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Proton Structure and the Hyperfine Shift in Hydrogen*
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The effect of the electromagnetic structure of the proton upon the hyperfine splitting of s states in
hydrogen is determined without recourse to any specialized model for proton interactions. The principal
modification of the Fermi formula, derivable nonrelativistically, appears as a multiplicative correction
1 —.2oe (r). where oe is the Bohr radius and (r), is the first statistical moment of a distribution which
characterizes the proton structure. The absence of additional structure corrections of experimental
consequence is rigorously demonstrated. The method relies on a phenomenological representation of the
proton deduced from the invariance principles of quantum 6eld theory. The size of the proton is estimated
from the available bound state data and compared with the size prediction inferred from scattering
experiments.

1. INTRODUCTION

NUMBER of theoretical calculations' 4 of the
hydrogen hyperfine structure have been performed

in recent years. Common to all of these has been the
assumption of a simplified model for the proton; it is
treated as a Dirac particle bearing an anomalous point
magnetic moment. Nevertheless, the interactions, of
the proton with various quantum 6elds produce charge
and current densities distributed about a finite neighbor-

-hood of its position. The existence of such an electro-
magnetic structure accompanying the proton neces-
sitates a reexamination of the previous work.

'The importance of these "structure effects" has
been recognized earlier; however, a more exact knowl-
edge of meson-nucleon interactions than currently
available had seemed essential for their evaluation.
Thus, although the doublet separation of the hydrogen
ground state is presently numbered among the most
accurately known physical quantities, its signi6cance
for the determination of related physical constants and
for the interpretation of other phenomena has remained
uncertain. ' In the present work, we shall show how these
difhculties are resolved by the introduction of a suitable
phenomenological description of the proton, and how
the hyperfine measurement, in conjunction with an
independent measurement of the fine structure constant,
provides an estimate of the spatial extension of the
proton's electromagnetic structure.

The success of the phenomenological approach
rests on the feasibility of describing the structure of
the bound proton in terms of form factors which
characterize the electromagnetic properties of a free
particle. The relative errors thereby introduced are
no larger, we shall 6nd, than the ratio of the hydrogen

binding energy to the proton rest energy. Since this
magnitude is merely a few parts in 100 million, no
limitation is imposed, as yet, upon the interpretation
of experimental data. The relatively low velocity of
the hydrogen nucleus implies the additional simpli6ca-
tion that only the static parts of the form factors
observably affect the hyper6ne shift.

The principal correction to the hyperfine shift due
to proton structure is calculated nonrelativistically
in the next section. In Sec. 3, we derive the field-
theoretic relations which determine the energy level
shifts in the hydrogen atom and permit the introduction
of a phenomenological description of the proton. The
succeeding section is devoted to the elaboration of
the phenomenological method. The formalism is then
employed in a detailed analysis of the hyper6ne
separation in hydrogen s states and an estimate of the
electromagnetic size of the proton is obtained.

2. NONRELATIVISTIC FORMULATION

The hyperfine splitting of atomic energy levels is
caused by the magnetic interactions of orbital electrons
with the nucleus. We are concerned with the hyper6ne
separation of the s-state energy levels of hydrogen
associated with the two possible relative spin orienta-
tions of electron and proton. The leading structure
correction to this separation may be deduced from a
nonrelativistic calculation which represents the electro-
magnetic properties of the proton by rigid, spherically
symmetric distributions of charge and magnetization.
Placing the proton at the origin of coordinates, we
write these distrbitutions as esf, (r) and ttsrssf (r),
respectively, where e2 is the proton spin operator. '
The electric and magnetic form factors f,(r) and

f (r) are normalized to unity,
*Work supported by the National Science Foundation.
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~ N. M. Kroll and F. Pollock, Phys. Rev. 86, 876 (1952).
3 R. Arnowitt, phys. Rev. 92 1002 (1953)
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In the presence of a magnetic field H(r), an electron
bound to the proton's charge distribution suGers an
energy displacernent (hyperfine shift) DE,

Here, Gz, (r,s) and Gs(r, s) are the free-particle Green's
functions for the energies Ee=-', mi(n/e)' and E=Ec
of the appropriate bound states, and

»=~i 4*(r)(~i H(r))4 (r)« (2.2) Ve(s)= —n/s, V(s)= —n, f,(u)/is —uidu.

where p(r) is the Schrodinger wave function for an
electron moving in the field of the distribution epf, (r),
pi=ei/2rli denotes the electron magnetic moment,
and e~ is the electron spin. The bracket indicates a
spin expectation value to be evaluated in the appro-
priate atomic spin state. If H'(r —s) specifies the
magnetic 6eld at r due to a point magnetic dipole of
strength p2e2 at s, then

H'(r —s) = (pp/4s) V„X(V,Xap/ i
r—s

i ).
The field H (r) to be inserted into Eq. (2.2) is given by

As will shortly become clear, the evaluation of (2.3)
requires a knowledge of P(r) accurate only to first order
in n. For any realistic estimate of the size of the proton
charge distribution, a simple perturbation argument
demonstrates that (E Ee) is—much smaller than
n'Ee. Accordingly, Ge(r, s) may be equated to Ge, (r,s).
The subtraction of (2.6) from (2.5) then yields

P(r) =Pe(r) —2m,
~

Gs, (r,s)i V(s)p(s)

—Ve(s)4'c(s)3ds (2 7)

H(r) = "H'(r —s)f„(s)ds. Because the second term on the right of Eq. (2.7) is
explicitly an order in n higher than the first, the

The spherical symmetry of i&(r) i' for s states permits
Green's function for zero energy, Gp(rs) = (4~ir —si) ',

the replacement of H(r) in (2.2) by its spherical
average LH(r))A„. We 6nd

i H(r)jA (I 2/4~)( —&'+VV ) upf (s)/ir —sids

=(~ /4~) (—l&') f-(s)/lr —sids

f-(r).
Therefore,

- Av

@(r)=y, (r)+ y, (0)
2'

1 r 1 1)——
!f, (u)dsdu.

ir —si (is—ui s

Approximating Pe(r) by @e(0)(1—esinr) and noting
the identity

1 t 1 r 1 1)
!

—— ids=r —iu —ri,
2s& ir —si E. is —ui si

»= —p~~p(~i ~p& I y(r) I'f-(r)« (2 3)

If f,(r) and f„(r) are taken to be delta-functions
(point charge and point magnetic moment), p(r) we find, correct to first order in n,
becomes the Coulomb wave function pe(r) and (2.3)

rreduces to the familiar Fermi formula: f,(u) Iu —rldu i.

ye(0) =s—l(min/e)i,

where e is the total quantum number of the s state
and, in our choice of units, a=

i
eiep i/4|r.

The wave functions p(r) and ge(r) satisfy the
homogeneous integral equations

»=»p! 1—2rriin ~ f (u) iu —i'i f (r)dl' i. (2.8)
r

The last equation is simplified by the introduction
of a new electromagnetic distribution function f, (r),

(2.5) defined to be the convolution of the electric and
magnetic distributions:

p(r) = —2mi Ge(r, s) V(s)p(s)ds,

»p= —p~a p(~i ~p) I4e(0) I' (24)

The value of the Coulomb wave function at the origin To this order, the dependence of Pc(r), and hence of
is expressed by' g(r), on the total quantum number appears solely in

the factor Pe(0). We now obtain, by (2.3),

Pe(r) = —2mi~' Gs, (r,s) Ve(s)ge(s)ds. (2.6) f, (r) = f, (r—s)f„(s)ds. (2 9)

& We adopt the conventional system of units in vrhich A and c
have magnitude unity. The conditions (2.1) imply that f, (r) is likewise
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normalized to unity:

f,„(r)dr= f,(r —s)f„(s)dsdr= i.

Performing successively upon the integral in (2.8)
the transformations r—+r+u, u—+s—r, we learn that~

AE= AEp(1 2—pro((r), „), (2.10)
where

is the 6rst statistical moment of f, (r)
The structure term of (2.10) is seen to depend on

the ratio of (r), to the Bohr radius a()=(mrn) '.
Under the reasonable assumption that (r), lies between
the proton and meson Compton wavelengths, a
correction to AEO of several parts in 10' may result from
the consideration of proton structure nonrelativistically.
The fact that this is the sole structure correction of
experimental interest will emerge from the arguments
of the work to follow.

We observe that, according to (2.10), the ratio of
the doublet separations of two diferent s states is
independent of structure.

3. PERTURBATION THEORY FOR THE
HYDROGEN ATOM

An initial approximation to hydrogenic energy levels
is defined by the electrostatic interaction of electron
and proton. In this section, we develop a perturbation
procedure for obtaining corrections in these levels,
to fourth order in the electronic charge, ' which does
not presuppose any specific knowledge of the proton's
coupling to other fields. The electron, however, is
assumed to interact directly only with the electro-
magnetic field. Direct couplings of proton to electron,
as in the very weak Fermi interactions, are thereby
excluded. The theory employed makes use of the
Green's functions or propagators for the fields of
interest, and the operational calculus developed for
their study. "

In the presence of an external current source, the
electron propagator G& satisfies the equation

Lyt(pt —etA)+mr+Mt(A)JGt ——1. (3.1)

Here, Mt is the electron's mass operator (exclusive of
rest mass) and 2 represents the vacuum expectation
value of the electromagnetic field excited by the external
current. In terms of the photon propagator D, the mass

'A similar formula, not including the effect of the proton's
charge distribution, was derived by W. Moellering, Ph.D. thesis,
Indiana University, 1954 (unpublished).' The perturbation formalism adopted here is similar to that of
R. Karplus and A. Klein, Phys Rev. 87, 848 (1952) and Arnowitt,
reference 3.I J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951)
and unpublished lectures, Harvard, 1955.

L72 (ps e2~ )+r&) 2+M23G2

fats '+Ms'gGs= 1.

(3.2)

(3.3)

The behavior of the interacting electron-proton
system is prescribed by the two-body propagator G»
which obeys

(3.4)

in which F~ is the operator

+1 'y 1 (pl &1+)+ '&ll+ &~171D (8/(&~ ) ~

The alternative equation,

(Gs 'Gt '—I)Gts= 1, (3.5)

defines the interaction operator I.
A term Io may be separated from I and used to define

an approximate bound state eigenfunction. The
remainder. , (I—Is), is then treated as a perturbation
interaction. The static Coulomb potential is customarily
selected as the primary cause of binding. In the present
instance, a more natural choice for Io is the electrostatic
potential which takes into account the proton's finite
distribution of charge. The bound state wave function
is then determined from the wave equation

(Gs((&)—tGt(s) —t Is)&P= 0 (3.6)

where Gt(')= (ytpt+mt) ', Gs(')= (ysps+r&ss) ' are the
free-particle propagators. The corresponding propagator
G»&0) is defined by the inhomogeneous equation

(G (s)-&Gt(&)—t I )G ((0= 1 (3.7)

If all electromagnetic interactions but Is are placed
equal to zero, Gts reduces not to Gts('), but to Its which
is the solution of

LGs s —tGtg) —t I(&+MsGt(o) —r)Gts 1 (3 8)

By (3.5), together with (3.1), (3.3), and (3.8), we have

(Grs '—J)Grs ——1,
in which

J=I—Ip —~]62 —~2 Gy( )

If P is an eigenfunction of total energy delined by

its '$= (Cs 'Gt(') '—I(&))=0, (3.9)

then the displacement in energy due to J is expressed

operator is characterized by

MtGt ——ietytD(5/5&)Gr.

The methods of reference 10 may be utilized to show
that the proton propagator G2 obeys an equation
identical in form to (3.1). The precise nature of the
mass operator M2 for the proton depends upon the
unspecified fields to which the proton is coupled and
need not concern us. If 3II2 and G2 are the operators
to which M2 and G2 reduce in the absence of electro-
magnetic interactions, and Ms M's+M——s', we have the
further relations
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where

E=I Io+ (I Io)C—»(I Io)—. —

A further reduction is eGected by the substitution

G~2~Gx'0) G2. (3.12)

The neglect of binding in intermediate states, as
expressed by (3.12), is permissable in a hyperfine
calculation to this order. Its only consequence' is the
introduction of infrared divergences which are com-
pensated by divergences of opposite sign when the
approximation is applied consistently.

The remaining task of this section is the derivation of
an explicit expression for the transition operator E.
We note first the definitions of the electron and proton
vertex operators F~ and I'2..

I'1———(b/belA) Gl-', I'2 ———(b/be2A)G2 '.

Equation (3.4) implies that

G2 'SgGgGg 'G»=1

whence

G2
—

'L1+2elylG1D(8/BA))G1 'G» = 1.

Commuting G2
—' through 8/8A, we have

$1+ielylG1D(b/BA))G2 'Gl 'G12
—i' 1G1D (bG2

—'/bA) Gl
—'G12 ——1.

It follows that

G2
—'Gl—'G12j[I+ielylG1D(8/BA)) '

Xie1~2+1G1DI'2G1 G12 1. (3.13)

Resorting temporarily to coordinate indices and the

to fourth order in the charge, or equivalently, second
order in the fine structure constant, by the formula

dE= ( i/—T) g t J+JG12J ~tp) . (3.10)

The quantity J+J6»J is independent of the time
interval T over which the interactions are viewed so
that a factor of T emerges from the expectation value
to cancel the denominator. From the defining Eqs.
(3.6) and (3.9) for the wave functions, we infer that,
apart from a normalization constant,

g=f—G»"&Glw' '3/IgP.

The mass operator 3f2, properly renormalized, anni-
hilates free proton wave functions. The large mass of
the proton and its weak binding in the hydrogen atom
suggest that P describes a proton which is "nearly"
free. If we anticipate the future result that G»")G~") '
XM2$ is ignorable relative to f, then the latter function
can be used for P in (3.10) without change of normaliza-
tion. A similar consideration will later justify the
neglect of terms in (3.10) containing Ml and M2'.
The energy shift may then be written

external current source J, we observe that

D(12) D(34)
bA(2) bA(4) bJ(1) bJ(3)

The transition operator, to this order, becomes

E=Eg+E~+Eo,
'

E~= —ieger'gaj 2
—Io,

(3.17)

EJ1 —(ele2)'ylG1''lDL(8/&e2A——)l'2G2)DylG2 '

(8182) 'Y1DI 2G1 G2 YlDI 2) (3 18)

Ec=iel&2ylDI'2G1'"G2IO+$8182IOG1 G271DF2

+ IOG'"1GO.IO(3.19)

One understands that upon extraction of the variational
derivatives, the external current and A have fulfilled
their function and are set equal to zero. The presence

=D(34) D(12)
bJ(3) bJ(1) 8A(4) bA (2)

Thus if D(b/bA) is applied to (3.1), there results

~1+1DG1+FlD(bG1/bA) =0.

Hence,

+1DGl +1G1DI 1G1
=

{ I+ielylG1D(B/8A))DI'1G1.

Let X be any operator. Then

ylDGX= $1+ielylG1D(b/bA))DI'1G1X
181rlG1D(B/8A) {DI1G1}X

where the operators to the right of 8/8A which are
sot differentiated are enclosed by curly braces. Trans-
posing the second term on the right, we obtain

ylDG1(1+2el(8/8A) {DI'1G1})X
= $1+ielylG1D(8/BA))DI'1G1X. (3.14)

Applying [1+ielylG1D(8/8A)) ' to the right of the
members of Eq. (3.14) and setting

L1+ iel (8/8A) {DI'1G1 })X=I'2G2—'G12,

we infer that

[1+ ielylG1D (8/bA))-'ylDG11'2G1 —'G»

=DI'1G1L1+iel(h/8A) {Dl'1G1}) 'I'2G1 'G12. (3.15)

A comparison of (3.15) with (3.13) and (3.5) reveals
that

IG12———iele21'1DG1[1+iel(8/BA) {DI'1G1})'
Xl'2G1 'G» (3 16)

The expansion of (3.16) to order (ele2)2 yields, when
G» is replaced by G&&"G2 in the higher order term,

I= —2ele21'1DI'2 —(ele2)'ylG1&'~D

XL(b/b~2A)I 262)D71G2
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of Ez simply corrects for the inclusion of Io in the
interaction —ie~t, g ~BI'2 which stands in E~. The
latter operator has the combined form

with
Er&———(eies)'yiDGr&'&As'„

As ——L(5/~esA)1', G,) oG
—'+I',G I',

=Gs L5 Gs/5ssA5esA)A. OGs

(3.20)

I"or reasons already suggested and subject to future
verification, Gs&'& ' may be used in place of Cs '.
Then A.2 is given by

As=Go ' 'L&&'Gs/8esA8esA)g oGs " '. (3.21)

When. (3.17) is substituted into (3.11), a form for the
energy shift is displayed in which all the radiative
effects of proton propagation are implicitly contained
in F2 and A2. It is through these operators that the
interactions of the proton with one and two photons,
respectively, are described. The renormalization of E
is accomplished by the use of the renormalized expres-
sions for I'r and D, to appropriate order in (ei)', and
the phenomenological forms of the renormalized I'2
and A2 to be derived in the next section.

4. PROTON SCATTERING BY AN ELECTROMAGNETIC
FIELD

The relation of I'2 and A~ to the formalism for
scattering of a proton in an external electromagnetic
field provides a correlation of the structure e6ects within
the hydrogen atom to those observed in scattering
experiments. As a consequence of the free-particle
nature of the initial and final scattering states, the
separation of effects into those characteristic of a free
proton and those which reQect its behavior "off the
energy shell" aBords a special simpliGcation here.

The scattering amplitude for the transition of a
proton from a state of four-momentum p', spin u' to a
(different) state of four-momentum p", spin I" is
expressible as the spin matrix element (u"

~
S(p",p')

~

e')
of the spin and momentum dependent function S(p",p'),

S(p",p') = (p"
I

6&o - G(A)G&o-
I
p'). (4.1)

The identification of proton operators by the subscript
2 will be omitted, in this section only, for brevity. The
operators G&» '=yp+m in (4.1) annihilate the free
particle states to which they are adjacent unless
canceled by corresponding factors of (yp+m) ' in
G(A). It follows that only parts of G(A) possessing
singularities of this type contribute to free particle
matrix elements.

Ke investigate the scattering to second order in the
external Geld. Expanding the propagator,

G(A)=G&o&yA L5G/5A), = o+,' AAP oGW/5A), -„
we have

G&o&—iG(A) G&o&—i G&o&—i+eAI'+ r esAA&

It is convenient to introduce the momentum represen-
tations

A„(k)

=(2or) ' s " 'A (x')dx' (4.2)

p"—p —k)r„(p",p )

=(p"
[
—56-/5'„(k)

~
p'), „ (4.3)

S(p",p') =eA.(p" p')I'. -(p",p')+ '" A.-(k)

XA, (p"—p' —k)&.,(p",p', p"—p' —k)dk. (4.5)

The desired phenomenological forms for F and A.

follow immediately from a suitable representation of
the proton propagator. The constraints imposed by the
principles of Lorentz, gauge, and charge invariance
supply the key to the construction of G(A). When no
field is present, the inverse of the (renormalized)
propagator may be written

G—'(A=O) = yp+m+(yp+m)Rr(yp+m).
The symbol E& which appears in the renormalized

mass operator denotes a function of y and p whose
precise nature is unimportant. In order to exhibit a
formula for G(A), we first introduce an operator 6,
6= $y„p„+m ef'( ')y„—A„—

,'pgf" (—-')o„„F—„„)' (4.6)

which will prove to be the only part of G(A) that is
effective (to first order in A) in free particle scattering.
In this equation, f'( s) and f—"( ') are arbit—rary
functions of the D'Alembertian, and p~ is a constant of
dimensions (e/m) chosen so that f"(0)= 1. Gauge
invariance implies that f'(0) is likewise unity. The
Geld potential A is to be expressed in a Lorentz gauge.

We now assert that the inverse of the proton
propagator, correct to linear terms in the Geld, and
subject to the trio of invariance requirements, is given
by the expression

G '(A) =6 '+6 'R 6 '+6 'R (F)+R (F)6—' (4 7)

in which the unspecified operators R2 and R~, in addition
to their dependence on 7 and p, are linear in the
electromagnetic Geld strengths, vanishing when Ii=0.
A derivation of (4.6) and (4.7) is given in the appendix. "

An application of the functional derivative 8/5A„(k)
to the equation

Ag(x') = e'"'A&, (k)dk

~ Similar techniques have been used by A. Klein to derive the
low-energy theorems of field theory LPhys. Rev. 99, 998 (1955)g.

5(p" p' —k k—')A—„,(p",p', k,k')

= (p"
~

G&'&—'p'G/8sA„(k)bsA. (k'))G&'&—'
~
p')p=o. (4.4)

The amplitude S(p",p') then assumes the form
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shows that
SAN, (x')/8A„(k) =e"*'bi

f'(x) = (2x) ') e'"f' (k') &k

of the functions which appear in I'„(p",p'), we may
construct a modified Dirac equation for a quantum
mechanical particle in an electromagnetic held:

v.p,+~—sv, f'(* y)A. (y)d—r

,'t4~o.„„jf"(X —p-)F„,(X)dy P(X—)=0. (4.9)

We observe that the first order term of formula (4.5)
is precisely the Born approximation amplitude for
scattering by a particle whose wave function satisfies
(4.9). This remark identifies ti~ as the anomalous
magnetic moment of the proton and motivates the
interpretation of f'(x) and f"(x) as form factors for
charge and anomalous magnetization densities which
surround the proton. The form factor f'"(x) for the
total intensity of magnetization about the proton is a
weighted average of its intrinsic and anomalous
parts, i.e.,

(e/2m) f'(x)+t4g f"(x)
fIII (x)

(e/2m)+t4~

If we take seriously the view that these densities are

which implies the operator relations

hAi, /5A„(k) =bg„e"*

SF',„/8A„(k) = (8,„8i, 8—„y8„)e'"'=i (ki,5,„k—„8„i,)e'"'

We note that e'~ has the property

s'"
I P)= I P+k).

The momentum representative of the vertex operator
is now easily determined. We have, from (4.6),

8g '/BA„—(k) = P ef'(k—')y„it4 f—"(k')k „js'" .

Then (4.3) yields, if (p', I') and (p",u") refer to free
particle states,

r„(P",P') =f'(k )v„+i(„ /s)f" (k )
k= p"-p'. (4.8)

After the functional derivatives have been performed,
and the fields set equal to zero, the residual terms,
6 'EiG ', etc. of (4.7) are found to have factors of

(yp+m) either to the extreme right or left. It is then
clear that these terms cannot contribute to free particle
matrix elements of F.

Defining the transforms

due to the presence of virtual quanta which are
continually emitted and reabsorbed by the proton, a
physical interpretation may be given to the form factors
which treats their space and time dependence sym-
metrically. They are simply probability distributions
that describe, statistically, how far the individual
quanta travel and how long they live.

The amplitudes for purely elastic scattering (po'
=ps") are expressed in terms of form factors evaluated
at k0=0. With the use of these functions, a connection
is established between the static distributions defined
in Sec. 2 and their relativistic counterparts introduced
on invariance grounds in the present section:

f,(r)= ' f'(x)dt=(2~) ' "e'"'f'(k')dk,

f (r)= tf"'(x)dt

~s'"'$(s/2am) f'(ks)+t4g f"(k2)]dk

(2')'L (e/2m)+t4g j
The elementary relation between f'(k') and f'(k ),s

etc., demonstrates that at least in principle the relativ-
istic distributions are deducible from elastic scattering
experiments such as, for example, the scattering of
electrons by protons.

Processes in which the proton interacts repeatedly
with the electromagnetic held or, equivalently, processes
involving radiation and absorption of a number of
photons by the proton cannot be comprehended so
simply. In addition to the distribution functions
already considered, an array of parameters pertaining
to the polarization of the distributions by the electro-
magnetic field is required. If, however, our attention is
limited to small electromagnetic frequencies k, simplic-
ity is recovered. I'or if the relevant wave lengths of the
field are large enough to envelop the entire distributions,
only the total strengths of the latter are important.
Thus, it is well known" that the free proton matrix
element A„„(p",p', k, k') for photon-proton scattering
depends, to first order in k and k', only upon the
proton's charge and magnetic moment.

A more accurate determination of A. requires the
addition to 6 ' of invariant terms quadratic in the field
strengths. We shall see that for the hyperfine shift
calculation, only the matrix elements A.„,(0, 0, k, —k)
evaluated for vanishing initial and final proton momenta,
are necessary. Hence, those terms which contain the
momentum operator p may be discarded, although
derivatives of the Q.eld strengths can still occur. We
note, for later application, that as a consequence of
charge invariance the remaining quadratic terms must
have a spin factor either of unity, p5p&, or p5.

"F.E. Low, Phys. Rev. 96, 1428 (1954), M. Gell-Mann and
M. L. Goldberger, Phys. Rev. 96, 1455 (1954).
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with

h»=G'" 'P6'G/Bed„8eA„]~ 0G") '
=A „(~)+A „(0) (4.11)

A»(' =I'„G("I'„+I'„G(0)I'„,
h„.(P) = [82G '/bed„B-eA „]g p (4.12)

The low-frequency approximations to (4.8) and
(4.11),

r„(p",p )=~„+'(,./e)4. „„, (4.13)

(4.14)

serve to describe the electromagnetic interactions of a
point proton without finite structure. In particular,
(4.13) corresponds to the choice of delta functions
for the coordinate representations of the form factors.
It is the use of (4.13) and (4.14) rather than the more
general expressions (4.8) and (4.11) which distinguishes
earlier work from the present approach.

S. HYPERFINE SHIFT

The validity of the model which treats the proton as
a structureless point particle may now be critically
examined from the point of view developed in the
present paper. Errors of relative order n (2221/2222) will

be neglected. Because of the disparity in magnitude
of the proton and electron masses, the previous calcula-
tions fell naturally into two stages. In the first stage,
corrections to the Fermi formula (2.4) of relative
orders n and e' were computed in the adiabatic limit,
(r)21/2)22) —+0. In this limit, the proton appears as a
fixed source for the Coulomb and magnetic dipole
fields. Excepting only the contribution to the electron
magnetic moment, all such corrections are of order n'.
These include energy shifts due to the relativistic
behavior of the electron when close to the hydrogen
nucleus (Breit correction), the electron mass operator,
and the polarization of the electromagnetic fields.

In the second stage, a fully relativistic two-body
formalism was employed to obtain corrections of
relative order (2(r)22/rm2) 1n(r)2~/2)22) and n(222&/2)22). These

The addition of the quadratic terms to 6 ' will alter
somewhat the functional dependence of R2(F) and
Rp(F) without changing the canonical form (4.7).
If we set

D=—G 'R1G '+G 'R2(F)+Rp(F)G '

we have
G(A)=(G '—6) '

=G+GAG+GAGDG+ .. (4.10)

Only the first term of the expansion in (4.10) can
contribute to (4.4). In the remaining terms, factors of
6 ' from 6 cancel at least one factor of 6 standing to
the extreme right or left. Thus, the free-particle
propagators 6&'& ' are not oGset by corresponding
singularities from these terms. We may then write
A„„ in the form

are recoil eGects resulting from the exchange between
electron and proton of one or two photons. A logarithmic
divergence at high photon frequency (i.e., large proton
recoil) occurs in the term describing the interaction of
two photons with the proton's anomalous spin current;
it is rescued, however, by the imposition of a frequency
cutoff.

With regard to the additions to the electron mag-
netic moment, proton structure plays no role. The
0,' terms computed in the adiabatic limit result from
phenomena distributed over a region whose breadth
is of the order of an electron Compton wavelength.
Corrections to these eGects caused by proton structure
would then supply to the factor of 0.' already present,
an additional factor of the order of (2221/tn2). Con-
sequently such corrections may be disregarded.

Formula (3.11) suKces for a calculation of n correc-
tions to the hyperfine shift. In order to complete our
analysis, we must (1) justify the neglect of the mass
operator terms in the phenomenological expressions
for I'2 and A2, and the replacement of G2 by G2('), p
by f; (2) prove that in the adiabatic limit, the only
consequence of proton structure is recorded in the
correction term —2min(r), derived in Sec. 2, (3) show
that the recoil effects in single photon exchange are
unmodified by structure considerations, and (4)
investigate the applicability of (4.13) and (4.14) in
the two-photon terms. We shall, intermittently, quote
equations from Arnowitt's work without providing
complete proofs, but an eGort to maintain the continuity
of the argument will be made.

(1) After removal of the center-of-mass dependence,
the wave equation (3.6) becomes

(II1 pp mE/r02) (II2+pp™/rN1)$(p)

=py, ~I, (p,p')p(p')dp',

where Bi——ni p+p12)21, II2= —np. y+p22222, n; and p;
are the usual Dirac matrices, m the reduced mass, E
the bound state energy, p and p' are relative energy-
momenta, and Ip(p, p') is the lowest order static part
of the interaction —ie~e2F~DI'2'.

Ip(p p') = e'(22~)-'—pypk 'f'(k'), -
&= y —p',

The wave function )P(P) can be written

)p (p) = (Hi —p p
—mE/2222)

—'(II2+ pp —mE/mi) —'

&&(2 )~P~. "I.(P,P')~(y)dy

in terms of an "equal times" wave function p(p),

4 (y) = (22r) ~ 4'(P) ~Po
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An adequate approximation to p(y) is given by the function. Note that terms from (3.19) containing I'2

Schrodinger equation such as

(y' ~ " ff ('(y —y)'')
+m, +m, —E l@(y) = y(y')dy'.

&2m (2~)'" (y —y')'

In this approximation, the equal-times wave function
carries a four-component spin dependence in which
the small components vanish. The energy of the
eigenstate with total quantum number e is given with
sufhcient accuracy by

E=mi+m2 —-'n'm'/e'
whence

~(p)=
2m(2m) &

(y'+~'m'/n') 4 (y)
X (5 1)

(Hi p0 mE/m2) (H2+p0 mE/ml)

If the distinction between the electron mass and the
reduced mass is ignored, then g(y), apart from its spin
dependence, is simply the transform

(2~) '*~1 e 'i"P(r)dr

ieie2yi»2Gi&'iG+0

are no exception, for by (3.6) and (3.9),

Vl~.».G.&"G.l 14&= Vl~ ».IP&

= Q I ~ »
I
&&= 8 I ~ » G "'G '"Io

I |t &

Hence, the problem is reduced to that of showing that
[(y2p2+m2)/m2$$ is negligible compared to tp. A factor
of (1/m~) is inserted here for dimensional considerations.
Our argument is predicated on the assumption that
once the appropriate dimensional factor is introduced,
the remaining coefFicients are of order unity or smaller.
The choice of the proton mass rather than, say, the
meson mass is motivated in part by the analogy to
electrodynamics. Specifically, if the masses of the
quanta with which the proton interacts go to zero, one
still expects finite eGects from the mass operator. "And
if these masses exceed or are comparable to the proton
mass, the use of (1/m2) does not reduce the validity
of the approximation. In any event, the use of the
meson mass would not alter significantly the orders of
magnitude in question.

Upon substitution of (5.1) into (5.2) and integration
over po we find

of the wave function P(r) defined in Sec. 2.
If we define P(y, t) by

4(y, t) =—(ml+Ele(t)+a1 y) (E Ele(t)+H2)—

4mEi[(E —Eie(t))' —E2'j

4(yt)=(2 ) ' ~e '"V(p)dpo

the energy shift assumes the form

(5.2)
Xexp {—i[Eie (t) —mE/m2 1t}

(5$2 EuC(t) R2' y) (E+E26(t)+Hi)

4mE, [(E+E,.(t))'—EPj
AE= i(2n)—' P*.(y, t)Pit32e 'i'"

XK(p,p')e'i'"'p(y' t')dydy'dtdt' (5.3)

where K is the transition operator (3.17).
We are now in a position to discuss quantitatively

the approximations based on the assumption that the
proton is nearly free. The equations

G~'G ~'~—'M P—
and

G2 '=G2&oi '+2lf2

show that P an.d G2 differ from iP and G2&'i because of
the presence of M2 which can be written in the form

~2 (|'2p2+ m) +(r2p2+ m2) ~

Further, the parts of I'2 and A.2 which were dropped in
Sec. 4 had factors of (y2p2+m2) either on the extreme
right or left. It follows that all the simpli6cations in
point amount to the neglect, in (5.3), of terms whose
special characteristic is that at least one factor of
(pmpm+m2) stands immediately adjacent to a wave

where
X(y'+~'m'/n')e(y), (5.4)

E =y +m ~ E2 =y +m 6(t)=t/Itl.

Equation (5.4) is to be compared with the expression
for X(y,t),

X(y, t) =[(V p+m )/ 34(y, t)

(y'+~'m')4 (y)
'L1&Q 'idpo

4mm2m~ (Hi —po —mE/m~)

(4m2mE) —1(H +Eie(t))e—i[El~ (t)—mlJ&

x(y'+~'m'/n2)y(y). (s.s)

Because they contain factors of the Schrodinger function
p(y), both it and x are relatively small for momenta

. '3 The infrared divergence of the renormalized mass operator
in electrodynamics is logarithmic and cannot acct the dimensional
arguments.



H YPERF I NE SHIFT IN H 1779

which exceed an inverse Bohr radius. Thus, the in-
equality p2&(mn)' may be used in estimating their
respective magnitudes. Conhning our interest to the
leading terms of order (m&/m2) and dropping corrections
of relative order o.', we obtain

( a~'p'& t' &2'1&1
0'(y, t)~o(y, t) =

I
1+ 11 1 lit'(1&) (5 6)

E 2i&t,) & 2m, )
and correspondingly,

Hence, x is smaller than P by a factor of n'(m&/m2),
i.e., the ratio of hydrogen binding energy to proton
rest mass, and may be neglected in calculations to
this order. The neglect, in (3.10), of the term in J
containing M~ is based on a similar consideration.
The dimensional argument shows that L(y&P&+mq)/
m&]p is smaller than &p by a factor of m&n'/i&t&=n'

and a third factor of 0. is supplied by the electrodynamic
origin of M~.

(2) In order to rederive the result of Sec. 2 in the
adiabatic limit, we observe that (5.6) already displays
the adiabatic wave function to the required accuracy.
The essential point is that &Pa(p, t) is independent of
the relative time coordinate t. The portion of the
transition operator which contributes to lowest order
is given by

E&'& (p p') = ie'(2m) —'$»„y,„k-'f'(k')+p»tt2k —'f'(k')]
—(ti~/e2) e'(2m) ~y&„o2„„k„k 'f"(k'),

where, again, k= p —p'. The higher order terms contain,
in addition to the magnetic moment correction, recoil
effects which disappear in the adiabatic limit. The time
integrations in (5.3) introduce delta functions of pp
and po'. Subsequent integration over the latter variables
brings E&'&(p,p') into the effective form

ie'
E"'(p,p')- f'(k')

(2s.)' k'

f tj&A ) e 'Y ip&r2piki f"(k'), i=1,2,3 (5.7).
4e~ j (2s.)'

(3) The effect of proton structure on the recoil
corrections to single photon exchange is easily estimated.
The presence of the Schrodinger wave functions
permits a crude approximation to the integrand of
(5.3) for momenta p, y' larger than an inverse Bohr
radius. Further, the photon propagator insures that the
integrand is small unless k'=ko2 But the functions
f'(k') and f"(k~) have ranges of the order of magnitude
of an inverse proton Compton wavelength. They
will not vary appreciably over an interval which is
quite small compared to this characteristic size. Since
the terms in question are already of order a(te&/m2)
Xln(m&/m2) or smaller, we may reasonably put

f'(k') =f'(0)= »
f"(k') =f"(0)=1,

when k'& (nux)'. We conclude that the 6nite proton
size has no effect on these corrections.

(4). Finally, we must consider the energy shift
AE&" produced by that portion E&'&=Ez+Eo of the
transition operator which describes the double-photon
exchange processes. Since this interaction is explicitly
second order in n, the adiabatic approximation to P
suKces, and only the low-momentum parts of E&')

and $0 are important. Therefore

hZ&'& = 2mi "$—0*(p,t)PAE&'& (0,0)gp(p', t')dydp'

= —i(2s) 41@e(0)1'(E&'& (0,0).

The angular bracket enclosing K&') indicates, as before,
a spin expectation value. By (3.17), (3.20), and (4.11),
we have

E"&= (ie'y&„Dr 2„—Io)G&"&G2&'& (ie'7& Dry Io)
—~,„Dr,.G,&o&G,&o»,„Dr,„

—e»g„DG&"&»„DAg„„&'&. (5.9)

The last line of (5.9) contributes to E&'&(0,0) a term
proportional to

~q».D(q') G~"'(q)» D(q')~~. '" (0,0,q, —q)

y&„(mg+qo+eg q+P&m&)»&2„„'"(0,0,q,
—q)

dg
P(m&+qo)' —mP —q'$ (q' —q02)'

(5.10)which shows how the retardation effects disappear.
The application of (5.6) and (5.7) to (5.3) leads to

»yper~ne»i«»"'

AZ&'&= —23(eg/2m&)(e& e2)
'

y(y)

X((e~/2~2) f'(k')+t ~f"(k')3 (1 ')&1&d1&'

which, apart from the implicit use of the reduced mass
rather than the electron mass in &t (p), is recognized
as the representation in moment space of formula (2.3). t&&.„„&'&(0,0, q,

—q)

We wish to argue that (5.10) cannot produce a
hyperfine shift. To obtain an energy shift dependent on
electron spin, we may take from the numerator of
(5.10) either 7~„(w&+qo+P~m&)y~„with p, and & both
spatial indices or y»(&&.& q)y&„with one index spatial,

(5 g) the other temporal. The latter expression is an odd
function of q, while the former is even.

As we observed in the previous section,
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is derived from terms in the inverse proton propagator
whose spin dependence is either unity, ys, or yg~.
Only the last alternative, with X a spatial index, can
lead to a hyper6ne shift. When the relevant part of
A„„&~) has been computed by functional diGerentiation,
the spin vector will either appear contracted with q
or bear one of the free indices p, v. The remaining one
or two free indices will be carried by occurrences of q.
In either case, the dependence of the expression on the
vector g will be odd if LM and v are both spatial, and even
if only one is spatial. Thus, all spin-spin interactions in
(5.10) have an odd q dependence in the numerator.
Since the denominator is an even function of q, the
integral vanishes.

The double-photon terms in the 6rst two lines of
(5.9) were computed by both Arnowitt and Newcomb
using the low-frequency approximation (4.13) to the
proton vertex operator. The procedure is justified by
the presence of the propagation functions for the
photon and the electron in the relevant integrals.
The contributing frequencies are then quite small
compared to the ranges of the proton form factors.
The argument breaks down for the term in which
photons interact twice with the anomalous moment part
of F2, for the two additional factors of frequency lead to
a logarithmic divergence. However, the magnitude of
this already small term is satisfactorily estimated by
using a frequency cutoG. A precise determination, using
an assumed relativistic form factor, is possible, but
would noticeably increase the labor of computation.

0. ELECTROMAGNETIC SIZE OF THE PROTON

The doublet separation hvH of the hydrogen ground
state, including all calculated corrections, is expressed
in units of frequency by

&vn ——(16/3)n'cR„(ps/pr) (yr/pr&")'(1+mr/ms) '
XL1+-',n' —2as '(r),„+8+ (it)

where pr&'& represents the Bohr magneton, (1+mr/tnt)
is the reduced-mass correction to the square of the
Coulomb wave function at the origin, and 2o.' is the
Breit correction. The contributions 8, due to the
distributed character of electrodynamic eGects, and R,
due to proton recoil, are given by

recent DuMond review article, ' we obtain

—2ap '(r), —3.26X 10 ' ln(2k/ess)
= (3.8&20)X10 ' (6.1)

The uncertainty in (6.1) is based on the "limit of error"
quoted for the 6ne structure measurement'~ which
determines the value of n'cE„, rather than the less
conservative "standard error" used by DuMond and
Cohen. The stated error masks the inaccuracy in the
treatment of the cut-oG term and places an upper
bound" on the magnitude of (r),

(r),„(2.5 ()s/msc) =0.5X10-"cm. (6.2)

Comparison with the electron-proton scattering
results of Hofstadter and McAllister" is facilitated by
the observation that

,

r'f, „(r)dr= ~t f,(r)(r s)'f„—(s)drds

=~ r'f, (r)dr+~ r'f (r)dr,

i.e., the second moment (r'), with respect to f, (r)
is the sum of the second moments with respect to the
electric and magnetic distributions. Then the scattering
experiment yields for the rms electromagnetic size,

(rs), &= (1.0&0.3)X 10 's cm. (6.3)

Although 6rst moments are in general smaller than
rms sizes, there does not appear to be complete con-
sistency between (6.2) and (6.3). One must bear in
mind that electromagnetic corrections to AvH of
relative order o.'inn have not been computed, but
almost certainly are present. Their inclusion may
improve the agreement between proton size predictions
derived from the two diGerent methods. A theoretical
verification of the hyperfine shift must, in any case,
await the calculation of n' 1no. terms and an improved
experimental determination of n. A recalculation of the
cutoff term and the other recoil corrections to two
photon exchange, using form factors inferred, perhaps,
from electron-proton scattering, is also necessary if
accuracy to better than a few parts in a million is
desired.

These considerations do not weaken the principal
result of this paper. The eGect of proton structure upon
the hyper6ne shifts of s states in hydrogen is now
understood and evaluated.

—(9rrmr/4s-msps') (ps' —1)' ln (2k/ms),

where p2' is the total proton moment in nuclear magne-
tons, and k is the frequency cutoG.

Inserting the experimental values of AvH' and of the
ratio" (ps/pr), and all other constants from the most

"J.P. Witt)I and R. H. Die)re, Phys. Rev. 96, 530 (1954).
's Koenig, Prodell, and Kusch, Phvs. Rey. 88. 191 (1952).
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We;develop here the general expression for the
renormalized proton propagator, 'through terms linear
in the electromagnetic field, which proved useful in
the text. It represents the maximum amount of informa-
tion deducible solely''from the"requirements that the
propagator describe a Dirac particle and be invariant
under Lorentz transformations, gauge transformations,
and charge conjugation.

To satisfy Lorentz invariance, it is sufhcient to
construct terms of G(A) by multiplication and contrac-
tion of tensors of well-de6ned transformation properties,
namely, the tensor density e"»", the spin matrices y„,
o„„, ys, ps'», the momentum operator p„, and the
electromagnetic potential A„and its derivatives. Since
the enumerated spin matrices, together with the unit
matrix, span the spin space, only one of them need
appear in any given term. Consideration of the inhomo-
geneous Lorentz transformations, i.e., the space-time
translations, precludes the appearance of the coordinate
operator x„, save as an argument of the field.

The gauge requirement is obeyed by replacing p„
with p„eA„an—d restricting further field dependence
to terms containing the field strength P„„.

In connection with the third invariance requirement,
we recall that the charge conjugate of a product is the
transposed product of the conjugates of the factors,
and that p„, y», o„„, A„, and F„„reverse sign under
charge conjugation- while the remaining operators
listed above are invariant.

We begin by attempting to write G '(A) in the form

G '(A) =7 (p eA)+rN+—O(F)
+(~(p eA)+~—5R,(~(p .A)+~—)
+ (yp+rrl)R, (F)+R,(F)(yp+rrl), (A.1)

where E~, E2, and E3 are as described in the text. No
terms quadratic or higher in the 6eld are considered
here. We seek a canonical expression for O(F) such that
its member terms cannot be rearranged or reduced
to other terms in O(F) or to terms in the categories
specified in the last two lines of (A.1).

The only charge-invariant forms containing e~»" are
of the type

f1= """7.v.(P,F,.+F..p,). (A.2)

All others are quickly seen to vanish in virtue of the
anti-symmetry of e~»". Note that p& and e"»" must
appear together to maintain invariance under spatial

refiection. With the aid of the identities"

& "»"'AVx= s'Yq&»&+'y»B»& 7 B»»

i—o»„y. , 7»6„„+y,B,»,

(A.2) can be transformed into

0= i(y—p+ rN)oF ioF—(yp+rN)+2mioF+iy„B»F»„

which shows that in constructing O(F), no additional
generality results from the use of the tensor density.
The same remark immediately applies to p& and p&p„.
«' We may also dispense with explicit use of the
momentum operator. Thus, occurrences of p' and yp
are brought to the extreme right or left and transformed
into multiples of (yp+ris). A term containing pq( —iBq)

)&E„„is reduced to previous cases via the relation

P (iB~)F».= s f:l'F—"+s(P'F" F"P'—)
Also, in the charge-symmetrized expressions

& p.F" &F"p-
zBxoi&p»F»& zBKPx&F»Ãp»&

the factors of p are immediately removed in favor of
derivatives of the 6eld strengths.

Contexts for the spin matrices are further restricted
by the relations

~P~X+VXPPV 2 0 +PV~P yy

~ v~~~.=—&'vp~~.

The last equation presupposes a Lorentz gauge.
In view of all the foregoing, the operator 6 ' defined

by
6 '= y (P eA)+rN+—0(F)—

can be expressed in complete generality as

6 '=yp+ris —g'( —C]')y»A» —g"(—Cl')o»„F»„,

where g'( —Q ') and g"(—Es) are arbitrary functions of
the D'Alembertian. Equation (A.1) can then be
rewritten

G '(A) =6 '+6 'Ri6 '+6 'Rs(F)+Rs(F)6 '

correct to 6rst order in the field, by a suitable alteration
of Rs(F) and Rs(F).

The introduction of the normalized form factors
f'( U') and f"(——0'),

completes the derivation of (4.6) and (4.7).
~ Our spin matrices satisfy y»y&+y„y»= —28»& o»~)i(y»y„
7» r»)& 76=7172V374 ~


