
PION EFFECTS ON FERMI INTERACTIONS

nucleon pairs. The matrix elements we want are simply

&» IP'I )=-&pl~P'I &.

Referring to (4.5), we hand that the results for g"/g for
I' and A are given by the brackets g'/g appropriate to
S and V.

6. CONCLUSIONS

The a priori attractive suggestion that Fermi inter-
actions have some simple form with respect to bare
nucleons has been examined. It is found very dificult
to test experimentally. With regard to a universal

Fermi interaction, no direct verification seems likely.
The suggestion does not lead to immediate simpli-
6cations, although it is indicated that the universal
couplings that should be considered are different from
those which have received most attention recently.
With regard to forbidden P-decay processes, we can in
principle observe the effects of this suggestion. But
these effects depend theoretically on models for both a
recoiling nucleon and for the nucleus.

The author would like to thank Professor E. J.
Konopinski for acquainting him with much of the
information used above and for valuable discussions of
these questions.
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A method is given of replacing pion scattering parts in a Feynman diagram by experimentally observed
quantities. In this paper momenta of nucleons are neglected, although nucleon pair creation is not. It is as-
sumed that only P- and S-wave pions interact with nucleons. No interaction is assumed between pions. Two
examples are given: (1) The anomalous magnetic moment of the proton is rigorously expressed in terms of
pion-nucleon scattering amplitudes, or, alternatively, in terms of the renormalized coupling constant and the
total cross sections for pions. (2) The internucleon potential is also expressed by means of scattering quanti-
ties. In this case the number of virtual pions exchanged between the two nucleons is limited to two, although
the number of pions emitted and absorbed by the same nucleon is not limited.

L INTRODUCTION

'HE static model of the pion-nucleon interaction
has proved to be quite powerful in correlating

certain experiments. As far as the low-energy scattering
of E-wave pions by a nucleon is concerned, this theory
is very successful. Experiments show that 833, the phase
shift for the state with J=s and I=-,' is very large,
while the other three phase shifts are small. This comes
from the simple fact that the pion-nucleon interaction
for the -',—~ state is attractive while for all other states it
is repulsive. Thus almost every method, the Tamm-
DancoG approximation, I the Tomonaga intermediate
coupling approximation, ' or the Chew-Low method, '
gives satisfactory agreement with experiment if the field

reaction is taken into account.
Granted that this scattering problem has been solved,

how can other quantities like the anomalous magnetic
moment or nuclear forces be calculated with similar

accuracy' The purpose of this paper is to describe a
method to express these quantities in terms of scattering
quantities.

*Now at Department of Physics, University of Tokyo, Tokyo,
Japan.' G. F. Chew, Phys. Rev. 89, 591 (1953); K. Sawada, Progr.
Theoret. Phys. (Japan) 9, 455 (1953).' G. Talreda, Phys. Rev. 95, 1078 (1954). Friedman, Lee, and
Christian, Phys. Rev. 100, j.494 (1956).' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

As an example, suppose that one wants to calculate
the anomalous magnetic moment of the proton. One
draws a Feynman diagram as in Fig. 1.The shaded area
contains a number of virtual pions emitted and absorbed
by the nucleon. The sum over the virtual interactions
represented by this shaded area is identical to the graph
which appears also in pion-nucleon scattering. Let us call
this contribution a scattering part, which means the
sum of all Feynman graphs with two external free
nucleon lines and two external (free or virtual) pion
lines. This scattering part is equal to the S-matrix
element if the two pion lines are free. The difference here
is that the pions are virtual and do not satisfy the
energy relation kss= k'+tt' as real pions do. This diffi-
culty is overcome, however, in the static approximation.

Vile make the following assumptions:
(1) The static approximation is applicable; that is,

the momenta of the nucleons and antinucleons (if any)
can be neglected.

(2) There is no interaction between pions.
(3) The pion-nucleon interaction does not contain

higher derivatives of the 6eld. For I' waves it is suK-
cient to assume the usual pseudovector coupling, al-
though we do not use its explicit form. The S-wave
interaction is unknown. We assume only the regularity
of the interaction (see Sec. V). D and higher waves are
assumed to have no interaction with the nucleon.
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Fxc. 1. Feynman graph for the
nucleon magnetic moment. p-jA

sidered in this and the following two sections. The rules
for constructing the 5 matrix are:

(1) For each pion line, we use

i5;;) 1
cps =k +p

(2s) 4 l kps (—os'+is)

(2) For each nucleon line, which merely gives time-
ordering in this case, we use

Under these assumptions it is possible to bring the
scattering part oR the energy shell to the virtual case.
For the moment we shall consider only the P wave,
which is well known.

Suppose one changes the space momentum k of one
of the pions of a scattering part without changing its
fourth component kp. The pion line does not interact
with other pion lines but is absorbed by the nucleon.
Since the momentum of the nucleon is neglected, the
change of momentum of the pion gives no eRect except
at the time of absorption. This interaction is pro-
portional to k since the P'-wave pion is absorbed. The
whole scattering part, therefore, depends linearly on the
space momentum although it depends nontrivially on
the fourth component. The general case of a virtual
pion with momentum k', ko can be calculated from
the value of the rea1 scattering with momentum

k[= (kp' —p,')~], kp merely by multiplying with k'/k. '
This is an important element of simplicity in the static
approximation.

In the evaluation of the S matrix, the integral over k()

extends from minus infinity to plus infinity. On the
other hand, real scattering occurs only for k0& p. This

gap can be filled by the use of dispersion relations' or
Low's equations. ' These relations show that the scat-
tering amplitudes can be expanded in a Mittag-Lefner
series, with coe%cients given by the total cross sections
and the renormalized coupling constant. In this form the
scattering amplitude is defined for all values of ko from
minus infinity to plus infinity. Thus the scattering part
is completely known.

Application of this method to the anomalous magnetic
moment problem is given in Sec. III. As an example of
the application to many-nucleon problems, the fourth
order nuclear potential is calculated in Sec. IV. In
Sec. V, the eRect of S-wave interaction is investigated.
The next Sec. II, is devoted to preliminaries for the
following sections.

IL S MATRIX FOR FIXED NUCLEONS

In this section we summarize the S-matrix formulas
for the case of fixed nucleons. Only I' waves are con-

4 For the sake of simplicity, the cutoS factor is omitted through-
out this paper. H an explicit cut-off factor v(k) is included in the
Hamiltonian, we must multiply by k'v(k')/kv(k).

s Goldberger, Miyazawa, and Oehme, Phys. Rev. 99, 986 (1955);
R. Oehme, Phys. Rev. 102, 1174 (1956).' F. Low, Phys. Rev. 97, 1392 (1955).

i |' 1

2z- (kp+ip~

(3) If the pseudovector interaction is assumed, for
each interaction, ~ we use

2z-8 (P k p) (fp/fJ, )r,~ ke's *

where fp is the unrenorrnalized coupling constant and x
is the position of the nucleon.

(4) After these substitutions, we integrate over all
momenta of internal lines.

The matrix element for the scattering part of an ith
pion with momentum k to a jth pion with momentum q
is given by

&j VI ~li») = — e" ""&11~(o(r) 0'(*))l)~4«'y,

where
l ) and

l 1) are the initial and final nucleon states
respectively and

o'(~)=( '-f ')4'(*).
We express this quantity as

&j ql&li k)=2~i&(kp —qp)Pi(kp)r;r, ~ kyar q+&(kp)
&&(r;r,o"qrr k+rp, rr ko.q)

+C(kp) r;r;e qrr k]e'l.s p&. * (—1).
The dispersion relations or the Low equations show that

f'( 1 ) 1 t'"dp( o (p)
~(kp) =—

I I+-
+ (kp —$e ~ 47I ~ p rpv E(dv kp —$e.~

1 t'~p~ f 4o»+4ots+ossi

367r Eros& 0 ppv+kp ie—
1 t "dp( o»+2o» q

&(kp) =
12'' ~ p M iM —kp —sp)

(2)
1

t
dp t o'ss+2o'ls

12'F ~
p Mv ~Mv+kp —pe 3

f' ( 1 l 1 t'" dP (4ott+4ots+oss'l
. l+

ps (kp+ie) 367r ~p ro„E rov —kp —ie )
1 t' dp ( o'ss

+—'

48' ~ p M& 4M&+kp —ve)

This expression is the interaction multiplied by —i. The —i
comes from (—i)" in the 1th-order term of the S matrix.
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(f"r (4) (1) t' k'
(3) S= —2m'(0)( —H) 'er

44m) (3m) Ego)~ (go4
A(—kp) =C(kp), 8( kp)=—8(kp).

where f is the renormalized coupling constant and o;; is Substituting (2) for A, 8, and C and performing the kp

the total cross section of the pure i/2, j/2 state. A, 8, integration, we have
and C satisfy the crossing relation

III. ANOMALOUS MAGNETIC MOMENT
OF THE PROTON

%e shall calculate only the anomalous magnetic
moment that comes from the pion current. For this we
calculate the 5-matrix element for the diagram of Fig. 1.

according to the rules of Sec. II. The interaction of the
pion line with an external constant magnetic 6eld H is
given by~

(j,q!H! i,k) = ——',ieH (2m)'(8»82; —82;8& )
x(k+q) X~8'(k —q).

Since the shaded area is a scattering part, we have

"&j,qlslo, k)(i, —qlal', -k)
ir eJ -1 t' d'k y ~ d'q

(4)
(2m)'Ek' — 22) (q' —,2)

where co's are supposed to have a small negative imagi-
nary part. This is not the correct matrix element, how-
ever. The scattering part contains two types of graphs,
one with crossed and the other with uncrossed external
pion lines. Both types give identical graphs if the two
external pion lines are joined to the same point as in
Fig. 1. The correct matrix element is, therefore, one
half of (4).

fS=2~iX2 ~~", h(kp qp)[A(kp)r r o'ko' g+ ]''
wr ix. (k—q)~e

—1 ( d'kd'q

(2~)8 ( (k 2 ~ 2)(q 2 ~ 2) J

( eH)
x! —i !(2~)'(s„s»—'„s»)(l+'1)xvs'(k —q).2J

After carrying out the integration over q and the angles
of k, this reduces to

erpe H 4 pA(kp) 28+C-
S=&(0) X- ' k4dkdkp.

(2~)2 3" (k '—(o ')'

The scattering part given by Eq. (1) is linear in k and q.
For the reason stated in the introduction, the relation
(1) holds for all types of pions. That is, k and q do not
necessarily satisfy the relation

koo=k2+p2, qoo=q2+p2, or ko)p, qp)p,

as real pions do.

e
+ "5--(p)-2-.,+.-]

54 8»
1 1 t' k'dkdp

!X —+
~2+~, &~o'~, (~2+~,)&

Here 2mB(0) represents the time T between past and
future. The quantity multiplying —2mB(0) gives the
change of energy, and the expression within the curly
brackets represents the anomalous magnetic moment.
Expressed in terms of nu, clear magnetons, it is

&f &(»(~& t'k
dk+

&4~) &3m) Ego) ~ co24 24'
1

XJ J L&11(p) 2&18+&88] +
-&2 "2+~&

k'dkdp
x , (~)

COg COy CO& GOy

where 3f is the nucleon mass.
The use of the dispersion relation (2) is not essential.

For the calculation of

A(k,) p1q d I' A(kp)
dkp !!—— dkp, (6)

J (kp2 —(go2)2 E2cuo/d~o" kp' ~2'—
we split A as well as 1/(kp' —"22) into real and imaginary
parts. Observing that the answer must be purely imagi-
nary (since no real process occurs in. the intermediate
states), we have

A(kp)
dkp

kp —0)y

f2/1~ i~
= —Ar—! !

— LReA(A&2)+ReC(coo)]
p' & ') 2

dip
+iT $™~~0)+ImC(Ep)]. (7)

~o —a

For practical calculations, Eq. (5) is more convenient
than (6) and (7), since the di6erentiation of the experi-
mental curves is not desirable.

The same expression (5) can be obtained by the Wick-
Chew-Low method. The advantage of the present
method is that in this form it is very easy to generalize

H. Miyazawa, Phys. Rev. 101, 1S64 (1956).
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FIG. 2. Feynman graph for the
second-order nuclear potential.

to the case of many-body problems and to 5-wave
problems.

IV. NUCLEAR FORCES

In applying this method to many-nucleon problems,
we expand the S matrix in the following way. The erst
term is to contain all graphs in which no pion is ex-
changed between any pair of nucleons, although an
arbitrary number of pions are emitted and absorbed on
the same nucleon line. The second term will contain all
graphs in which only one pion is exchanged between one
pair of nucleons. In the next term, two pions are
exchanged between one pair of nucleons, or one pion
each is exchanged between two pairs of nucleons, and so
on. We shall call these terms the zeroth-order term,
second-order term, fourth-order term, and so on, re-
spectively, although their meaning is diferent from that
of perturbation theory. In this section we shall calculate
the two-body nuclear force up to the fourth-order term.

The second order term is represented by the graph in
Fig. 2. The shaded areas are vertex parts. Since all
nucleon lines are free, each vertex part is given by the
renormaiized pseudovector interaction, that is, the usual
pseudovector interaction with the renormalized coupling
constant f The secon. d. order potential is, therefore,
identical to the usual one except that it has the re-
normalized coupling constant instead.

Y2=—(T'T') (g'. V) (g'V)
4x S

The fourth-order potential is given by Fig. 3(a).
Figure 3(b) does not give a different graph since the
crossing of pion lines is already included in the shaded
areas. Further, we see that in Fig. 3(a) we are counting
the same graph twice, and we must divide by two for the
correct S matrix. It is

S S] $2»

I, I', and Z are given, after using the symmetry
property of (3), by

where

F'=2ab,

Z= aa+bb,

i ~ A (kp) C(kp)
Ct = -dkp,

(22r)& J (kps o122) (kp2 o1 2)

and similar expressions for bb, ub, and au.
In the calculation of the 6rst terms of ac, we meet

with some trouble, since the contribution from the pole
ke =0 gives a term which is proportional to 1/e. That is,

1
—

1
S=—2 ib(0), I

—I(" ')
2ie (22r)2 Efls)

gi.kgs. kei& *
X dk +

~ ~
~

COg

We can easily see, however, that this term is the repeti-
tion of the second-order energy and does not contribute
to the fourth-order energy. After this has been omitted,
all the integrals are well de6ned. The quantity multi-

plying —22rib(0) in S gives the nuclear potential.

p& [(TIT2)2gl .V gl. V g2. V g2. Vg(y s)

+ (T1T2)2g'1 V gl. V g2. V g2. V Y(y s)

+ r 'r, 'r,2r 2g'V „g'V g' V g' V Y(y s)
+r, r r, T, rr'V„rr'V, rr V*g' V„Z(y)&))v=s=z,

their lowest-order expressions, which are, as is well

known, very poor approximations.
After substitution of (1) for S;, S consists of four

terms:

S= 2—2rib(0) ~ ~[( T'r 2) 2g' kg' qir'kg2 qX
J

+ (Tl rs) 2g 1 .kg 1 .qg 2 .qg 2 .k Y

+T.lr.lr2r, sgl k,gl, qg2'kg'2'qY

+T 1 ' r r g' kg' qg qrr kz jgi(k q) —xd3kd8q

S=—QX
(22r)'

I ( &i@is'Iik)(i —vis'Ii —
k&

(ko' —»') (e' —~2')

where the suffixes 1 and 2 on S label the two nucleons. In
order to obtain the usual perturbation-theoretic fourth-
order term, we simply replace the scattering matrices by (a) (b)

' The Wick-Chew-Low method was applied to this problem by
Sato LS. Seto (private communication) j.

FIG. 3. Feynman graphs for the fourth-order nuclear potential.
Figure 3(b) is not needed for the calculation (see text).
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where, Y, and Z are functions involving the coupling
constant and cross sections. Since their complete ex-
pressions are rather long, we shall write here the

simplified expressions obtained by assuming that a.»» and
0»3 are zero.

="(y &) = ——Eoo(y, &)+
p,
' 9mp, '

dp
X —~ss(p)PE-„o(y, )s+G-„(oy, )sJ

1 I' e dpdq+, ~ss(p)oss(q)
162m'2 ~ ~ co„or~

regular. Xn this case the matrix element for the scat-
tering part depends trivially on the pion's momentum:
it does not depend on the momentum, since an S wave is
emitted or absorbed.

The dispersion relation for S-wave pions, within the
framework of the static model, was derived by Oehme. s

We write the scattering matrix of S waves as

(j q I
~

I
s k) =2rr@(ko qo)—

XpD(ko) r,r;+E(ko) r; r;$e'* &" o&'(8)
where

2x 2x&p (kos —p )
D(ko) (ul+2us) — (ur —us)+ I

3 3p )

Xt:17'-.-.(y,s)+23~-.-.(y, s)3,

f' r dp
Yb' s) = —~ss(p)LE-"(y, s)+G-"b,s)j

31Ip orp

5
t ) dpdq

+ oss(p)~ss(q)
54m'~ ~ ~ or„cg

XP'-.-.(y,s)+G-.-.(y,s) 3,

2srko (kos —ps )
(ui —us)+I

3 E 2sr )
2'

E(ko) =—(u,+2us)—
3 p

t' dp 0 s+20 r 0'3

X . +-
or, 3(or~ —ko —so) or,+ko —so

t

."dp o,(p) os+2a &

X
~ o or& oo& —ko —zo 3(or&+ko zo)

(9)

~(y, s) =—,Eoo(y,s)+
p4 9m''

I' dP
X —»(P) t:5E-"(y,s)+9G-"(y,s)3

1
t dpdq+, I' oss(p)oss(q)

162K' ~ & 07 @AD g

Here o-; is the total cross section of the pure state for
I=s/2 and u; is the scattering length in the s/2 state.
Equation (8) is to be taken with the right-hand side of

(1), and the calculation proceeds as before. In Eq. (9),
terms involving cross sections are small compared with
other terms. The scattering lengths u; are proportional
to 8;, the S-phase shifts, whereas the 0; are proportional
to b,~; and 8; are small. Thus for practical purposes, D
and E can be written as

X t.17', ,(y,s)+96, ,(y,s)),

where Ii and 6 are given by

1 p k sink(y+s)
E"(y,s) = dk,

2(2rr)sys ~ oo&(or&+X)(or&+rts)

2 2vrkp

D(ko) =—(ur+2us) — -(ur —us),
3 3p

2' 2mkp

E(ko) =—(u&+2us)+ -(ui —us).
3 3p

(10)

1
t

k sink(y+s)
R, (y s) = dk.

2(2rr)sys(X+@) ~ (ors+X) (ors+p)

In these expressions, the terms proportional to f' are
fourth-order terms of perturbation theory.

V. INTERACTION OF S-VIVE PIONS
WITH NUCLEONS

Little is known about the mechanism of S-wave
interaction, since elementary theory fails to explain the
large splitting of the phase shifts 5» and 83. Perhaps the
creation of nucleon-antinucleon pairs might play an
important role. Still we assume the static approxima-
tion, implying that momenta of nucleons can be neg-
lected. Also we assume that the interaction is suQiciently

In fact, Kq. (10) gives a fairly good 6t with the experi-
mental points calculated from Orear's phase shifts.

From (10), we have a fourth-order nuclear potential
due to S waves:

(ur+2us)s t'kr(2p, x)q
V„=—p,

'
18~ & (Ix)s )

(ur —us) ko(2I"x) kr (2px)+(r'r')~', +, (11)
36sr (px)s (px)'

This potential corresponds to the two-pair term of the
usual fourth-order nuclear potential. Two points are to
be noted. One is the damping of the pair term. The
potential (11) is very much smaller than the usual one
due to the repulsive force of S-wave pion-nucleon
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interaction. The other point is that (11)is dependent on
r spin. This is due to the mysterious splitting of bj and
83. The potential corresponding to the one-pair term is

f' 4 ~dp
V,„=8~ (ag+2aa) —

F 0 (x)+— —0 33 (p)F,(x)
p 97K ~ N&

f' 5 dp
x ~0(~)+ ' —

3 (p)G (&)
.p' 18m " o)„

1 ( k sink(y+s)
F),(x)=P'y v. dk

2(2~)'ys ~ cog((vg+X)

1 ( k sink(y+s)
G, (x) =p'„v.

2(2m)'ys ~ (oy+X

The splitting of bi and 83 has the consequence that
S-wave pions contribute to the electron-neutron inter-
action and to the charge distribution around the proton.
These interactions are also proportional to a~ —a3. These
points are discussed in a separate paper.

VI. CONCLUSIONS AND DISCUSSIONS

The theory of pion-nucleon interaction is greatly
simplihed by assuming the static model. In this case, a
matrix element depends trivially on the spatial mo-
menta, and it is easy to calculate the value of the matrix
element oG the energy shell. Thus the expectation value
in the one-proton state of any quantity bilinear in the
pion 6eld can be rigorously expressed if the total cross
sections are known.

'The approximation of static interaction is of course
not valid if high-energy pions are involved. The
anomalous magnetic moment of the proton, for instance,
depends rather sensitively on the cutoff. Therefore,
numerical values obtained by this method cannot be
taken too seriously. The nuclear force problem, on the
other hand, is an example to which the static model can
be applied. If the internucleon distance is a pion

Compton wavelength or larger, only low-energy matrix
elements are important and the present method can be
safely applied.

It is interesting to note that, so far as P waves are
concerned, identical results can be obtained from a
different approach, namely, by the Wick-Chew-Low
method. The present approach, however, does not need
the explicit interaction Hamiltonian, and can be gener-
alized to the case of 5 waves for which the interaction is
not known.

The technique of extending matrix elements to the
case of virtual pions is not limited to the scattering part
only. If the structure of an e vertex (sums of graphs
with two external nucleon lines and e external pion
lines) is known, either experimentally or theoretically,
the calculation of the S matrix is very much simplified.
For instance, the proton expectation value of a quantity
quadrilinear in the pion 6eld can be calculated from the
4 vertex.

Rules for constructing the S matrix are as follows.
Draw as many points on a paper as the number of
nucleons in question. Then draw as many pion lines
linked to these points as he wishes. Twice the number of
lines represents the order of the graph. Replace each
pion line by the propagation function. Replace each
nucleon point by the e vertex if n-pion lines start from
that point. Divide by an appropriate number" in order
not to count the same Feynman graphs many times.
Finally integrate over all virtual pion momenta to
obtain the S matrix. This way of computing the S
matrix gives far better convergence than the usual
perturbation expansion if the internucleon distance is
not small.

The author wishes to express his gratitude to Pro-
fessor J. R. Oppenheimer and to the Institute for
Advanced Study for the hospitality which has been
extended to him.

"This number can be obtained as follows. Two or more pion
lines are called equivalent if they start from the same point and
end on the same point. In a graph, lines are classified according to
equivalence. If there are m nonequivalent classes, containing
ni, n&, ~ ~ ~, n equivalent lines, this graph must be divided by
niln2f n~!. In the examples of Secs. III and IV m=1 and n1=2.


