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Quantum Calculation of Coulomb Excitation. M1 and Ml-E2 Mixed Transitions
and Classical Approximation*
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(Received July 2, 1956)

Formulas are derived for magnetic-dipole Coulomb excitation, including spin e6ects. Numerical results
are presented graphically. The mixed M1-E2 transitions are similarly discussed, and the simple pure-mixed
analysis is shown to apply except for anomalous cases of slight interest.

A classical approximation is discussed in detail, and applied to higher multipoles.

I. INTRODUCTION
' ~LKCTRIC dipole and electric quadrupole Coulomb

excitation have been discussed in detail in previous
papers. ' The present work concerns itself erst with
magnetic dipole and mixed magnetic dipole-electric
quadrupole Coulomb excitation. Secondly, a classical
approximation to the general Coulomb excitation
function is presented and discussed. In terms of this
approximation reliable results for the general multipole
can be obtained; the E3, E4, 3f2, and 3f3 excitation
functions are explicitly discussed and curves presented.

The determination of the multipolarity of an experi-
mentally observed Coulomb excitation is of prime
importance, and not always straightforward. The
straightforward procedure, for example, would use the
energy dependence of the total cross section. However,
in some instances this type of measurement alone may
not suKce, and, in fact, may not even diGerentiate
Coulomb excitation from a nuclear reaction, ' particu-
larly where the energy resolution is not good or where
thick targets must be employed. A comparison of proton
to alpha-particle yields may likewise provide a test of
the multipolarity, but this is not always feasible. In
such cases, and as corroborative evidence, the further
measurement of the angular distribution of the y rays
serves to identify the process. To this end, the particle
parameters must be known to better accuracy than is
given by any classical approximation, and so must be
calculated quantum-mechanically. In contrast, to this
situation (see Sec. IV), a suitably defined classical
approximation su%.ces for the calculation of the exci-
tation function, and hence the total cross section, over
the entire range of experimental interest.

For mixed M1-E2 transitions, such as generally

obtain for odd-A target nuclei, measurement of the
angular correlation affords a sensitive means of deter-
mining both the relative probabilities of the two modes
of decay and the relative phase (plus or minus) of the
nuclear matrix elements, just as in p~ cascades. 4 As the
experiments of McGowan and Stelson' have shown,
such a directional correlation, when combined with a
polarization-direction correlation to eliminate ambi-
guities, can yield valuable nuclear data. These are
precision experiments, however, and it is essential to
note that whenever such a mixed transition exists, the
correlation is in principle a mixed-mixed correlation.
This is, of course, due to the fact that for Coulomb
excitation both the excitation and decay usually involve

- the same nuclear levels. Although mixed-mixed corre-
lations in general have been dificult to interpret, for
Coulomb excitation considerable simpli6cation results
from the fact that the same mixture is involved, since
the process is a reaction rather than a cascade.

Estimates of the relative probabilities of Mi versus
E2 excitation using the classical approximation indicate
that the mixed process is unlikely to be of general
importance. This is hardly surprising since the Coulomb
excitation is primarily an electric process. Nevertheless,
it is not clear on these grounds that the mixed process
is entirely without interest, since (1) the interference
enters as the square root of the ratio of excitation prob-
abilities, (2) the size of the mixture coeflicient for the
interference term, bs(istt, 2e), has never been calculated,
and (3) the mixture terms are usually very anisotropic.
Despite these possibilities, the results presented below
indicate that except for anomalous cases the mixed
excitation process need not be considered. This state
of affairs greatly simplifies the analysis of Coulomb
excitation experiments involving mixed transitions,

*~or& performed under the auspices of the U. S. Atomic since the excitation may be considered as pure electric
Energy Commission quadrupole and the decay as mixed 3f1—E2 p emission.' Biedenharn, McHale, and Thaler, Phys. Rev. 100, 376 (1955);
Biedenharn, Goldstein, McHale, and Thaler, Phys. Rev. l01, 662 Even though magnetic excitation is similarly ™
(1956); Thaler, Goldstein, McHale, and Biedenharn, Phys. Rev.
105, 1567 (1956). We refer to these papers as I, II, and III, 4L. C. BiedenharnandM. E. Rose, Revs. Modern Phys. 25, 729
respectively. (1953).

'This was brought to our attention by Dr. J.P. Schi6'er ia con- 'P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc.
nection with his work on the proton bombardment of Ni (un- Ser. IX, 1, 164 (1956).
published). ' E.g., $ —+ $ transitions where the entire anisotropy arises from' J. H. Bjerregaard and T. Huus, Phys. Rev. 94, 204 (1954). mixture.

1643



L ~ C. BIEDENHARN AND R. M. THALER

probable, the 3f1 case has been examined for the sake
of completeness. It is found that, neglecting spin effects,
when properly defined the classical approximation for
the magnetic dipole excitation function is good over a
very large range of its variables. Moreover, the angular
correlation particle parameter a2 is shown below to be
equal to unity everywhere. The spin, however, can
enter in a significant way. For protons, spin corrections
of the order of 10—30% may be expected. It is shown
below that further calculations to take account of the
spin eGects are unnecessary since the required param-
eters are proportional to the already calculated E2
parameters.

II. SUMMARY OF FORMULAS

The total cross section for magnetic dipole excitation,
without consideration of spin, has been given in I, Eqs.
(10), (12), and (87).r In the long wavelength approxi-
mation these results take the form:

1(k,) (2J,+1)
l(fili~ r~»lls)'

2 (ki& I 2J,+11

( 8xZte
x

l i P l(l+1)(21+1)I'I,I, (1)
&3ktkokc')

As shown in the appendix, the calculation of the
directional correlation particle parameters yields a
very similar result, namely,

bo(M1) =bo'(M1) —31s'bo (E2) )

bo'(M1) =bo'(M1). (6)

The primed terms represent the contribution of the
convection currents alone. Thus if the incident particles
have no spin, the value of a& b&/bo

——is exactly unity, and
the (p,7) direction correlation differs not at all from
a yy correlation between the same nuclear states. On
the other hand, if the spin magnetic moment is nonzero,
it is clear from Eqs. (4) and (5) that the general case for
nonvanishing magnetic moment requires only the
computation of bo'(M1), since the b„(E2) are given
in II.

To consider the possibility of mixed M1—E2 exci-
tation in any generality is quite involved but, for-

IQ
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x I I I I I

I

tity for Mi excitation, including spin eR'ects, is then

bo(M1) =bo'(Mi)+-', Is'bo(E2),

bo (M1) =Q l(l+1) (2l+ 1)I 1, 1.

where we have used the de6nition of the Coulomb
integrals, I~~, to be:

. $ ~ .06 (5.4Sx 0 )

( 5.10 x 10 I)

(1.18 x 02)

II1.= drr F1(s),,ktr)FI. —
(s)x,kor).

0

(2)

(e.4

(5.50 x 10 )

(2' x IO 2)

The inclusion of spin eGects can be readily taken into
account, although the treatment (see Appendix) is
somewhat lengthy. The result is

3 (koq (2J'r+1~
a~~(spin) =-I 'I —

I l l (fili~ r&»lls)'
Ek, i (2I;+1)

( 8orZte ) l(l+1) (2l+1)
xl I'I„i

(3ktkokco/ 1 (2l—1)(2l+3)

3 l(l—1) 3 (l+1)(l+2)+— I'1—o. 1+— I'1+x, I (3)
2 2l—1 2 2l+3

C*.6

f * 1.2

(L29 x10 )

I 6.56 x 10 5)

(5.57 x 10 5)

(1.75 x 105)

(9.16 x 10 )

(4AI2x10 }

( 1.54 x 10 4)

(5.80 x 10 )

Here p, represents the spin magnetic moment of the
incident particle in nuclear magnetons.

It should be noted that the term in curly brackets in
Eq. (3) above is exactly the same as the sum that occurs
for the total cross section in E2 excitation LII, Eq. (1)j,
where it was designated as bo(E2). The relevant quan-

6O
OA

I i i i s s s I

1.0

$*1.6

f ~ 1.8

I s & i i i i I I

10

(L08 x 10 8)

(5g)8 x 10-6 )

7 It is useful to note at this point, that —despite the discussion
of I, page 381—there are no center-of-Inass effects for the total
cross section in Coulomb excitation, and for the gamma corre-
lation such effects are negligible for even the lightest target nuclei.

Fxo. 1. Plot of 1og~oLao(3/Il)/p'1 os v, for various typical values
of g. The numbers in parentheses represent the values of the limit:
lim„„ao(M1)/p'=9/6kr'falsi($).

See reference 4, pp. 745 G.



QUANTUM CALCULATION OF COULOMB EXCITATION 1645

tunately, is unnecessary. This circumstance is a con-
sequence of the fact that for the emitted p ray the
M1 and E2 competition is such that all terms must be
considered, while for the excitation, the E2 process
greatly exceeds the M1 (for typical values by 10s).
Hence one need consider only the cross terms, and
these enter only in the directional correlation. More-
over, the spin magnetic moment can make no con-
tribution to the correlation for unpolarized beams. In
this approximation we may write

W(8) =Wr(8)+25(hk/Mc)XAPs(cos8). (7)

Here Wr(8) is the directional correlation for a pure E2
excitation and a mixed E2—M1 decay, which involves
only the b„(E2)previously given. The Wr(8) is nor-
malized so that the angle-independent term is unity.

0 I l I I I I I I I I I I I

I 3 5 7 9 II l5
17

Fre. 3.The E2-MI mixture function X /see Eq. (9)j ss u plotted
for various values of $. The g 0 curve lies below the )=0.15
curve.

by the following formulas as derived in the Appendix:

l (l+1)(2l+ 1)
X= [b,(S2)]-'P, I ll

& l (2l—1)(2l+3)

l (l+1)(l+2)
cos(o l rr4-2)I«Il+s, l

2l+3

(l 1)(l) (l+1)
cos(o.~

—o~ s)I«I~s, ~ . (9)

0 2 4 6 6 I '
l2 l4

FIG. 2. Percent spin contribution to the magnetic dipole cross
section for protons plotted against g for various values of (.

The "mixed excitation" term in (7) is a product of
several factors. The factor 8 is the square root of the
the probability of Mi to E2 decay, and the sign of the
square root is the sign of the ratio of reduced matrix
elements for this decay. The factor A is related to the
details of the y emission, but is of the order of unity in
size. In detail it is given by

A=C'"t W(1jr2jf, J;2)(C'"t tW(2jr2jf J 2)

+25C'"t tW(2jy2 Jy, J;2)
+bsC"st tW(1jrl jy' Jr2)). (8)

The numerical factor hk/Mc=E~/Mcs (~10 4 to
10 ') contributes greatly to reducing the importance of
this cross term. Finally the factor ), which alone
depends upon the Coulomb excitation process, is given

III. NUMERICAL RESULTS

In view of the fact that electric processes are so
greatly favored over magnetic processes in Coulomb
excitation (for particles of nucleonic mass), the nu-
merical results are presented in abbreviated form. For
magnetic dipole excitation, only the function bs'(M1)
is required. This function is shown in Fig. 1. In many
respects this function is similar to the be(EI) and shows
the same logarithmic in6nity for small excitations.
(The latter may be seen from the fact that I&&~l ' for
~0 and hence bs'(MI) behaves like Zl '.)

Calculation of the functions bs'(MI) and X is facili-
tated by the fact that the integrals that appear in the
sums are the same integrals required for the E2 case;
see II, Eq. (2), etc.

The magnetic dipole case is of interest in that it
illustrates the magnitude of spin eGects in a favorable
case. Figure 2 shows that contribution of the spin
magnetic moment to M j. Coulomb excitation.

Finally, Fig. 3 shows the function X, which describes
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the mixing of 3f1 and E2 excitation. It is clear from
this figure that X 1, so that the mixed excitation
process need not be considered in analyzing the experi-
ments, since hk/Wc&10 '.

From this one sees that the only asymmetry between
k; and kf contained in the cross section occurs through
the ks/ki factor in evidence in Eq. (1)."The excitation
function is therefore symnset~ic in the variables 1 and 2.
This leads to a reasonable prescription for defining the
excitation function. Thus one ought to use in place of
the classical limit for the (m, ts, /) given in I, Eq. (81)
the symmetrized form:

(m)rs)/) —s (klks/rll'92) In-l, m($&e) ) (10)
s K. A. Ter-Martirosyan, J. Exptl. Theoret. Phys. (U.S.S.R.)

22, 284 (1952).
'P K. Alder and A. Winther, Phys. Rev. 91, 15/8 (1953);

CERN Report T/KA-AW-1, October, 1954 (unpublished).
"Sherr and Christy, Williamson and Goldberg, Temmer and

Heydenburg, Class and Cook, Stelson and McGowan, among
others."L.Landau, Physik Z. U.S.S.R. 1, 88 (1932)."E.Guth, Phys. Rev. 68, 280 (1945}.

~4 It should be noted in this connection that the reduced matrix
elements used in this work are, aside from phase, not symmetric
under interchange of J; and Jy.

IV. CLASSICAL APPROXIMATION

Calculations have been presented of the E1, E2, and
M1 excitation functions as obtained in a quantum
treatment. It is of interest to survey these results and
inquire as to just how much they deviate from the
classical results. This question is, however, not very
well-defined, for, although there exists a unique classical
limit, generally one means not this but rather some sort
of classical approximation. The point at issue is that the
classical limit fails to distinguish kf from k;, and this,
in turn, is rather inaccurate.

An example of this situation is aGorded by the
original formulation of Ter-Martirosyan, ' which was
later extended numerically by Alder and Winther. "
These authors treated the classical cross section in terms
of the parameter P= (ZiZse'/2kv) (DE/E). It was soon
noticed, however, at many laboratories, "that the more
symmetric variable g=rir —q;=ri(p —1), which reduces
to the above in the classical limit, improved agreement
with experiment by a significant amount (~35/o in
one instance). Although the justification for the sym-
metric variable $= rlf —rl; was later given in many papers
and is implicit in the exact dipole-bremsstrahlung results
of Sommerfeld, it is of interest to note that this variable
was explicitly given in the early work of Landau, '2 and
later by Guth. "

By considering the reciprocity theorem, one can
easily arrive at a more satisfactory form for the classical
excitation function. That is, one has in general the
relation:

(2J;+1)k,so.; r= (2Jr+1)kf'or;

where

I„i, „(g,e) = " dtexpL —iP(e sinh/+/)$

X(e+cosht+i(e' —1)& sinh/$

XLe cosh/+1ji "—" (11)

e' = 1+P—/ritrls. (12)

X (2/+3)(C + +
ppp) W (LLl/+1; 1 /+m)

X (m, I.+2, l)', (14)

a suitable form for the classical excitation function can
be obtained as follows.

The classical limit requires that l be considered large.
Thus one must also obtain the classical limit for the
various angular momentum functions that appear in
Eqs. (13) and (14). From the explicit formulas for these
functions" it is readily seen that

L(L+m)!(I.—m)!]'*
C + ppp~ fol L+m

2'"L-'(L+ )jul(L — )3
=even integer, (15a)

=0 for L'+m= odd integer, (15b)

W(L, L / l+1; 1 /+m) ( )~—
(L+m)(L+1 —m) &

X— (16)
4/L (L+1)(2L+1)

While the explicit results given in Eqs. (15) and (16)
are mell suited for actual calculations, a more elegant
form utilizing the normalized spherical harmonics can
be given. With some manipulation, it can be shown
that:

C'i '+"ppp (4a/2L+1)'( —)~Fr~(pr/2, 0). (17)

By utilizing this result, the classical limit for the product

C+ + W(pLppI l /+1! 1 l+m)

can be simplified, upon noting that the classical limit
of the Racah function is proportional to C~'~

"G.Racah, Phys. Rev. 62, 438 (1943).

If one introduces this symmetrized limit into the
general definition for the bp(mL) and bp(eL), that is,

bp(eL) =—P(C' '+
pw) (2/+1)(m, I+1, l)' (13)

l m

and,

bp(mL) —=I (I.+1)(2I+1)Q(/+1) (2l+1)'
lm
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that is

C'+'z'+"sssW(L L I I+1 1 I+m)
~(—)~L2rr/l(2L+ I)j&Cz'n ter,™1(rr/2, 0) (18a)

= (—) l rr/I L (L+I) (2L+I)')&

x L(e/ee) F:(e,0)g, .„(Igb)
The last step utilized the relation between the angular
momentum operator L, and the vector addition coef-
ficient C~'~, „when one operates on the spherical
harmonics.

A classical approximation for the exact excitation
function, bo, then takes the form

bo(eL)—-',s.(2L+1)—'(t),r)s)' (k,ks)

Xpl Fr,"(s./2, 0)g' «eI'r„~(f,e), (19)
m Jq

the Copenhagen group, we ftnd that a symmetrized
classical approximation for the excitation function is
given by

8~
bs(eL)=l l (~ms)' '(ktks)'f. ~(k), (21)

(2L,+1j
Sx

bQ(BlL)—
l l (Y)tris)' ~(krks)~'f 7, ((), (22)
(2L+1j

with
1 ( 4s.

f (8= l

-—
I &L~ -(l,0)j'

X «eIsr„„(p,e), (23)

1~ 4~ qs t'ef.,(g) =
l

—-l zl —I,-(e,o) l

2 42L+I j m Eee j s

bp(mL) —-,'(2I.+1)—'(r) t),)'—(k,k,)z+'

( (jl ) f'

xZI —I'i-
l- &ee

e(e' 1)deI'—~r, ~(g,e) (20).

It is interesting to note that parity conservation,
which was expressed by the properties of the vector
addition coefficients in Eqs. (13) and (14), has carried
over very nicely into the properties of the spherical
harmonics evaluated at 90'. The occurrence of the angle
s/2 is readily interpreted from the classical orbit
picture, since the motion takes place in a plane so that
the components perpendicular can be set equal to zero
(i.e., e= x/2).

The classical functions dehned by the summands of
Eqs. (19) and (20) (functions only of $, it should be
noted) have, aside from a normalization, been given
previously by Ter-Martirosyan, ' by Alder and%inther, "
and by Osborne and Rose."Utilizing the notation of

(e rn (El)

'I . I . I, I
5 ~ 4 5 '6

Fro. 4. The ratio, R(q), of the quantum mechanical excitation
function to its classical limit plotted against g for the E1, E2, and
M1 cases. Parametric values of g are indicated in the curves. The
dotted curve is an extrapolated E2 result for large g.

"R.K. Osborne and M. E. Rose, Oak Ridge National Labora-
tory Report No. 1685, 1954 (unpublished).

The approximation given by the formulas above is
expected to be good only for q))2, in accordance with
Bohr's discussion of the classical limit. " The fact is,
however, that this symmetrized form is really extra-
ordinarily accurate, even for p= 1, for the Ei., M1, and
E2 cases explicitly calculated.

For the (E2}zero-energy-loss case the accuracy of the
classical limit for the excitation function was noted
earlier. "However, for this case the excitation function
is already in a symmetric form, since k& ——k2. For
P /0 (kr Wks), the symmetrization greatly improves the
approximation; in fact the $~1 and )=0 cases are then
comparable in accuracy.

Another important property of this symmetrized
classical approximation is the fact that the ratio of the
exact quantum excitation function to this classical
excitation function is insensitive to the value of g, and
hence is primarily a function of r)."Thus the case )=0,
which is quite easy to treat exactly, can provide a
further improvement to the above classical approxima-
tion.

This situation is illustrated in Fig. 4. In this figure
we have plotted the ratio, R(rl), of the quantum excita-
tion function to the "classical" excitation function

l
i.e.,

the ratio of the left to the right-hand sides of Eqs. (21)
or (22)j for typical values of $ in the EI, E2, and M1
cases as taken from the exact quantum mechanical
calculations.

For the E2 case, we have plotted the function
R~s(ri, p) ~s r) for )=0. The curves for $)0 are indis-
tinguishable from the )=0 curve for r) &-', . While the

'~ N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
18, No. 8 (1948)."G. Breit and P. B.Daitch, Phys. Rev. 96, 1447 (1954);L. C.
Biedenharn and C. M. Class, Phys. Rev. 98, 691 (1955).

"For E2 transitions, this was noted earlier by K. Alder and
A. Winther, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd 29,
No. 19 (1955).
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Unlike the F2 curve for large $, this limit is of little
practical consequence, since all values of experimental
interest center about the )=0.1 curve. The magnetic
dipole case is similar in many respects to the electric
dipole. The excitation function for $= 0 diverges
logarithmically, and Rsr&(r),0)=1. Unfortunately, in
this case no results in closed form are available. How-
ever, it appears that the spread is more marked for the
3fi case than for the Ej.

It appears reasonable from the results presented in
Fig. 4 that an improved approximation to the exact
excitation function can be obtained from

FIG. 5. The ratio function R(n) ss n in the limit k= 0 for various
multipoles. These functions can be used to estimate the quantum
mechanical excitation functions; see Eqs. (28)-(29).

lim Rat(ri, &) =2v3Fe(n, 2r))Fe'(r), 2ri), (26)

where Fs(r),p) is the radial Coulomb wave function and
Fe (r),p) is its derivative with respect to p. This curve
is also plotted in Fig. 4. For values of g&2, this curve
is given by the asymptotic formula~

Rst(n, eo)~1+0.1728ri '~' —0.0496n 4~'+ . (27)
2' Unlike the Ej case treated below, we have not succeeded in

obtaining any limit g—+~ for Rz2(q, g}.
L. C. Biedenharn, Phys. Rev. 102, 262 (1956}.

"Biedenharn, Gluckstern, Hull, and Breit, Phys. Rev. 97, 542
(1955).

deviation from the )=0 curve is not negligible for r) &s
the spread nevertheless does not appear to be very
great. Extrapolation of the available numerical data to
large values of g yields the dotted curve" shown in
Fig. 4. It is believed that for (&4, the dotted curve is
an upper limit to the function Rss(ri, p). All the pub-
lished numerical results lie between this curve and the
)=0 curve.

In the electric and magnetic dipole cases, Rat(n, g) = 1
for all values of rf, for )=0.For the electric dipole case,
the )=0.1 curve also appears. For all practical purposes
this curve is indistinguishable from the curves for all
values of $ for which the exact calculations were per-
formed, except for the region r)&0.2, )&0.01. This
behavior is a consequence of the logarithmic divergence
of the F1 result as $—&0. It can be shown that for small
values of $ the ratio approaches the limit

logri —Re P(1+it))
Rst(ri, ~) 1+ (25)

&(1)-log(l El/2)

The limit at )=0 is therefore unity. However, this
result is only weakly dependent on P, so that the )=0.1
curve yields a much better approximation to the
function Rxt(rl, p) in the experimental region than does
the )=0 curve.

The summation formula" for the Ej case allows one
to obtain a closed form for the limit as $—+0o of Rsr (r),$).
The result is

)2L+1y '
bo(eL')=I I (rftr)&)' ~(&&~s)~R r, (ri 0)f«(]) (28)

8x )
f 2I+1) '

be(mL)= l l (rf tris)'- (k,ks)&8~)
&r'R-~(n 0)f-~(k), (29)

where f«(() and f L, ($) are the classical functions
tabulated by Alder and Winther. " To this end, we
have calculated the )=0 ratio function, R(n, 0), for
electric multipoles with A&4 and magnetic multipoles
I. &3. These results appear in Fig. 5.

Finally it should be remarked that the correlation
parameters b„(v)0) are much less well represented by
the classical results. The principal reasons for this
appear to be that the eGects of the lower angular
momenta (where the classical results are poorest) pre-
dominate, and that the sums contain terms of differing
sign (unlike the excitation functions) so that cancel-
lation among terms tends to emphasize the error.

In order to increase the usefulness of the results obtained here
and previously, the equivalence between this notation and that
of A. Bohr and collaborators is given. The reduced electric mul-
tipole matrix elements used throughout this work are normalized
to unit charge and have the dimensions of (length)s. The equiva-
lent matrix element used by Bohr is

(up+1)
B(eL) =l — l(fllr Y&lls)'(Z2e)' (30)

(2J;+1)
Similarly, for the reduced magnetic multipole, one has

(2Jf+1 e
B(~L)=l — (fili~ r'~»ll~)' (31)

(2J;+1 L(L+1)
The total cross section for the general multipole assumes then

the two forms~

(4) 2Jr+1 f Ss )s (nuns)
(fllr'F~"Iff)'

l(4p 2J;+1 (2L+1) (kgk2)

/ks) B(eL)
(nin2)' (hks) ~ 'for. , (32)

(kryo (Zme)'

"K. Alder and A. Winther LCERN Report T/AW-1 (un-
published)7 have given the classical approximation for the general
multipole cross section. Equations (32) and (33) diifer from their
results in two respects: (a) the factor (e;/er) = (k~/k2) is misprinted
and should be inverted, (b) a factor ks/kr is missing for o (mL).
For the E1 and E2 cases, Eq. (32) agrees exactly with their later
results LK. Alder and A. Winther, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 29, No. 19 (1955)7.
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( Jf+ l . . I' ~~" 'i'r g~ l' tkrl (33(mL)1 /Zie'l'—l(fllf'~ r'I"»II+)'
I II Ib(~L)=I —

II
—

II
— l(~m2)' '(k~kr)' 'f-~ (»)

Ekr) (2J;+1) t,kck~kr j (2L+1] kk&~ ( e' ) ( kc )
The correlation parameters o„=b„/bo are pure numbers so that there exists no ditirculty in comparing these results.

APPENDIX

The differential cross section for Coulomb excitation may be written as

do (8) kf (2M ) '
I

+IH'fl'
dn k;& 5s)

(A-1)

A

where 8 denotes an average over kf and all unobserved spins and H;f is the energy density matrix element between
initial and final Coulomb distorted plane wave states 4 (k,) and %(kf), where the %'(k) are as given in I, Eqs. (8),
(9), and k=k/k. Explicitly, one has

H 'f p s 'Der, p (y)(j sffss
I j& 'A f' '(&) I jsms)(j sffss

I 3'
f (&)'I jt~r)(+(kf)Xt sfl3v'A f.(&)I+(k')X;,.') (A-2)

where the sum is over J, M, x, J', M', x', m2,

for magnetic multipoles,
A~,„=LJ(J+1)7-3f,(kr)LV, , ((l,y)7

fl f,=t'k '~)&A z~

(A-38)

(A-3b)

for electric multipoles, f~(kr) represents either the regular spherical Bessel function fq(kr) or the irregular function
hf(kr) for outgoing waves as indicated by the symbols & and & respectively, and e=0, 1 for electric and magnetic
multipoles, respectively. The symbol j& stands for the total (spin and convection) nuclear current operator, j„
for the impinging particle current operator. The symbol y in Eq. (A-2) denotes the angles of the gamma-ray direction.

The reduced nuclear matrix elements (j m, llj& A f (&)IIjsmt, ) are as defined in I, Eqs. (6) and (7).
Before introducing the Coulomb reduced matrix elements, it is necessary formally to couple the spin and orbital

angular momentum through the relation

x:,.I'~..—.=Z(1(x)s S(x)f II(x) s ~ I
—o)x..,

K'

The reduced matrix elements are then dered by

(xfwl j. A~f-'(&) lx I ')=(—) +'(xfllJ~llx')(j (x')J j(xf)~fl j(x')J ~' —~),
similarly to I, Eqs. (10) and (11).The differential cross section may then be expressed as

(A-5)

do(8) kf (2M~'
I 2(—)'(JJ'vOI JJ'1 1)W(JjsJ'js; —jsv)t:" '+" '(jell J~IIjs)(jsllJ'~'ll js)*

dn k, & ks)
&& (JJ'vOI JJ'I —1)W(jrJ j&'; j») (jsllJ~II ji) (jsll J'~'Il ji)~,(J~J'~')F, (cosg), (A-6)

where p indicates a sum over Js., J's.', A, J',vs', and v (even). Here r denotes e—e'. The particle parameters,
a„,are given by

(JJ vOI JJ 1 1)a (J~J's.') =—Q s' ' expLi(o (—o.,')7(uvoluoo)l (x+1)(2r+1)7'
(KK'K" )

)& (x"
IIJ7r))K) (K 'll J'rr'Ilx')*W(j Jj 'J', j"v) (2j"+1)

I (2j+1)(2j'+1)7'(—) '"W(jlj'3', -'v). (A-7)

For electric multipoles, omitting effects due to radial magnetization and convection currents as negligible, the
calculation proceeds as in I and yields the result that

(23+1)(2j+1)(2J+1) 3

(x'll Jellx) = (—se) (LJl'OIIJOO)( —1)'+f' ~ kW(il'jj', J-', )(k-iks) '
4s-J(J+I)

dr F t(rit, ktr)F ~ (ris, ksr) —(rkf (kr)). (A-8)
dr
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For magnetic multipoles, considering first convection currents alone, the Coulomb reduced matrix element may
be expressed as

(eh
(lt'p'I j~ A~ I~@)„,,o;„=—

I II J(J+1)] &((ksr) 'Fpx„,
„

Ir 'hqLF~, sr (rXI) I(ktr) 'Fot„,„), (A-9)
EMc

through the use of Eq. (A-3) and by replacing the gradient operator in j& by ir —rXL. Using the inverse of
of Eq. (A-4) and the properties of the vector spherical harmonics'4 the indicated integration may be performed to
give, for the reduced magnetic matrix element for convection terms alone, the result

(~'IIJmII~) =s(4s) &(eh/Mc) (2J+1)(2/+1) P(/+1) (2/+3) (2j+1)]i(—)'+* "(/+1 Jl'0
I
/+1 J'00)

00 h;
XW(JJ/+1/; 1/')W(jlj '/'; —,'J)(ktks) ' drF&(r)t, ktr)Ft (t)s,ksr) —. (A-10)

0 r

To evaluate the spin contributions, orie introduces the spin magnetization current j= (chic/23f c)VX(o); and
again utilizing the properties of the vector spherical harmonics, one obtains

(~'p'Ij. o,.A~z Isa)=(ehkp/2~c)I J(J+1)] '((ksr) 'Fix, , I{(h'z+(kr) 'k~)o (rXI)&J, sr-
+ (J)(J'+1)(kr) 'o. r Yz, sr) I (ktr) tF Of, , „).(A-11)

The properties of the spin-angle functions, p„„,greatly facilitate this integration, yielding the Anal result that

(K IIJtNIIs)„;,,„»=(—sehkp/2M c)L4s J(J+1)] '(—)
' '*+~L(2/'+1) (2j+1)(2l( —s)+1)]'(/( —s)/'JO Il(—s)/'00)

t"
~ kgb

XW(/'j'/( «)j -'J')—(ktks) ' (s+~') drF& (r)t, ksr)F&(r)t, ktr)I kj+
kr)

kg—J(J+1)
~

drF) (r)s,ksr)FE(gt, ktr) —. (A-12)
0 kr

The complete reduced matrix elements for magnetic multipoles is the sum of Eqs. (A-10) and (A-12). In the text
the long-wavelength approximation is employed for the Coulomb integrals in the reduced matrix elements, i.e.,
hz(kr)~ —i(2J—1)!!(kr) ~'. In this limit the Coulomb reduced matrix elements are explicitly real, and the
radial integrals for E2 and M1 are all of the same form, vis. :

I(( ——)" drr-'F((qt, k,r)F(.(r),,k,r).
0

The particle parameters that must be calculated for mixed E2 Mi excitation are —a„(2e,2e), c„(im,im) and the
mixed terms c,„(2e,lrN) and a„(im,2e). The a„(2e,2e) are calculated as in I and are given by I, Eqs. (20)—(22). For
convection currents alone the a„(im,im) are easily evaluated to be

(ehyst 9)
(11vOI111 —1)a.(imim)=

I I I

—I(ktk&k') 'P(2/+1)s(/+1)(2/+3)t(/+11/OIl+1 100)]'
3m& &4 )

XW'(11 /+1/; 1/)I(P(//v0 I/l00) { }, (A-13)
pvhere

{ ~ ~ ) = g (—1)~"'(2j"+1)(2j+1)(2j '+1)W(jlj 'l; —,'v) W(jlj'l; sr)W(j lj "l; —',1)W(j'/j"l; st1)
=2(—)'+'W(iv//; 1/).

The sum in curly brackets can be carried out by using the orthonormality of the Racah coefficients and the sum
rule quoted below. "Thus for convection currents alone:

f'ehqst 3q
up(imim) =~,(i~irrc) = —

I I I

—
I
(ktksk') ' & /(/+1) (2/+»&«.

&Mc& &4 )
(A-14)

s4 H. C. Corben and J. Schwinger, Phys. Rev. 58, 967 (1940). J. M. 81att and V. F. Weissitopf, Theorefsca/ ftrgcleor Physics (John
Wiley and Sons, Inc. , New York, 1952), Appendix B. See also M. E. Rose, MNltipole Fields (John Wiley and Sons, Inc. , New York,
1955).

's L. C. Biedenharn& J. Math. Phys. Bl, 287 (1953).



QUANTUM CALCULATION OF COULOMB EXCITATION 165i

In order to evaluate the spin contribution to the magnetic dipole particle parameters, it is necessary to evaluate
spin-convection current cross terms as well as spin-spin contributions. The former turn out to be zero, since terms
linear in the spin cannot arise from unpolarized beams. The spin-spin contribution is

pe/Ip, q' ( 1 q
(1»0I111—1)~.(1~1~)"'--i.= I I

(kik2k') 'I
I Z ~' ' expCi(« —«)3(/P&I«'oo)

(Mc) &322r) «'"'

X$(2/+1) (2l'+1)$&(2j"+1)(2l"+1)(2j+1)(2j'+1)(—)"' &

XL2/( —K)+Ij&$2/( —K') +IjI(/( —
K)l"10

i /( —«) l"00)(l (—«') I"10
i /( —K') l"00)

X (K+K"+2)(K'+K"+2)I«"I& &-W(P'j"l( K)j; -',—1),
W(l"j"l(—K')j'; —', 1)W(jij'1;j"v)W(j lj 'l'; —',v) = (eh@/Mc)2(k&k2k2) 2(9/82r)2 "(11v0~ 1100)

X{(22v0)221 —1) ' P (2/+1)(2l'+1)i' '(—)'+' expfi(oq —o~)g(/2P'0)/200)(/'2/0)P200)

XW(ll"v2; 2l')I «-Ii.~"}. (A-15)

The reduction implicit in the right hand side of Eq. (A-15) is obtained through the use of the identity

(2j"+1)(2j+1)(2j'+1)(—)&"—'*L2/( —K) +I]-'*L2/( —«')+ 1j&(/(—K)l"10
~
/( —

K)l"00)
) )'I )I I

X(/( —K')P'10
~
l(—«)l"00) (K+K"+2) (K'+K"+2)W(j1j'1;j"v)W(lj l'j ', -', v) W(l"j"l(—)j; -,'1)

(2/+1) (2P+1) &

XW(P'j"/(-") j'; l 1)= (-)'+'(36) (2-) L(22vo
~

221 —1))-'
(2P'+1)'

X (111v0
~
1100)(l2/"0

~
/200) (l'2l"0

~
l'200) W(ll" v2; 2P). (A-16)

Identifying the right-hand side of Eq. (A-15) with I—Eqs. (20)—(21) yields the result quoted in Eqs. (4)—(6)
of the text.

Similarly the mixed particle parameters a2(1222, 2e) =a2 (2e,1m) (in the limit of zero retardation) may be cal-
culated to be

3(30)' (e25k~
(1220 )121—1)b2(12222e) =

( ~
(k&k2k') ' P expt i(o & o& )]i—' '(/P20 ~/P00) (2j"+1)(2j+1)

X (2j'+1)(l'2l"0
~
P200) ( )' I+&"+"W—(PVj "j '; 2 -,')I«"L(/+ 1)(2/+3) (2/+1)]&

X(1l+1 P 011/+1 0)0W(11 +/1 i/1 /)W(jlj l i ~~1)I&&"(2/+1)(2/+1)

XW(j1j'2; j"2)W(jlj'l', 2 2), (A-17)
where the sum is taken over all the indices.

Using the Racah function identity quoted earlier, "one obtains the result that

P (2j+1)(2j'+1)(2j"+1)( )'" &W (j Ij '2; j"2)W—(j lj V; —', 2)W(/"l' j"j', 2 2)W (j lj 'V';
2 1)

~')'I )I I

=2(—)'+'W(2P'2l; l'1). (A-18)
The explicit 6nal result is then

(3/15 j&) t
e2kk ) l(l+1) (2/+1) l(l+1) (l+2)

$2(12t22c) =
( ( I ( (k2k2k )— I2i~+ expt i(~l &~+2)$Il1I/+2, l

42r ) EMc ) & (2/ —1)(2l+3) (2l+3)

which gives Eq. (9) in the text.

(l—1)l (l+1)

(2/ —1)
exp| i(o.2

—o 2 2))Ig)I ~2, (, (A-19)


