
PH YSICAI R EVIEW VOI UME 104, NUMBER 6 DEC EM BER 15, 1956

Integral Equations for the Transition Matrices in the Static Meson Theory*
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The Chew-Low-Wick integral equation for the scattering matrix in the static meson theory has been
generalized so as to make it possible to treat the various pion processes in which arbitrary numbers of pions
are involved. Such a generalization is also necessitated if one wants to take into account the contribution
of two- or more-meson con6gurations in pion-nucleon scattering. The outgoing or incoming wave functions
corresponding to the many-meson initial states are defined in the same manner as by the above-mentioned
authors in the one-meson problem, and are shown to be identical with those introduced by Lippmann and
Schwinger. An approximate expression for the two-meson production matrix is obtained and some cor-
rection terms due to this production are derived for the Chew-Low one-meson equation.

I. INTRODUCTION
' 'HE success of the Chew-l. ow' theory for the

I'-wave pion-nucleon interaction in the one-
meson approximation' ' is well known in its application
to the scattering' and photoproduction' of pions. Kith
some accuracy the coupling constant4 was determined
and the value of the momentum cutoff was obtained so
that the theory and low-energy experiments are in
good agreement. In order that we can further verify
this agreement, the contribution to these phenomena of
the higher order configurations ought to be investi-
gated. It is the purpose of this paper to generalize the
integral equations for the transition matrices and, in so
doing, to obtain correction terms to the Chew-I ow
one-meson equation due to the two-meson configuration.

In Sec. 2 we obtain the outgoing and incoming wave
functions corresponding to the one-nucleon many-
meson initial states and show these to be identical with
those introduced by Lippmann and Schwinger. ' In
Sec. 3 the transition matrices for the many-meson
processes are obtained and the integral equations that
they satisfy are derived. In Sec. 4 the generalized
Tamm-Danco6 method is introduced which does not
violate the unitarity condition and the crossing theorem.
The integral equations are speci6ed in the two-meson
approximation, neglecting' all higher order contribu-
tions, and the reasonable expression for the two-meson
production matrix is obtained. Making use of this ex-

pression, the corrections to the Chew-Low one-meson
approximation are derived in Sec. 5. The numerical
evaluation of these corrections is left for a later paper.
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H@ &+&= (tot+res+ .+co )+ &+& (2 1)

where H is the total Hamiltonian for the pion-nucleon
system,

H =Hs+Hr dE, —

Ho=ga~~a*(k)a(k), Hr =XI [V~a(k)+ Vs'a*(k)],
(2.2)

(e ir)
Vs ——if "&

rsvp (k), —
(2(ds) '

defined as in reference 1,' and AE is the self-energy of
the nucleon. Ke assume that 0 „&+& will have the form

+„t+l=—a*(k,) a*(k„)+s+y.t+& (2.3)
(e!)i

where 0'0 represents the physical nucleon state. In-
serting Eq. (2.3) into Eq. (2.1) and noting that

we obtain

(H g& )~ i+)

H%"0=0, (2.4)

P Vh„a*(k,) &'& a"'(k„)4,, (2.5)
(rt!)i '=r

+n, =Q ooi)
i=1

where the symbol (') means that a*(k;) is omitted in
the product. It is natural, therefore, to define the

'The units A=c=y (pion mass) =1 are used throughout this
work.

2. OUTGOING AND INCOMING WAVE SOLUTIONS
FOR THE MANY-MESON STATES

I.et us assume that e pions with momenta and iso-
topic spins k1, k2, . , k„are incident on a fixed nucleon.
The stationary outgoing or incoming solutions 0 &+&(k&,

k„) (abbreviated as @„'+') corresponding to this
initial condition are expected to satisfy, in the static
model, the Schrodinger equation
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singularity in 0 „(+) as follows:

(+)—
II E.—~i 0 (n!)-:

n

XQ V),a*(k ) "' a*(k )4o, (2.6)
i=1

where e is a positive infinitesimal.
Next, we shall show that the solution (2.3) is identical

with that defined by M!(!lier~ and Lippmann-Schwinger. '
These authors defined 0 „(+) by

(6)—g(+)@ (2 &)

0(+) are conventional wave matrices and 4 „is given by

1
C =—a*(ki) a*(k„)40,

(pp!) l
(2.8)

0(+)C „= a*(ki) a*(k„)+0
(pt f)4

1 „( i)m ~0

(tt!)2 m=p m!
~ ~ ~ d]1 ~ ~ ~

J „
X[I'(H (t ) II (t )), a*(kl) a*(k )]+0. (2 10)

It is easily shown that
0

j dti' ' 'dtm

X [P{H)(t)) Hi(t )), a*(ki) a*(k„)]

( p)m ~0 t 0

=(—i) P ~ ' dt, dt dtI'f, H, (t,)
m=o

n

XHi(t )[P V);e "a*(k)) " a*(k )])
i=1

n

=(—i) ' dtU(0, t)P V),e

Xa*(k ) ~ (') ~ ~ a*(k ) U(t —pp) ). (2.11)
7 C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

23, No. 1 (1945).

where Co is the bare-nucleon state. The 0(+) are given

by the transformation matrix in the interaction repre-
sentation as follows:

0(+)=U(0, —~), O( '=U(0, ~),
iaU(t, t,)/at=H, (t) U(t, t,), U(t„t,) =1, (2.9)

(t) —eiHptH e iHpt—
=Z p[V.a(k) e--"'+V. a*(k)e-"'].

Making use of the well-known power series expansion
of the solution of Eq. (2.9) and noting +0——0'+ @0, we

have

We may write

and put
U(t, —~) =U(t,0)U(0, —~),

U(t 0) —eiHpte iHt—

U(0 t) —eiHte iHpt—

(2.12)

(2.13)

Substituting Eq. (2.11) into (2.10), noting Eq. (2.4) and

e
—tH 0 ta tt (k) eiH p t —ap: (k) e Mpp t—

we finally obtain

(2 14)

1
0(+)4„=—a*(ki) a*(k„)%'0—

(tt!)' H E„i0 (n—!)'—
XP V);a*(k&) " a*(k )4'0. (2.15)

The same is true for 0( )C „,except that —i e is replaced
by +ip. Thus it is shown that the outgoing solution
defined by Eqs. (2.3) and (2.6) is identical with that
defined by M!)!lier and Lippmann-Schwinger, ' from
which it follows that these solutions will form a com-
plete set if there are no bound states of the pion-nucleon
system.

3. TRANSITION MATRICES INVOLVING MANY
MESONS AND THE INTEGRAL EQUATIONS

FOR THESE MATRICES

Having shown that the 0 „(+) are actually the out-
going and incoming wave solutions, we can define as
the transition matrix T) i .k (li l ) [abbreviated
as T„(p)t)] for going from the initial state (ki,kp, ,k~)
to the final state (li, l&, ,l ), the quantity

1 n

=—(+ (—) g Vt a*(k)) (' a*(k )+) (31)
(pt I) I t=i

That this transition matrix is equal to the conventional
one on the energy shell is shown as follows.

The S matrix is defined by

(ttt~s~pp)= (c,n(—))n(+)c )

=(+ (—)+ (+))

( 1 1
(—) + (—)+

H E.+.t. —H E„i, — —

1 ~ y (3.2)
X Q V),a*(k,) (' a*(k„)%'0

()pl)k t=i

=t') „2priI)(E E„)T„—(m)—
This demonstration is in marked contrast with that given by

Wick' in the one-meson solution, where he considers the wave
packet as the incident meson wave. It seems much too compli-
cated, however, to generalize his way of approach to the many-
meson case.
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This shows that, for E =E,
T„(m)= (@„~—&,H,C „),

where the right-hand side is that de6ned by Lippmann
and Schwinger. ' From the relation (3.2), it follows that
the unitarity condition SS~=1 for the S matrix is
equivalent to the following statement:

matrices:

S.(m)
1 n

(e &-&, P Vi:;fa(k,) &'& a(k,)@,).
(~!)v

Substituting Eq. (2.3) for + & & into Eq. (3.5) and
making use of the relation

T.'( )—T-(~)=2 i Z.~(E.—E-)T-'(r)T-(r) (34) a(l,) a(l )+o

where E„=E =E,. Here the symbol t means the
Hermitean conjugate.

Ke are now in a position to set up the integral equa-
tions to connect various transition matrices. For this,
however, we have to introduce the following auxiliary

1 m

P V&; ta(li) . " a(l„)%'p, (3.6)H+E i=i

(which is easily verified by operating with H on the
left-hand side), we get

1 n

S„(m)= (4o, a(li) a(l„)Q V&;ta(ki) . &' a(k„)eo)
(m trll)k

1 1 n

V&, ta(i, ) ~'& . .a(l„) P V~;ta(k, ) &'& a(k.)@o
~(m!r7!)' ( H —E —ie s=&

T„t(r)S (r) T t(r)S„(r)
(3 7)

E,+E ~ E„E ip— —

Here, T„(m) and S (m) are taken to be operators in the spin and isotopic spin space of the nucleon.
In the same way, we obtain

1 n

T„(m)= —(+p, a(li) a(l„,)P V~;a*(ki) &'& a*(k„)ifo)
(m!e!)& s=l

1 m n

~
@p, Q Vi ta(li) ~'& .a(l ) Z V4ao(ki) . &'& .a*(kn)%'o

i(m!el)k E i i=- H E ip ~i——
S„t(r)S (r) T t(r)T„(r) 1

+ (Vp Q VIc~[a(li) a(l ), a*(ki) ~ &'& ~ ~ ~ a*(k„)]+p). (3.8)1',+E ~ E, E„ip (r—7!m!)l—

The last term of this equation can be reduced further and is a function of S„(r) (p (r&, p &m). For insta, nce,

1 n

(0'o, Q V&,[a(li) a(l ), a*(ki) &'. a*(k„)]%'p)
(mls!) 2

n 77 S. &t(r)S„,(r) 1 n

, Q Q fI(li, kp)g + —Q Qb(l„kp)
(mm)' p=i p=i ~ E„+E~, (m!ri!)-' p=i,=i

X (+o, p V&'~[a(4) " a(l,„),a*(ki) ~"' a*(k„)]go). (3.9)

Here the initial meson k, is omitted in S„ i (r), and the
final meson /~ in S i(r). The symbol (") in the last
term means that k; and k, are omitted in the product.
The complete reduction of this expression will be given
in Appendix A. The set of integral Eqs. (3.7) and
(3.8) are just enough to determine, in principle, the
various transition matrices. It should be noted that
Eq. (3.9) gives zero when the initial state is the one- Vat'= —VI„ (3.10)

meson state, or when any state of the 6nal mesons is
different from that of the initial ones. Thus the last
term in Eq. (3.8) gives no contribution to the cross
section; it will play, however, a predominant role in
some cases through virtual states, as is seen in the
following section.

Since
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it is obvious from the definition that

S,(r) = —T,(r). (3.11)

For the special case m, m=1, using the foregoing rela-
tion, the ordinary Chew-Low-Wick equation follows
from Eq. (3.'I) or (3.8). Note that

s„„(z)=s „(—s). (3.13)

On the other hand, the transition matrix T„(zzz) which
satisfies Eq. (3.8) automatically satisfies the unitarity
condition (3.4), since it is shown in Appendix A that
the last term of Eq. (3.8) turns out to be Hermitian on
the energy shell.

1 S„ it(r) Ti;(r)
T„(0)=S„t(0)=—P

'
. (3.12)

zz' ~& E,+E„
Here the initial meson k; is omitted in S„ i (r).

The physical meaning of S„(zzz) is not quite clear
from the definition (3.5), though its introduction seems
to be absolutely necessary for setting up the complete
integral equations to determine the transition matrices. '
There may be a close correspondence, however, be-
tween these quantities as indicated, for instance, by
Eqs. (3.11) and (3.12). If we define the analytic func-
tion s„(s) which is derived from Eq. (3.7) by replacing
E„+is with s, it satisfies the crossing theorem

T,(p) = [V„t,—V,7

T"()T.() T.t()T,()
(4.2)

+p —
GO&

—26 .r=1,2 E„+&g

[Ti,s, t (0),V„7
~i+~ z

S,t(r)SI i~, (r) Ttis, t(r) T„(r)-
+ , (4.3)~12 Er+N1+at2 Er 401 Ms ze

1
Tsiiz(k) =—[6(kik) Vsz+8 (ksk) Vii7+—[TI,iss(0), V~7

K2 GOIt,

Saisst(r)Ss(r) Tit(r)Tais, (r)

T„(kiks) =

coupling constant, which is believed much smaller
than the unrenormalized one, in the transition matrix.
In addition, the higher the energy of the incident meson
becomes, the more effective is the cut-off function acting
at each vertex of the incident or outgoing mesons.
Therefore, the generalized Tamm-Dancoff method
seems to be very powerful in the static meson theory.

Now, especially in the two-meson approximation, we
shall have seven coupled integral equations for Ts(0),
Ti(1), Ti(2), Ts(1), Ss(1), Ts(2), and S&(2) from Eqs.
(3.7) and (3.8). We shall write down among them the
following four for later discussion;

4. GENERALIZED TAMM-DANCOFF APPROXIMATION E.+ro~, Mli;
—

Z 6
(4 4)

In order to replace an in6nite set of the integral
Eqs. (3.7) and (3.8) by a finite set, it seems natural to
introduce the following approximation methods, gen-
eralizing the conventional Tamm-Dancoff method.
That is, let us assume that

S (zzz) =0, T„(m)=0, for ztz) p, n) p, (4.1)

where p is a given positive integer. The Chew-Low
one-meson approximation is a special case for p=1,
so this approximation may be called the p-meson
approximation.

The generalized Tamm-Dancoff method has the fol-
lowing advantages over the conventional one:

(1) The renormalization has been automatically per-
formed in this scheme compared to the ordinary treat-
ment in the Pock space; the unrenormalized coupling
constant disappears completely in the result.

(2) The crossing theorem for S„(ztz) and the uni-
tarity condition for T (ztz) are always exactly satisfied,
as is easily seen from Eqs. (3.7) and (3.8) cut off at
r=p. In the conventional Tamm-Dancoff method the
unitarity condition is satisfied, but the crossing theorem
is usually violated even in the scattering process.

(3) The more the number of mesons involved in the
process, the higher are the powers of the renormalized

'Drell, Friedman, and Zachariasen (Phys. Rev. 104, 236
(1956)g have defined a quantity in connection with S-state pion-
nucleon scattering which is similar to S„(m).

1 )1 1
Tiiiz(0) =—

I
Vss'V sr+ —VI'i'Vi's I—

V2 Eco2 Cgi )
1 Test(r) Tii(r) Tait(r) Tsz(r)t+—p

VZ ~i s E~+(ds E~+~i
(4.5)

Here the renormalized coupling constant f is used in
the V's. We will make the following assumptions for
the sake of mathematical simplicity. First, we may
neglect the S terms in Eqs. (4.3) and (4.4) since the
S (zzz) is of at least (zz+zzz) order" in the renormalized
coupling constant and the energy denominator is very
large. This neglect does not violate the unitary condi-
tion, since the S terms in Eq. (3.8) have in general
nothing to do with this condition. However, the cross-
ing theorem no longer holds except for the scattering.
The number of the coupled integral equations is then
reduced from seven to five. Second, we will neglect the
T,(2) terms, because those terms in Eqs. (4.3) and
(4.4) are of at least fifth order in the coupling constant.
Then, the unitarity condition, in addition to the cross-
ing theorem, is violated in the sense that

Tz t(2) Ts(2') W+i2zrz3(E—z —Er) Ts. t(1)T,(1).
But the other unitarity conditions, Eq. (3.4) for zzz= 1
or m=1, are still valid. The number of equations is now

"This fact is very easy to show using Eqs. (3.5), (3.6), and
(2.&5).
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T„(kiks) = Tersest(0) Vv VvTs1"2t(0)
4ot+4os 4ot+4os

1 (V~stTv(ki) VittT„(ks) l+ I (4-7)
K2 4 cos

In spite of many assumptions made above, this expres-
sion has the following clear-cut physical meaning; for
instance, the first term corresponds to the process in
which the physical nucleon first absorbs the meson p
and emits two mesons k&, k2 successively, and in the
last term the nucleon scatters the incoming meson p
into k~ or k2 and then emits k2 or k~. The eGect of reso-
nance scattering in the (3.3) state will come into play
only in the last term of Eq. (4.7), but not apparently
in the first or second term. It is shown in Appendix
8 that the lowest order terms of Eq. (4.7) give the
Born approximation correctly with the unrenormalized
coupling constant f is& replaced by the renormalized f.

It should be noted here that Tt&a&(0) may be ex-
pressed in the following alternative forms according as
we make use of Eq. (3.6) or Eq. (2.15):

Tt its(0)

11t 1
=—

) %p, Vast
K2 ( H+Ms

(4.8a)

l1 ) 1
T~lt(ks) —I ~o, «"

v2 v2 & H —4os+ie )
+ (ki+~ks). (4.8b)

We prefer to take the first form and its expansion,
Eq. (4.5), because here the energy denominators be-
come larger and larger as we proceed to the higher con-
figurations, while in Eq. (4.8b) there appears a pole at
the energy equal to co& or co2 of the intermediate states
which seems to make the convergence of the expansion
a little worse. Neglecting the two-meson contribution
in Eq. (4.6), we obtain

11 1 Tsst(k) Tki(k)
Tates(0) =— VistVai+-

V2 C02 a 4o4+4os

+ (ki~~ks), (4.9)
which is to be used in Eq. (4.7).

reduced to four. Third, we will assume further that
Tktks(k) in Eq. (4.3) may be approximated by the first
term on the right hand side of Eq. (4.4) which is of the
lowest order. The unitarity condition and the crossing
theorem are now completely violated except for the
scattering matrix. For this we have

i,(s) = i,„(—z), I i„,(z) = —s, (s)],
(4.6)

T„t(q) T(p—)= 2viZ ~(4o. &.) —T, '(r) T.(r).
r=1,2

Then it follows that

S. CORRECTIONS TO THE CHE%-LOW
ONE-MESON APPROXIMATION

Following Chew and Low, 2 the scattering matrix
T,(p) can conveniently be expanded in the eigenstates
of angular momentum and isotopic spin as follows:

T.(p) = v(p—)v(C) —,»-(p, e)h-( .), (5.1)
(44o„to,)l =i

Imh (4o') Imhp(4o')
++A p

p 4o'+4o
(5.3)

where

Imh (4o)= o (4o),
12v kv'(k)

—8 16~
2 (f'}.=-I —

I
-1, (~.p)=- -2

3 &4~) 9
2.

7 4 , (5.4)

4

and o (4o) is the total cross section for the eigenstate (4r).
It is to be noted that Eq. (4.9), with the above ex-

pansion, may be written as follows:

4~v(kt)v(ks) s

Tktks(0) = Q P (ks, ki)R (4os,(ot), (5.5)
V2 (4v4kt4oks) ' &=i

where
3 (f'i 3 (f'iz.(~„~,)=—

I

4os (4v.) 4ot E4v)

lh-(~) I' Ihp(~) I'
+— ' d4ok'v(k) +Q A p

to+tos p 40+4ot
(5.6)

In the two-meson approximation, o. is separated
into two terms

o(a&) =o."&.((o)+&r "& (a&) (5.7)

Here o. &'& is the cross section for the scattering given by

o o&(ro) =12v.k4v4(k) Ih (&o) I', (5.8)

and o. ") is that for the two-meson production, and is
' The subscripts 11, 13, 31, 33 label the eigeIIstates of the total

angular momentum, 1, and the isotopic spin, I, by ij = (2J,2I}.~ H. Miyazawa, Phys. Rev. 101, 1564 (1956).

Pt(P@)=sr, r, (-rr p)(4r il)

P (pa) =~-(~ p)(~ q)

+srvrsI3(p ~)—2(~ p)(~ ~)] (5.2)

Ps(P, V) =9-—s""]I:3(Pti) —(~ P)(~ a)]
are related to the projection operators for the four
eigenstates of total angular momentum and isotopic
spin (that is, P,=P,i, P,=Pi,+Psi, Ps Pss).u ——It is
then easy to show" that

Xn 1
Reh. (4o) =—+— d4o'

M
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—11 —5 16
—5 —17 22
16 22 —38.

(5.11)

—1 2
Qs=8 2 —4

. —1 2

—1
2

1~

If we insert Eqs. (5.8) and (5.9) into Eq. (5.3), cor-
rection terms due to the two-meson configuration are
obtained. Making use of Salzman's solution for k ((o)
in the one-meson approximation to evaluate the two-
meson production cross section, we will be able to
obtain an improved value for k, ((o) from Eq. (5.3),
which may in turn be used as the trial function. Con-
vergence of this procedure in successive approximations
will give a test for the one-meson approximation and
make it possible to get an improved solution.

O. DISCUSSION

In Eqs. (3.7) and (3.8) we have obtained a set of
integral equations which can, in principle, determine
various transition matrices in the static meson theory.
As an application of this generalization to the Chew-
Low-Wick integral equation, we have found correction
terms to the Chew-Low one-meson equation due to
the two-meson con6guration. It will be of interest to
see in what way these correction terms, Eq. (5.9),
aRect the numerical solution of the one-meson approxi-
mation. In particular, it is hoped that these might
remove some of the peculiarities in the high-energy
behavior of k ((o) reported by Salzman. "

"G. Salzman, Proceedings of the Sixth Annual Rochester Con-
fererice ori High Eriergy Physics, 105(f (I-nterscience Publishers,
Inc. , New York, (to be published) j.

shown, after a lengthy calculation, to be given by

(f2 q
Gl—1

o ("((o)=18k%(k)
I

—
I

d(otktsks'v'
E4~& ~i

(5.9)
X (k,)u'(ks)i1. ((ot,~s),

((os=(o (or& (o + 2)&
where

i1~((oi,(os) = I ke((ot) I

+ Ik.(») I'+2A-t «(k-*(»)k (~s))

2 Re(k ((os)Rp((os, (o,))
+Z(&-tent A-p—A pi)

(ot+(os
(5.10)

2 Re(k ((oi)Rp((os, (oi)
+Q(()etAtp —Q A~,A, )A,p)

(et+(os

8R,RsQ, ~s

v, s 3'((et+(os)'
and

—13 —1 14
Qi= 8 —1 —25 26

14 26 —40,

APPENDIX A. HOMOGENEOUS TERMS IN
THE TRANSITION MATRICES

The complete reduction of the last term of Eq. (3.7)
is given as follows:

1 n

(+s, P Vh,
(rrs!rc!)'*

XL()'(4) ~(& ), ~*(kt) "' ~*(k.)j+o)

~—i ((s)s—s)!(r)—s)!) '
gl=1 (ir" is) (ii is)mtn t

s,t(r)s, (r)
for I&rrs, (A1)

r g++
= —g (same as above)

8=1

((is—i)s) l) i
s t(o)

r)s!ss! ]
for e)mrs. (A2)

'4 Such a calculation has independently been done by J. Franklin
[thesis, 1956, University of Illinois (unpublished) j. We are in-
debted to Professor G. F. Chew for bringing this work to our
attention before publication. However, this work seems to be
unsatisfactory in that the two-meson production matrix derived
there does not agree with the Born approximation in the weak-
coupling limit, and the last term of Eq. (4.7) expressing the reso-
nance effect is omitted.

As a further application which is still within the
limits of validity of the static theory, these general
equations can be applied to determine the transition
matrix for the inelastic scattering process in which an
extra pion is created. "

It should be noted, however, that some ambiguities

always occur in applying the approximation method
to the generalized Chew-Low-Kick equation, as was

already pointed out in Sec. 4. Chew has suggested to us
that such a difhculty may be due to the situation that
the transition matrices for ss)2 defined by Eq. (3.1)
always contain reducible processes corresponding to the
last term in Eq. (3.8). In order to overcome this diffi-

culty, it seems to be necessary to modify the present
definition of the transition matrix such that all re-

ducible processes are subtracted. To this end, the co-
variant generalization of the present formulation may
be helpful.
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Here i and j stand for momenta k, and l;, and the sum

over (ii, ,i,) and (ji, ,j,) runs over various s-

combinations, disregarding the difference of order, of

(ki, ,k„) and (li, ,l„), respectively. In S„,(r)
momenta (i i, ,i,) of the initial state, and in S „(r)
momenta (ji, ,j,) of the final state, are omitted. It
is evident from the above expression that the last term

of Eq. (3.7) is Hermitian on the energy shell, so it does

not contribute to the unitarity condition Eq. (3.4).
Each term of Eq. (A1) or (A2) corresponding to a

specified s combination expresses the reducible process
where the incident s mesons (ii, ,i,) go over, without

interacting with the nucleon, into the outgoing s mesons

(ji, ,j,), the rest of the mesons interacting with the

nucleon. It should be noted here that S„(m) is of at
least the (e+m)th order in the renormalized coupling

constant and does not contain any reducible processes.
When the initial state is that of the one-meson con-

figuration (e= 1), homogeneous terms do not appear at
all resulting in the absence of the term in Eq. (A1)
corresponding to the last term of Eq. (A2).

APPENDIX B. BORN APPROXIMATION FOR
THE TWO-MESON PRODUCTION

If we approximate Taii2t(0) and T„(k) in Eq. (4.7)

by their lowest order terms in the renormalized coupling

constant, i.e., by the first term in Eq. (4.9) and in Eq.

(4.2), respectively, we obtain, noting Eq. (3.10)

1 1
T„(kik2) = V„V—sit VI gt+ V—i 2t Vi it

&2(COi+Q)2) M2 GOy

1 1 1—Vait Va2t+ —Va2t Vait V„
%2((oi+a)2) (o2 GDy

(81)

+ {Vit V2t+ V2t Vit}V„
V2MiM2

1
{V tV„V t+ V tV„V t}.

v2MiG)2

The second and third terms can be combined to give

1 1 1—Vait Vamt+ —VI,t Vxit V„. (82)
V2(Mi+Q)g) cdi C02

On the energy shell (&o„=&u&+~2), the first term of Eq.
(81) and the expression (82) are identical with the
conventional Born approximation for the process in
which the two mesons are emitted successively, the
incoming meson being absorbed at the end or at the
beginning. In the last term of Eq. (81), the incoming
meson is absorbed between the two outgoing mesons.

This result seems to show that it may be dificult to
separate the first Born term from the expression for the
general transition matrix in such a way as is done in
pion-nucleon scattering or in photopion production.


