which we write for short as

G(P) =Go(p)+Go(p)&(p)G(p)

We also have

G(P) =Go(p)+G(P%(p)Go(p) (17b)

The solutions of the Bethe-Salpeter equations (14)
and. (15) may be similarly analyzed. Thus if Pi' is any
positive-energy vector such that

then the functions I (P,x) exp( —ipX) and vs(p, y)
)&exp(iPY) will be, respectively, solutions of Eqs. (14)
and (15) provided that I and v satisfy the following

equations,

I (p,x) = Go(p, x,y)d'yJ;(P, y )~x' lx(P x) (19)

vs(p, y) =
~

vs(p, y')d'y'&(p, y', x)d'xGo(p x y) (2o)

' The recipe given by Mandelstam' is not sufhcient to determine

X from x uniquely.

4. ASYMPTOTIC BEHAVIOR OF THE PROPAGATOR

Referring to Eq. (8), we note that the time-averaging
over X and Y in the scalar product (11) will pick out
from 6 only those positive-energy Fourier components
in the very immediate neighborhood of the mass eigen-
value M. This suggests that we Fourier-analyze the
dependence of 6 on the center coordinates X and I'
and investigate this neighborhood closely. Thus, with

G(x&,xo,. y&,yo)

= (2~)
—')' d'pG(p, x,y) expL —ip(X—Y)$, (16)

We must now determine the behavior of G(p, x,y) in
the immediate neighborhood of points p= p. Since G
will have a pole for p =p, we shall carry out the analysis
in terms of a new function g(p, x,y) which is regular
across the pole,

g(p, x,y)= (P—' ~')G(p, x,y) (21)

Fvidently the normalization of states will be deter-
mined entirely by g(P,x,y).

Now for g(p, x,y) we have the equation

g(p) = (p' —~')Go(p)+Go(p)&(p)g(p).

(Here and in much of the following, the internal co-
ordinates, and the four-dimensional integrations con-
cerned with them, are suppressed for the sake of
brevity. To obtain the full formulas, the argumentsx, volume elements d'x, and integration signs
should be inserted. )

When p= p, Eq (22.) becomes homogeneous. Thus ifI (P,x), a= 1, 2, ~, e and vo(p, y), P= 1, 1 ~, e are
respectively complete sets of linearly independent solu-
tions of (19) and (20) (I denotes the degeneracy of the
the states of mass 3I and is usually determined from
consideration of the invariance groups), we shall have

(22)

g(p, *,y) =Z 2 .(P,*)l.&(p).-&(p,y),
a 1P

(23)

where the numbers X p(p) are not, for the moment
determined. We now try to solve Eq. (22) in the neigh-
borhood of the pole, i.e., for points p~= p&(1+o) with
~ small. Inserting the ansatz

g((p(1+o) x,y) =g gbg„(p, x)A s(P)vs(p, y)
+ oh(p, x,y)+O(,o),

and taking only the terms linear in e, we 6nd for
h(p, x,y) the following equation,

h(P) =23PGo(p)+Go(p)E(p)h(p)
+{Go'(P)E(P)+ Go(P)E'(P) }

XZ.Z -(P)~- (P) (P), (25)
h

Go'(P, x,y)

& '{Go(p(1+o),x y) —Go(p, x,y) },etc. (26)

Equation (25) is analogous to a nonhomogeneous linear
equation with zero determinant, and therefore serves to
give information not only on h(p) but also on the in-
homogeneous term $i.e., on the numbers ), s(p)$. In
fact, if we multiply on the left by J'v~(p, x')d'x'E
&& (P,x',x) and integrate over x, the terms involving b
cancel out altogether, by virtue of Eq. (20), and we are
left with

Z 2 L (P)N (P)+&(P)Go (P)&(p)} (P)j
&&X s(p) vp(p) = —2M'8„(P). (27)
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Equation (27) is simply an nXe matrix equation for
the eXe matrix X p(P), since the end factors 8(P) ap-
pear on both sides. [The necessary and sufficient con-
dition that Eq. (25) should have a solution h(P) is
evidently that (27) should be obeyed with y (and hence
also n and P) running over complete sets of solutions of
the homogeneous equations; i.e., the degeneracy must
be fully explored. ]

The asymptotic behavior of the propagator
X (x, X—Y, y) as X is made very much later than Y
depends only on the immediate neighborhood of the
singularities in its Fourier transform G(p,x,y), the
integrations over d'p canceling out elsewhere by inter-
ference. The singularities in G(p, x,y) must be circum-
navigated in Feynman's well-known manner. Thus,
when X is very far to the future of Y the part of
G(x, X—I', y) descriptive of the bound states is given

by the following expression [using Eqs. (16), (21), and

(23)3,
—2xi pd'P

G(x, X—I,y)-, ~ P P ~.(P,x)~.,
(2~)4~ 2P'

X(P)~p(P y)e '" " (28)

with the X p(P) completely determined by Eq. (27).

5. EXPRESSION OF SCALAR PRODUCTS IN
TERMS OF COMPONENTS

We Fourier-analyze x, (xi,x2) and xb(yi, y2) as follows:

and

5 (P)

Z
t+r

~p(P, y)e""f-(y,y )d'y d'y , (33)
27 ~ to, —r~

. tb+TQ

fb(xi, x2) p(iip(9ie ' ep(P, x)d'xid'x2
b

X~p.(P) (34)

In these formulas t and t& are once again arbitrary, as
in Eqs. (5) and (10).

We now proceed to evaluate the scalar product
(b~a), given by Eq. (11). Here again, the use of the
asymptotic propagator is justified since t& may be taken
into the far future, and t into the far past. In this way,
from Eqs. (11), (28), (33), and (34), we find

i ( O'P
5-(P)[~(P) '3- (P), (35)

p(2m)' , 2P'

where [li(P) '7 p is the eXib matrix reciprocal to
X p(P); that is, from Eq. (27),

pagator is to be justified by noting that the integra-
tions in Eqs. (12) and (13) are taken in the far past and
far future, respectively. In this way we obtain

u. (P) =P X.p(P)

[X(P) 'j p=-(23P) '8 (P)
X W'(P)+&(P)Gb'(P% (P) )~p(P) (36)

Inserting (36) into (35) and using (31) and (32), we
obtain the desired formula,

pd'P
x.(x„x,)= ' x.(P,x)e '~x, —

(2~)'" 2P'
(29)

( d'P
xb(yi, y~) = I' xb(»y) e"'

(2m)'" 2P'
(30)

(37)

In (37), integrations over the relative space time
coordinates, of which there will be two sets in the first
term and four in the second, is understood. The primes
on E and Qo denote a differentiation across the mass
hyperboloid, as specified by Eq. (26), and M is the rest
mass of the bound state.

The expression (37) is applicable to any kind of
bound state, since its derivation depends only on trans-
lational and Lorentz invariance.

x.(P,x) =—P.a.(P)N. (P,x), (31)

xb(P,y) —=2-5-(P)8-(P,y) (32)

The coe%cients a and b can be explicitly determined
in terms of the amplitudes f,(xi,x2) and fb(yi, y2)* by
inserting the bound state part of the asymptotic for-
mula for G [Eq. (28)] into Eqs. (12) and (13).The use
of the asymptotic formula instead of the exact pro-

—z d P
The scalar product will be best expressed in terms of (& I ~)= xp(P)

2Po
x,(P,x) and xb(P,y). These functions must be linear
combinations of the basic solutions I (P,x) and X j&'(P)+&(P)G,'(P)lt(P) }x.(P).
r)p(P, y), thus,


