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A new formalism is presented for the construction of the two-nucleon potential, whose salient characteristic
is that it involves an expansion only in the number of mesons exchanged, the self-mesonic 6eld of each
nucleon being treated, in principle, exactly. Access to the potential is achieved through the intermediary of
the scattering matrix. With the assumption that nonlinear meson propagation may be neglected, alternative
versions of this matrix are derived, only one of which is exploited in this paper. The connection between the
scattering matrix and the potential is discussed, and it is emphasized again that the transition between the
two requires a knowledge of non-energy-conserving matrix elements of the potential, which can be obtained
only if the underlying Schrodinger equation is known. The potential involving the exchange of at most two
I'-wave mesons is computed and shown to depend on the renormalized coupling constant, the single-nucleon
source function, and the total cross sections for pion-nucleon interaction. The numerical evaluation of these
formulas is not here attempted.

I. INTRODUCTION threshold for meson production; considering p as the
nucleon recoil momentum in an intermediate state we
obtain, from the uncertainty relation, the validity of the
local approximation to the nonlocal behavior for
nucleon-nucleon separations:

~ ~HE concept of a two-nucleon potential together
with the de6nition of its proper domain of

applicability has been clarified considerably in recent
years by quantum field theory. ' In describing the
interaction between two nucleons by a Schrodinger-like
equation, that term corresponding to the "potential"
has, in general, little structural resemblance to its classi-
cal counterpart. ' This "potential" or, more properly,
kernel is characteristically both nonlocal and energy-
dependent. Another feature common to all investiga-
tions has been the expansion of the interaction as a
sequence of terms, each term describing the exchange by
the nucleons of successively larger numbers of mesons.
Confronted with this unbounded quagmire, impene-
trable from a technical point of view, we are led to
formulate a very modest question: Can one 6nd a local,
energy-independent potential, which for energies below
a prescribed maximum energy, E,„, and for inter-
nucleon separations beyond a certain minimum dis-
tance, r;„, is an accurate representation of the full
kernels

As stated above, the question has an obviously
afhrmative answer. What leads us to anticipate these
twin limitations upon the full interaction function? Such
nonlocal and energy dependent deviations of the full
kernel from an energy-independent local interaction
should be nominal for nucleon relative kinetic energies,
p'/iM', not larger than tsc', the pion rest energy. Con-
sidering p as the relative momentum in an actual
collision provides the aforementioned energy criterion
which furthermore is the condition that we are below the

r&0.55&&10 "cm.
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'The pioneers of this effort were Taketani, Nakamura, and
Sasaki, Progr. Theoret. Phys. (Japan) 6, 581 (1951);M. M. Levy,
Phys. Rev. 88, 725 (1952).

s See, for instance, M. M. L6vy, Phys. Rev. 88, 72 (1952); A.
Klein, Phys. Rev. 90, 1101 (1953).

A second aspect of our answer concerns the possible
convergence of the series in the exchange of successively
larger numbers of virtual mesons. The qualitative dis-
cussion can be based upon range considerations which
inform us that the exchange of e mesons is associated
with a potential function V&'"& of extent 5/rtttc. This
argument alone guarantees that for a suKciently large
internucleon separation the potential will be dominated
by the second-order part of range, )t/ttc, for a somewhat
smaller distance by the second- plus fourth-order part,
and so on. The argument may be continued until one
reaches a separation within which the local approxima-
tion itself ceases to be valid. It is reasonable tt priori as
well as confirmed by detailed calculation' that'sixth and
higher order potentials first enter appreciably at dis-
tances of the order of 0.6)(10 "cm, i.e., that separation
at which the local approximation itself becomes ques-
tionable. Furthermore, the interaction arising from the
exchange of E mesons begins to be felt within this same
neighborhood. On these four grounds then, a separation
of the order of ~~(5/ttc) represents the critical distance
r;„ inside which one has no basis for extending the
concept of point interaction of pi-mesonic origin, and
outside which can reasonably expect the interaction to
be well approximated by the local potential arising from
the exchange of at most two mesons.

Before undertaking the description of the actual pro-
gram to be expounded in this and succeeding papers, it

e A. Klein, Phys. Rev. 91, 740 (1953); 92, 1017 (1953); K. A.
Brueckner and K. M. Watson, Phys. Rev. 92, 1023 (1953);E. M.
Henley and M. A. Ruderman, Phys. Rev. 92, 1036 (1953); S.
Machida and K. Scuba, Progr. Theoret. Phys. (Japan) 13, 389
(1955).
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may be well to consider what has been achieved by the
above considerations. For nucleon-nucleon interactions
below a few hundred Mev, (E, ~pc'), it is reasonable
to expect that the S wave alone will be strongly sensi-
tive to the form of the interaction in the inside region.
On the other hand, P and higher wave interactions
should be determined largely by the form of the inter-
action in the outside region. Accordingly, p-p scattering
at intermediate energies may well represent the most
sensitive test of this "long range" part of the potential.
However, the best method to adjust the phenomeno-
logical interaction in the inner and unknown domain,
and to join to the known potential outside is not the
proper task of this immediate paper. Such prescriptions,
as in the selection of appropriate core radii, are pre-
sumably to be read from the data itself.

Our immediate goal, then, is to compute the adiabatic
approximation to the nuclear potential through the
fourth order as accurately as possible, and ultimately to
compare the result with experiment. A question of basic
interest here is whether the nuclear forces can be
understood completely in terms of quantities supplied
by other experiments, such as meson-nucleon scattering,
or whether new parameters will enter essentially, for
instance, the meson-meson interaction. In the conserva-
tive approach taken in this paper, we shall make two
major assumptions: first, that we may neglect possible
nonlinear propagation of mesons, and secondly, that
the nuclear potential through fourth order is determined
largely by P-wave mesons. Of the two assumptions there
is some theoretical justification for neglecting S-wave
interactions. On the other hand, both restrictions will

be reexamined in subsequent publications. With these
assumptions, our major result is as follows: through the
fourth order the adiabatic potential can be expressed
completely in terms of the renormalized coupling con-
stant for P-wave mesons, the form factor or source
function for individual'nucleons, and the total cross
sections for pion-nucleon interactions.

Several points require special emphasis. One should
note that only with the neglect of meson-meson inter-
action can one properly speak of the exchange of a
distinct number of virtual mesonic quanta. The analysis
presented then clearly separates exchange mesons and
the quanta of the nucleon self-6elds; it is upon the
former alone that the expansion of the nucleon-nucleon
interaction given here depends. That part of the poten-
tial arising from the exchange of at most one mesonic
quantum is, except for small corrections, the second
order potential of the perturbation theory expressed in
terms of the renormalized P-wave coupling constant.
This result, including fully all self-interaction, will be
recognized as tantamount to a low-energy theorem. '

4 A. Klein, Phys. Rev. 95, 1061 (1954).
5 The theorem stated here has the same origin as the P-wave

theorem for meson-nucleon scattering discussed by A. Klein,
Phys. Rev. 99, 998 (1955) and by G. F. Chew and F. E. Low,
Phys. Rev. 101, 1570 (1956).

Further, those contributions to the potential from the
simultaneous existence in the 6eld of two virtual mesons
are correlated directly with the observed meson-nucleon
scattering. The method to be described has the virtue
that we can relate the oG-the-energy-shell meson-
nucleon scattering required directly and unambiguously
to the observable on-the-energy-shell scattering by the
same technique as has been recently employed for
meson-nucleon scattering, 6 and therefore can express our
results directly in terms of the total cross sections for
pion-nucleon interaction.

The fourth-order potential has been extensively
studied in recent years, '~ "including several attempts
to correctly evaluate the contribution of pion-nucleon
scattering. The most schematic of these attempts was
that of Sugawara et u/. who utilized the model of a
discrete isobar state for the nucleon of angular mo-
mentum and isotopic spin ~. Two principal eGorts have
been made to compute directly the eGect of the virtual
scattering. The considerations of Brueckner and Watson'
represent a qualitative attempt to compare the correc-
tions to the perturbation result and to justify the
neglect of the former compared to the latter. Our own
considerations are most closely akin to those of Henley
and Ruderman' although they will diGer both in the
choice of the perturbation result, as well as in the form
of the scattering corrections.

In common with the latter authors, we And it con-
venient to arrive at the potential through the inter-
mediary of scattering considerations. In Sec. II, the
scattering amplitude for two nucleons is obtained as a
power series in the number of mesons exchanged.
Alternative versions are exhibited, only one of which is
exploited in this paper. The definition of the potential
and of its adiabatic limit is dealt with in Sec. III.
Whereas the adiabatic limit of the second order and of
the nonperturbative corrections to the fourth-order
term are found to be unambiguously determined from
the scattering amplitude, this is not the case for the
perturbative part of the fourth-order potential. In the
recent literature, this same ambiguity manifests itself in
competing versions of the perturbation result: that of
Taketani et al. , and of other authors, ' '~ and the
alternative of Brueckner and Watson. ' The relationship
between the two forms has been previously analyzed by
Fukuda et al, ,' by one of the authors, "and others. The
analysis given here traces this ambiguity back to a
corresponding uncertainty in the relationship between
the on- and off-the-energy-shell scattering of tzvo

6 G. F. Chew and F. E. Low, reference 5.
r Taketani, Machida, and Onuma, Progr. Theoret. Phys. (Japan)

7, 45 (1952), l. Sato, Progr. Theoret. Phys. (Japan) 10,323 (1953);
J. lwadare, Progr. Theoret. Phys. (Japan) 14, 16 (1955); D.
Feldman, Phys. Rev. 98, 1456 (1955).

Matsumoto, Hamada, and Sugawara, Progr. Theoret. Phys.
(Japan) 10, 199 (1953).' Fukuda, Sawada, and Taketani, Progr. Theoret. Phys. (Japan)
12, 156 (1954).

'0 A. Klein, Phys. Rev. 94, 195 (1954).
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Nucleols, and in this form is well known. "We actually
require the nondiagonal matrix elements of the second-
order potential, and these can be stated only in con-
junction with the underlying Schrodinger equation.
With appropriate selection of these nondiagonal ele-
ments of V&2), the fourth-order perturbation result for
the potential agrees in essence with that suggested by
Srueckner and Watson.

The evaluation of this perturbation result is described
in Sec. IV, whereas the concluding section of the body of
the paper analyzes the nonperturbative corrections to
the fourth-order interaction and exhibits our principal
new results. Appendix A contains a derivation of the
formula fundamental to the separation of the potential
into its various orders.

II. TWO-NUCLEON SCATTERING MATRIX

We wish to demonstrate in this section that the
S matrix for nucleon-nucleon scattering can be formally
exhibited as a sum of contributions, each term, S&' &,

having its origin in the exchange of m-virtual mesons
between the two coupled nucleons. The prescription to
be given here avoids detailed consideration of radiative
corrections, vertex diagrams, and similar correlatives of
a microanaiysis of the emission and absorption mecha-
nism for those mesons ultimately exchanged between
the two nucleons.

The two-nucleon S matrix may be conveniently con-
structed with the aid of the familiar "in" and "out"
operator formalism of scattering theory. "If pi, )ti, pu, 4
are the initial momenta and spin states of nucleons one
and two, respectively, and pi', )11', pu', )tu' similar
quantities for the 6nal states, then we may write the
two-nucleon S matrix as

(Pi,ki, P2,4'i Si Pi,'Ai, P2,4)
= (+O,X(&i'Pi') '""X(&2'Pu') '""'

Xx() p)"'x().p)"'+ ) (I)

spinor. The parameter Zu will be identified later as the
nucleon field variable renormalization constant of Dyson.
Within this formalism then, we have

(Pi',»', Pu, &2 (&jPi,&i; Pu, )tu)

=inn(ou —+—~;or~+ ~)

X ~o ldo 1 ~o 2~02 (/~1 Pl (xi )Vo )

X(pl&2'Pu'( xu)70 )( )G12(xi sxu i xi+2)

X (yp f&uou (x2))(70 lt'ilail(xl) )p (5)
where

G»(&'»'i &i2) = —Zu "(&'(&')&(2')&(2)&(&))+) (6)

The factor e indicates a sign change for an odd permuta-
tion of the operators from the standard order indicated.

In order to proceed further, we must explicitly con-
struct the two-nucleon Green's function G~2. Recent
developments by Schwinger and others" show that the
entire structure of the theory of coupled fields is most
readily exhibited in terms of an hypothesized depend-
ence of the single-particle propagators upon hctitious
external sources. A suitably restricted form of the
general framework, in which we neglect the possibility
of nonlinear meson propagation, permits us to exhibit
G~2 in terms of the functional dependence of the single
nucleon Green's function G(x,x') =G(pl upon a classical
meson Geld P. The following formula, as derived in
Appendix A, gives

G12(xl )xu i xlyxu)

=Zu-'G(xi')xi)G(xu', xu)

+Zu ' (dxi") (dxu") (dxi'") (dxu'")G(xi', xi")

Those components of the "in" and "out" fields referring
to nucleons (as opposed to anti-nucleons) are given by
the following surface integrals: with

XG(xu', xu")E(xi",xu", xi'",xu"')G(xi"', x,)

XG(xu"')xu) —(x,'~xu'), (7)

X()~p) &' & =lim(o 2
—+—~ )Zu

—
&

dosing(x)gag„(x),

(2)
I(xi )xu i xi)xu)

(di) (dus')

x()tp)'"@=lim(o i~+ ~)Z2 ' do A'12 (x)v04'(x)~ (3)

with
P),„(x)=C N()tP)e'2",

C,=Pry(2w) Z(p))&.

Here g (x), P(x) are, as usual, the Heisenberg variables
of the Dirac field, and N(Xp) is a free-particle Dirac
"For example, see Y. Nambu, Progr. Theoret. Phys. (Japan) 5,

614 (1950).
» C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950); G.

Kall6n, Arkiv Physik 2, 371 (1950).

X( xl' G-'
5y(l)" 3y(e) i, p

x&"(&,&') "&"(N,~')

5 "G
X~ xu' G—' ~-'

xu ( . (8)
by(1') "5y(~') ), o

n J. Schwinger, Proc. Natl. Acad. Sci. 37, 452, 455 (1951) and
unpublished lectures, ' K. Symanzik, Z. Naturforsch. 9, 809 (1954);
H. Umezawa and A. Visconti, Nuovo cimento 1, 1079 (1955).
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Here d,"(p,rj) is the renormalized meson propagator of
the causal type.

Making use of such renormalization statements as

(explicitly defining the renormalization constant Zs). It
is therefore possible within the above approximation to
assert

lim(o. i~+ ~) do/i, (x')ypG(x', x)

= iZ2$1 „(x),

and the orthogonality condition

(xp(xp'e~l), (9)

*&~(~))= (&5 )i1 (4~ )J(~ )

where we will henceforth refer to the renormalized
vacuum expectation value Zs '*Q($)) as the quantity
P,'. If we now conveniently introduce a renormalized
current operator

~~41 n (x)~sA. (x) =&» ~(P' —P)

the S matrix developed from Eqs. (7) and (8) assumes
the form'4

we can replace Eq. (12) for Z'(x) by the equivalent
expression

(Pl'al i P29L2 ISIP1Xli P2X2)

~11 ~1~&2 ~2~(Pl Pl)~(P2 P2)

If we employ the techniques of Schwinger, " it then
follows that if &0) is the vacuum matrix element of the
operator 0, in his sense, then

+(pl )0 (p2 )+(pl)0(p2) (dxi ) (ifx2 ) (~xi) (dx2) ~i~4.'(5)(0)=zD(j %)o)+)—&j (8))&0)7
—= (( (5)o)+ ). (16)

Xexp( zpl xl zp2 x2 )zz(~1 pl )zz(~2 p2 )

XI(xl +2 i xl)x2)N(~1)pl)N(~2~ps)

X exp(zplxl+zpsx2). (11)

Z'(x) = j(x)y(x)+J(x)Z y(x) (12)

where P(x) is here the dynamical meson field, j(x) the
nucleon source density, and J(x) an external source
density. It is the essence of the linear meson propagation
approximation that

Actually Eq. (11) was the first form of the scattering
matrix used by the authors" to obtain information
about nuclear forces from the meson-nucleon scattering
experiments. A detailed account of this work will be
postponed, however. The developments of this paper
will be based on an alternative version which we now
describe.

We suppose the interaction terms in the Lagrangian
density to be

The physical signiicance of the primed matrix element
is that if (0) describes only connected processes, then

((jn($)0)~) retains this characteristic feature. This
remarkable property follows from the definition of &0)
as the ratio of a transition amplitude to the vacuum-to-
vacuum amplitude.

The formulation contained in Eqs. (14)—(16) has
almost immediate application to a rewording of G~2 as
expressed by Eqs. (7) and (8). We merely must replace
the classical 6eld P,=&&($)) referred to there with
P,'($), and concurrently substitute for 6"(P,$'), the
renormalized meson propagator 6'(P,P') for those mesons
which are exchanged. "The consistent neglect of non-
linear meson propagation permits, accordingly, a trans-
parent renormalization of the nucleon source density
operator, and of the exchange meson propagation. With
xs))is p„s)xs', we then have (droPPing the sub-

script E):

(—z)" Z '&4(k))
8J(pl). BJ($„) J=O

By means of the consequent expression for G», re-
membering Eqs. (2) and (3) and the definition of the
real one-nucleon states,

where, by Eq. (12), A'(g, P') is the renormalized meson
propagator

A'(P, P') =zz;1&(y(g)4 R'))+) I, ,
' Here and in what follows, we shall not record the explicit

antisymmetrization.
» 3.H. McCormick and A. Klein, Phys. Rev. 99, 618 (19&5).

x(l P)""'+o=x( p)'""'+o=
I pl ) (»)

"ln the actual calculations of the text we shall replace 6'((,g')
by the free-meson propagator appropriate to mesons of the ob-
served mass p. The renormalization theory tells us that we thereby
ignore the contribution of virtual pair formation to the renor-
malized meson Green's function. These excited states of mass
&~3p, contribute to the adiabatic potential terms of range com-
parable to those from three meson exchanges, and may be therefore
legitimately dropped. A similar approximation in the case of
virtual mesons, because of the unrestricted energy and momentum
which they bear, would have been completely unjustified.
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we can record our alternative form of the S matrix,

(Pl &l&1 j P2 &l&2 ~+)Plyl&l j P2)l&2)
(i)"

~(l&1 l&1)5(l&2l&2)b(Pl Pl)5(P2 P2)+Q
n=Z

are given as

v'"(O', p; Po) =f'"(O', O; P&&),

'"(O' O' Po) =f'"(O' O' P )

(25a)

X (d1)" (d22')(P 'l& 'I (j(1)" j(N))+'IP l& )

X6'(1,1') 6'(N, 22')

X (P2'4'I (j(1')".j(N'))~'
I P2&2)

=5(~1 l&, 1)5(l&2 l&2)5(Pl Pl)5(P2 P2)

&2& (p/ pl/. P ) &2& (yll y. P )
d'p" . (25b)

P,+i.—2Z(P")

Our ultimate interest is in the adiabatic potential, a
local function in coordinate space. We have, 6rst of all,

v(r, r'; Ps) = (22r) ' &Ppdsp'e'2' "v(p' p; Ps) e '2'

+Z (Pl',P2'
I
T""'

I Pl P2) (»)
n 1

The remainder of this paper will be concerned with the
evaluation of the contributions of P2) and T&@ to the
nuclear potential.

with

=(2 ) ' I ~ (»' —p)d'l(p'+p)

X V(y' —y; -', (p'+y); Ps)

Xe«V' —2& f&r+r'&e&f&2'+S&. &r'—r& (26)

III. DEFINITION OF THE POTENTIAL v(y', y; Ps) —=V(y' —p; —',(p'+y); P&&). (27)

The quantity to be termed the potential will be related
below to the reduced T matrix, t(y', p; Ps) defined as
follows:

(Pi',P2'
I
T

( Pi,P2)
= —22ri5(Pp —Pp)8(P —P )T(P,P; P,Pp), (20)

We shall expand V(p' —p; —,
' (y'+y); P&&) in powers of the

variable —', (p'+ p) and of the difference P&&
—2M, ignoring

nucleon kinetic energies compared to the nucleon rest
mass, and identify the leading term, to be called v(p' —p),
with the adiabatic nuclear potential. The justification
for this procedure is that by Eq. (26),

where relative momentum coordinates, y, p' are intro-
duced according to with

'v(p —p)~vadiabatic(1', 1') = V(1')8(i'—1'), (2g)

p.=—P+p, p.'= :P'+p', -
P2= 2P PP2'= 2P—' P'—(21) V(r) = d'kv(k) exp(ik r). (29)

and

P&&=&(P1)+E(P2) P&&'=~(P1')+E(P2') (22)

The reduced T matrix, f(p', p; P&&), defined in the center-
of-mass frame, P=0, then is given by

f (p', p;Po) = (O'
I
f (Po) I p)

= T(p,p; P=O, Pp). (23)

We shall suppose that t(P&&) is the transition matrix
which results from the solution of a Schrodinger-
like equation with the nonlocal kernel (p'~v(Ps) ~y)
=v(y', y; P&&). The two quantities t(P&&) and v(Ps) are
accordingly related by the familiar Lippmann-Schwinger
integral equation, which in the center-of-mass frame of
the two nucleons, reads

v(y', y; Ps) = t(y', p; Ps)

„v(p',p",Ps)f(p",p
' Ps)

&Py" . (24)
Po+is —2E(p")

There is just one impediment to eGectuating the
program outlined above with the information at hand.
We require, according to Eq. (25b), v&'& (p',p; P&&) off-the-
energy shell to determine the fourth-order potential
unambiguously, whereas Eq. (20) ultimately determines
only the diagonal elements of that quantity. To
circumvent this diKcuulty, we must actually derive the
Schrodinger equation with the correct nonlocal kernel to
lowest order in the coupling constant. Similarly, if we
were interested in the adiabatic potential through order
2e, we would require knowledge of the full kernel
through order 2(22—1). Fortunately, the procedure for
obtaining the desired result to a sufhcient approximation
is known. ' It consists erst in de6.ning a covariant two-
body equation whose solution is our scattering matrix
and subsequently in reducing the equation to a single-
time Schrodinger form. To lowest order, all that is here
required, a knowledge of previous work should convince
the reader that v"&(p',p; P&&) will be given by Eq. (37)
below.

Q K f24/ t d p ( /, p $ I t l
7 This procedure has been described in great detail by A. plein,

Phys. Rev. 94, 1052 (19/4) and reference 2; W. Macke, Z.
v&'& and v&4&, the second- and fourth-order contributions, Naturforsch. Sa, 599 (1953).
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IV. PERTURBATION RESULTS of v&'& (p',p; Po) to be that represented by the expression

We turn to the detailed evaluation of the transition
oJmatrix. Consider 6rst

(Pi', P2'I 2'"'
I Pi,P2) =i (dk) (dn)(»'I j(k) I «i)

X(«2 I j(&) I p~)&(p —&). (30)

It is convenient to translate the nucleon density opera-
tors to the space-time origin and thus to write

(p'I ~""(p—p')
I o&(—P'

I
~'"'(«' —p) I o&

X (37)
~(«' —p) I:M(«' —p)+E(P)+E(P') —Po]

since this is the form which results from the reduction of
a suitable covariant two-body equation to a single-time
Schrodinger-like equation. Equation (37) will be em-
ployed below in the evaluation of @&4).

We turn then to the reduction of

(«'I j'(8) I «) =~ ""' ""(p'I j'(o) I p)

We de6ne

(p'I j(o) l«)=(2~) '(«'l~(« —p') Io&

—=(2 ) '(ols(« —p') lo»

(31)

(32)

f
(Pi'P2'I2'"Ipi, P2)=k(~)'j (db)(db)(dpi)(d»)

x(«i'I(j(h) j(b))+I pi)(»'l(j(ni) j(»))+I»)
x&(b—gi) ~(b—»). (3g)

where the nonrelativistic form of the matrix elemen«f Removing the center-of-mass motion by translation of
the reduced current operator the current operators in fine with our previous treatment

ol J'(« —p') lo&= (pit )Li~ («—«').;]p(l «—«'I)

follows from the usual symmetry considerations. Here
f is the renormalized P-wave coupling constant and
p(lp —p'I), the nucleon form factor, is normalized to
p (0)= 1.By means of Eq. (33) and either of the standard
representations for h($),

g(() (2z)
—

4)I (dk)gikt[$2+ti2
'

ig] 1—

=i(2m) ' d'k(2') ' exp(ik g —
ical bl) (34)

we then easily determine that

t&4& (p', p) =— d'«"d'gd'q dk0
4x ~

Xexpl —i(k —k ) l((—n) 5{(ko' —~ '+i.)
XL(ko+E(p) —E(p')]' —(up+ ie) }—'

(«'I j(l&) l~)(~l j(-lK) lp)

I
E„—ie- E(p) —kp]

(p'lj(-l~) I )( lj(l~) lp)

LE„—ie—E(p')+kp]

(—«'I j(ln) I~')(~'I j(—ln) I
—p)

(Pi',P2'I 2'"&
I Pi P )= (2~i)&(Po' —P)~(P' —P)

x(2~) '(p'l~'"'(p —«') Io&(—p'l~""(—(«—«')) lo&

x{~(p'—«)' —LE(p) —E(p')]' —i~}. (33)

pE„ie E(p')+ko—]—
(—«'I j(—ln) IN' )(~'I j(ln) I

—«)

[E ic E(p)—kp—]—(39)

The comparison with Eq. (20) and our previous remarks
allows us to conclude merely that

i&~'& (p' p Po) = t~ & (p' p P )
= —(2 ) '(p'I ~'"'(«—p')

I 0&

x(—«'ls;&'&( —(p —p')) lo&l: (p' —p)] '
+LP —E(P)—E(P') j~t"'(«', «; Po), (36)

where bd2&(p', p; Po) is itself finite on the energy shell.
Thus we argue that in fact only the adiabatic part of
e&'&(p', p; Po) as given by the erst term of Eq. (36) is
unambiguously determined by the scattering considera-
tions. This term is basically the familiar second-order
static potential. The procedure described at the end of
the previous section leads one to regard the correct form

j(k) = d'(ex& (—'k 0)j((). (40)

However it proves more convenient to reintroduce with
renewed generality the concept of a reduced current

where ki ——p' —p", km=p" —p. Here the symbolic sum-
mations, P, P, extend over some complete set of
scattering (plus bound) states of the coupled meson-
nucleon fields, the vector

I I)=
I E, P, y) being speci6ed

as an eigenvector of energy E„ofthe total Hamiltonian,
of total momentum P, and some completing set of
commuting operators y.

The g, q coordinate integrations can be expressed in
terms of the Fourier transform j(k) of the current
operator, where
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operator J(k) already profitably employed in the treat-
ment of T&'& [Eq. (32)7. Let J(k) be defined by the
expression

(pl j(k) IN)=5(p+k —p )(pl&(k) I~&, (41)

where lm& designates just those mesons and nucleon
pairs explicitly contained in Ie). That is, on the mo-
mentum shell we have explicitly

(pl~(k) l~&=(2~)'(ply(t=o) l~). (42)

%ith these preliminaries, we deduce

t&'&(p', p) = -', i(2~)—'~ dk, d'p" ( (k&&s &dis+—ie)

X[(ko+E(P)—E(P')7—Ms'+ie)) '

(p'
I
~'"'(—ki) I ~&&~ I

~~'" (—ks) I p)

[E„is E—(p) —kp7—

(p'I I &'&(—ks) INi&&nial J,&'&(—ki) lp)

[E-—ie—E(P')+ko7

(—p'
I
~ '"'(ki) Im'&&nz'I ~ '"(ks) I p)

[E„—ie—E(P')+kp7

(—p'IJ &'&(ks) lm'&&m'I J'&s&(ki)
I
—p)

(43)
[E.—i.—E(p) —k,7

It is our object in this section to study exclusively
those contributions to Eq. (43) arising from the single
nucleon states, typically lp"X). This portion of T&4&,

which we shall call T~„&(4) can be readily written down.
We obtain, on the energy shell [i.e., we set E(p')

=E(p)7, this specialization not aGecting the ultimate
value of the adiabatic potential,

t -«"'(P' P
'

&a = 2E(P) =2E(P') )

The next step involves the performance of the ko

interaction. Upon suitable rearrangeme~t the result
can be exhibited in a familiar form, namely, as the sum
of contributions from all possible time-ordered diagrams
describing the exchange of two mesons in which the
nucleons are always in positive energy states, the so-
called no-pair diagrams. ' We may then pass immediately
to the adiabatic limit except for those diagrams which
contain an intermediate state with only two nucleons.
The contribution from these latter potentially singular
terms is found to be

(p'l~'"'(-k) lo)&ol~ "'(-k.) Ip)
x (—p'l~;&'&(ki) lo&«l ~;&"(k.) I

—p)
( )

(2m) s & 2«etc&s[E(P) —E(P")—«0i7

xl.E(p) -E(p")- .7[E(p)-E(p")7

e" «&" (p' —p)

d3p/I

(p'le, &»(—k,) Io&«ls;&"(—ks) I p)
2MyM2

(—p'l~'"'( ) lo&&ol~, "'(ks)
I
—p)

M]Mg My M2

(—p'I ~~"'(ks) I o&(o I
~'"'(ki) I

—p)

M] M2

t 1 1 1
XI —+—+ I

. (46)

Turning momentarily to the computation of the
potential t&,.„&'&(p', p; P&& 2E(p) =——2E(p')), Eq. (45) is
seen to be canceled precisely by the contribution to Eq.
(25b) arising from the iteration of t&&s&(p', p; P&&). The
remaining part of tn„«&4&(p', p; P&&) may be identified

immediately with t&n„«&4&(p —p) in the adiabatic limit
and is readily shown to be

,'i(2s) ' -dk&&d—sp."(kp' n&i'+ie)—'(ks' +e&is)—'e

(p'I ~""(—k ) I o&«l ~ '"(—ks) I p)
X

[E(pal,)—E(p) —k,—ie7

(p'I~ &'&(—k )1o)(ol~""(—k ) I p)

[E(p+k )—E(p') —k —ie7

(—p'I J""(ki)Io&«l~~'"(ks) I
—p)

X
[E(p+ ks) —E(p')+ kp —ie7

(—p'I ~ &'&(k ) I o&«l ~'"&(ki)
I

—p)
(44)

[E(p+k,)—E(p) —
k&&

—ie7

After the introduction of the nonrelativistic forms of
the J operators, Eq. (46) is in agreement with the form

of the potential first proposed by Brueckner and
Watson, ' with one essential difference. The perturbation
result which we have derived refers completely to
renormalized vertices. Besides its proportionality, there-

fore, to the renormalized coupling constant, it also
contains the nuclear form factor p(k), if k is the mo-

mentum transfer at the vertex. As pointed out by
Gartenhaus, " the assumption of a suitable form for
this function —in the absence of a means of calculating
it from first principles —may provide a cutoff at small

distances of the otherwise singular potentials, without

's S. Gartenhans, Phys. Rev. 100, 900 (1955).



1754 A. KLEIN AND B. H. McCORM I CK

having to introduce such cutouts ad ho@ in coordinate
space. However we prefer to interpret the introduction
of cores as reQecting the essential breakdown of the
potential concept within separations r;„3p.

We may summarize the results of this section in the
potentials

V(P)(r)= —(2m) '(f/)(i)') d'k(o 'Ip(k) I'

X~(i) .~(p)(r()) .kg(p) .ko it.e (47)

Vpert(o (i') = —(2w) (f/p)

The passage to the adiabatic potential will be made
rather more directly here than previously. Introducing
the results of Eqs. (43) and (49) into Eq. (29), we obtain
directly for the nonperturbative fourth-order potential:

V(4) (r) =-', i(2~)—' d'k)d'kpdk (k ' (—pip+i p)
'

X (kpp p)pp+ie)
—lo—it& reite r

&ol J,(i)(k,) l~)&~l J,«)(-k,) Io)XE'
tQ (E„—kp —ie)

x, d'kid'kp(2~, ~,)-'I) (ki) I'l~(kp) I'

Xo'(t'+t"'g'" keg«

X (Ip(p) 'kpg( ) 'k]rr( )'p (p)L(o](op((o]+'(o )j
+g ( ) 'kig ( ) kpt '( tr( )L(M '((o +p) ))

X(~p'(~i+~p)) '+(~i~p(~i+»)) '3) (48)

V. SCATTERING CORRECTIONS

(0 I
Jr(') (—k,) I gp)&rm I

J'i(') (k,) I 0)

(E +kp ie)—

tn' (E +kp —ie)

(ol J ('&(k,) leap')(m'I J'"&(—ki) lo)

(E„—kp —ip)

(Ol J ('&(—ki) lr)p')&r)p'I J.(')(kp) IO)
x

(51)

The remainder of our work will be concerned with an
evaluation of that contribution to the potential from the
nonperturbation part of T(4), which we shall continue to
label by the same symbol. In this instance, the adiabatic
limit of t(4& (y,y; Pp) is unambiguous, finite and synony-
mous with that of ()(i) (y', y; Pp). In order to be able to
evaluate these corrections, our considerations will per-
force be more special than those of the previous sections.
Here we shall 6nd it expedient to consider the 6xed
extended source limit of the theory, in which pair
intermediate states are excluded and to replace the
Heisenberg operator j,($) by its extended source ana-
log. We shall assume further that the source interacts
only with mesons in P states.

On examination of Eq. (43), we see that we require
the fixed source limit of a matrix element such as

(yl J(q) Irr)), a quantity which can be non. vanishing off

the momentum shell. It is therefore that quantity with a
fixed source analog,

The energies E„are henceforth to be measured relative
to that of the one-nucleon state. In the primed summa-
tions over m and m' all values occur except that both
indices cannot simultaneously refer to the ground state
since this contribution is already contained in V„„e(i)(r).

We shall convert Eq. (51) to an expression involving

the total cross sections for pion-nucleon interaction. We
introduce the total cross section (rpr, pr (E„),in a state of
de6nite isotopic spin I and angular momentum J. In
particular, in the elastic approximation 0-2y, 2J reduces to
the familiar form

o pr, pr(E )= (2x/k„')(2J+1) sin'l)pr, pz(E ). (52)

Evaluation of the potential, Eq. (51), is then expedited

by the following lemma (proven in Appendix 8):

2 G(E-)&Ol J'(k) l~)&~l Jr(—k') Io)
m=1

(y I J(q) I
~&—=&o I J(q) I ~), (49) =P (2J+1)-'(ilP(2I)

I j)(klP(2J) lk')Skk'p(k))p(k')

&oI J'(q) IO)= (f/) )(ig.qua (v)), (50)

where p(q) may be presumed to be the same source
function as occurs in the relativistic theory.

where J(q) is the Fourier transform of the fixed source
nucleon density and the eigenstates are those of the
fixed source theory. J(q) is taken to be independent of
meson variables and to have the one nucleon expectation
value

( G((oe)irpr, p J((oe)
X ' d(o, (53

k-l. (k-) I

where p)„e=k„P+)ie, and G((o„) is some reasonably be-
haved function of co„. The existence of the above
relationship depends crucially upon the possibility of
relating the meson-nucleon T-matrix values o6 and on
the energy shell in the 6xed source gradient coupling
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theory. The equations

Q(kzl JJ'2)(J,Jplkz)=(kzIP(2J) Ikz), (54)

corrections on both nucleons,

vzz(4'(r) =i(22r) ' dpkzdpkzdkp

Z(zll rz)(I Jzl j)=(zlP(») I j)
I3

(ss)

define the matrix elements of the projection operators
for angular momentum J and isotopic spin I, respec-
tively, suitably compounded from the ingredient angu-
lar momenta and isotopic spins. For the I' states we

recall that

X (kp' —(oz'+zP) '(kp' —(oz'+zP) '

xe '""e'""64k 'k 'I p(kl) I'I p(k2) I'

XQ Q (2J+1) '(2J'+1) '
1',J II,J'

(k, lP(2J) Ik,)
1 (1)„„(1)

lkl k2+I Iz& klXk.
42r &2 & ) —1&

(56)

d(oy021, 2J((oy)
t

d(orozco,

2J ((or)
X

P I p(P) I' " ~ &I p(&) I'

for J=—'„and ~, respectively, and

(zlP(2I) I j)=p I l~'I+I lzp'J«z (57)
(1y )1 ~

& —1)

x((zlP'"(2I) I j)(k IP(»(2J) Ikz)

X(~,—k,—'.)-1+(~IP(»(21)Iz)

x (k2IF("(2J) Ikz)((o„+kp —ip) '}

We next state the result of inserting Eq. (53) into
Eq. (51).Making use of the symmetry properties of the
integral, we write

v (.)=v, '(.)+v„'(.), (58)

X (kp2 pp 2+zp) —ze—i)rr rei)rr r

X8(f/p)'k 'k 'Ip(k ) I'Ip(k ) I'

(2(» ~ k rr(». k r .(1)r .(» ~(». k ~(». k r.(»r, (»

where Vz(4)(r) is the term which contains scattering
corrections for only one of the nucleons, chosen as
nucleon two in the following unsymmetrical mode of
writing:

V (')(r) =i(2~) ' I d'k d'k dko(ko' '+i ) '—

x((2l P"'(21')
I j)(k)lP(2J') I k2)

X ((pr+kp —ip) '}. (60)

The remaining task for the present paper is to perform
the well-delned kp integrals. For Vz(4)(r), we obtain
rather immediately

Uz'4'(r) = (22r)-p d'kid'kz

xe '""e'""8(f/Iz)'kl'k22I p(kl) I I p(kz) I

X P (2J+1) 'o'2r, pz((oz)". Plp(P)l" ~

X(ilP')(2I)
I j)(kll p"'(2J) lk2)—kp —ie

I 8(tly02g, 2J
X Q (2J+1) '

"~ Plp(P) I'

kp —ie

X 420) .kzzr(2) .kzr .(»r .0)
(OyG)y 822 2

x((z IP"'(»)
I J)(kl IP"'(2J) I k2)

X(~n+kp —zp) '+(jlP"'(») lz)

x (kzl F(') (2J) I kz)(p)~ k() ip) '—} —(59).
It is left implicit that V~(4) is to be identified with that
part of the above expression symmetric in o(", e(2);
~(&) ~(&)

On the other hand, Vzz(4)(r) describes scattering

1
t

1
-«~2) I

(G)1 (it)2 ) E(OZ ((OZ+Gl&) ) „

+420) .k242(» .kzr .(»r,.(»

1
x . ((OZ' —(P2') E(oz'((oz+(o„)

For Vzz(4)(r), after some algebraic manipulation, we
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Vzz&4'(r) = (2m) ' d'kid'km

Xe '""e'""64k 'k '
[ p(kz) ['

I p(k2) ['

d&0 &
X I, , Z Z (2J+1)-'" ~ p I p(p) I' '

~ i
I p(i) I' r»' ~'

X (2J'+1) '0'~r, 2z(~z)&2r~mz~ (&0z)

X &(i[&"'(21') [g) (4[ &"'(2J') [4))

X (i[&"'(21)
[ j)(kz[p"'(2J) [&2)

1 1 p 1x-
2 (~z' —&02') &&0z(~i+~ z) (&0„+&dz)

l1 —(1 2)I
Gl] GOy M& M& GOg

1 1
+(jl~'z'(21) Ii)(kl~"'(2J) I

&z)—
2 (Qlz —(d2 )

S"S'/S&y)"=0, n&1. (A.7)

Under the assumption (A.7), it is then true that

The reworking of (A.3) makes repeated use of the
operational form of the functional Taylor series. For
example, we first invoke the relation

G.[&~)- ~/»7[&.&=.

=-p[Q)~/bx7G. [x—&/» —'~'~/~x7[. =(.&=., (A 4)

where 6'= 5&/)/8J, and then the relation

G [&4»—'&/&J7 p[&&t)&/&x7I(o) =o

=G,[&y)—ib/a J—ia'a/ax7, (A.s)

to establish that without approximation

G» ——G,[&y)—9/u —i~'S/Sx7

XG2[x—
i&&/&&J—ih'&&/Bx7 [,=&~& 0

=Gz[&4) i~ ~/~&—4) i~ &/&x—7
XG,[x—ih'8/B&y) —iA'8/bx7[ „=&»=&&. (A.6)

Further progress will be considered here only with the
restriction to the linear meson approximation defined by
the condition

XG [&«)—i~'~/&&&t)7G2[x —i~'&/&x7 I.=(~)=.
XI —(1~2) I

. (62)
)' G =expL —i(~/&&4») ~'~/&x7

(Mz(&dr+co~) (cdz+M g)

The total proposed potential therefore consists of

V(r) = V&'&(r)+ Vzert(4& (r)+ Vz(4) (r)+Vzz&4& (r), (63)

(—i)"
(~/&«&)) "GiI &~) =o(~'~/~x) "G2I x=o (A 8)

n=o

APPENDIX B

We wish to convert a summation of the form

as g~~~~ by Eqs. (47), (48), (61),and (62), resp«tzvely. which was to be established.
The evaluation of these expressions and their compari-
son with experiment will be studied in subsequent
publications. We shall then also consider alternative
formulations and possible extensions.

where
~ ~.G-[Q»7= 1, (A.1)

r=yp+3II y(&y) i8—/8J)=G—'[&y) is/»7 —(A.2)

is the di6erentio-functional operator which is the inverse
of the single nucleon propagator, y characterizes the
particular form of the coupling, and 1 is the unit
antisymmetric matrix. Neglecting the antisymmetriza-
tion once again, we are interested in Gi2 ——Gi2[07,

G»= Gz[&&t)—i~/»7G2[&&)&) —i~/»7! &~&=o (A 3)

a structure which is actually more general than the
explicit linear dependence on the meson field operator
implied by (A.2),

APPENDIX A

We turn to the derivation of the expansion, Eqs. (7)
and (8) of the text for the two-nucleon Green's function
Gi2. Schwinger" has shown that Gz2[&p)7 satisfies the
equation

2- G(~-)&0I J'(k) I ~)(~
I
J (—k')10)

into an expression involving only the total cross-sections
for pion-nucleon interaction. For this purpose we require
the connection between the reduced nonrelativistic 7
matrix and matrix elements of the reduced current
operator J;(k), mainly

&~[2'lk,i)= —(2~)—l(2~) '&m[ Jt(k) [0). (B1)

We choose, however, to derive the more general
relativistic formula

(zz[T[p,lz; k,i)
= —&(P-—k—1)(2~)-'*(2~) '*&~

I J"(k) I p,&z), (B2)

where the relativistic matrix element of the current
operator has been previously de6ned in Eq. (41).In the
center-of-mass frame the nonrelativistic approximation,
Eq. (B1), obviously follows from Eq. (B2) by Eq. (49)
of the text. The renormalized 5 znatrix to some arbitrary
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6nal state
~
e) can be given as

where
Xi(a,—a,)C,(g), (83)

(~)S(y,k)=inn(02 —+—~) d02Z,—&(e(y(p) jp)

where k„ is a vector in the same direction as k but of
length determined by the equation ra„'= k„'+pP.

In Eq. (53) we have a somewhat more general ex-
pression to consider, namely, one of the form

Z lG(&-)( ~,~l T'I ~)&~l T lk2, j) (»0)

Z;:y(p) =Z;:y,(~)+ (d~')~'(p, ~')q (~'),
(e[T[k,,j)= P (Z„,J,I,~~ T[k,,J,I)

J3,lq

X(JJ&~k2)(I I&~ j). (811)where po($), the homogeneous solution, gives rise in

Eq. (83) to the unit matrix term of the S matrix. We
have then

where, on the energy shell, we shall introduce a quantity

T2z, 2j, ,(E )= (k„(u„)&((.,J,Ii Tik„,J,I). (812)
(6 I

T
I uk) =»m(~ ~—~) d~ (&5')(~l j~(5') la)

Finally, we shall de6ne the total cross sectionp 0 2j, Qj(E„),
in a state of definite isotopic spin and angular mo-

X6'($', $) (80—80)C &($). (85) mentum, by the equation

4 p(P) = (2~) &(2(og)
—&e"&. For the set e, we choose E„,J, Jz, I, Ig, y which, in

addition to the energy, comprise the total angular
The dynamical variable p(() can by Eq. (14) be replaced momentum and its z component, the total isotopic spin

by and its third component, and the completing set y. We
then have, for example,

If we evoke the renormalization statement o2r2 j(E ) =pq(2m'/k )(2J+1)H~ T2y, 2j, ~(E„))2. (813)

This formula goes over in the elastic approximation,
where we agree to limit the sum over y to the single
meson states only, to the more usual form

0'2

o2r, 2j(E )='(2m/k )(2J+1) sin'82r, 2j(E ) (814)
we readily deduce

upon the recognition that, for y=0,
(&I Tll, k) =~(2~) '(2~) ' (~5')(~l j~(5') l&)~'"' (87)

T2$, 2j(E~)= —(1/m )e@"'j sin82$ 2j. (815)

(Z„,J,I (
T

~
k„J,I)

~'(~~) = (2~)'(~~/k)Z- ~(~~—&-)1(~I
Tlk ~) I' (») =P(k)/p(k„)g(k~„~/k„, :)(g„,JI

( T( k„,J I)
= Q(k2)/p(k~)$(k2/kg, (it)2 )T2j; 2j, y(E~). (816)

Collecting the results of Eqs. (811)-(813), (816) and

G(o) g) 0;(or p) d(og
Eqs. (54), (55) of the text, inserting these into Eq.
(810), we obtain the requisite lemma, Eq. (53) of

=E„(2~) (o)„/k„)G(co„)I (Nl Tl k,i) I, (89) Sec.

and if G(coq) is a function of &oq, we have

The essential simplicity of the fixed source gradient
coupling limit is that it becomes possible to relate the

The total cross section for an incident meson of Z'-matrixvaluesogandon the energyshellaccording to
isotopic index i is


