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Direct Interaction in Neutron Inelastic Scattering~
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The direct interaction contribution to the cross section for the inelastic scattering of neutrons leading
to the excitation of a single particle of the target nucleus is derived by using the method of distorted waves.
The interaction potential between the incident neutron and target nucleon is taken to be a three-dimensional
delta function, and the incident and emergent neutrons are assumed to move in the complex potential of
the "cloudy crystal ball" model. The wave functions for the target nucleons are described in terms of the
single-particle model.

The theory is applied to the excitation of the 6rst level in C".The angular distribution of the emergent
neutrons is forward-peaked. The magnitude of the cross section is small, however, and the e6ect will most
easily be observed at neutron energies which lie between the levels of the compound nucleus.

INTRODUCTION this energy range can also proceed. by formation of the
compound nucleus and by interaction with rotational
and surface modes described by Bohr and Mottelsons
and calculated recently by Brink and by Hayakawa and
Yoshida. The compound-nucleus inelastic scattering
will usually be the dominant mode. This scattering has
a characteristic angular dependence in two limiting
cases. If only a single level or suKciently many levels
of the compound nucleus are involved the angular dis-
tribution of the inelastically scattered neutrons will be
symmetric about 90'.r If a few (but more than one)
levels of the compound nucleus need to be considered,
interference between the various modes of decay can
lead to an asymmetrical distribution only if the levels
differ in parity. On the other hand, the direct inter-
action process will usually not be symmetrical about
9G', but, for example, can be peaked in the forward
direction.

This discussion implies that observation of the direct
interaction process will be most readily made if the
target nucleus is light. Then the levels of the compound
nucleus are widely spaced and one can look between
resonances for the direct interaction eBects. In between
resonances, the inelastic cross section via compound
nucleus formation is reduced to the order of g,xA.'
)&41'„(E)1'„(E')/D', where X is the neutron wavelength
divided by 2sr, I'„(E) is the neutron width at the
incident energy E, E' is the Anal neutron energy, D is
the distance between levels, and g, is the usual statistical
factor. This reduction is considerable and may be
enough that the direct interaction process becomes
dominant. Even if the two processes are of the same
order of magnitude, measurements of the angular dis-
tribution of the inelastically scattered particles both

CCORDING to the shell model of the nucleus, '
neutron inelastic scattering can lead to the exci-

tation of a single particle in the target nucleus. Such
transitions can occur as a consequence of the direct
interaction between the incident neutron and. a nucleon
in the target nucleus. At intermediate neutron energies
(E„&14Mev) this process is of considerable impor-
tance' and has been discussed theoretically by Austern,
Butler, and McManus. ' These authors consider inter-
actions with the surface nucleons and employ the
impulse approximation to compute the cross section.
The target nucleus is regarded as opaque, and as a
result their Born approximation integrals are limited to
regions outside of the nucleus. In this paper we shall
consider inelastic scattering by direct interaction by a
method which is valid not only at high energy but also
in the low energy domain where the impulse approxi-
mation is less valid and where the nucleus is com-

paratively transparent. ' As a consequence of the latter,
the interaction may occur inside of the nucleus. Meas-
urement of direct interaction effects will then provide a
measure of the neutron-nucleon interaction inside the
nucleus and may thus shed light on the shell model

itself as well as related effects in nuclear reactions.
We turn now to the question of the observability of

the direct interaction process. Inelastic scattering in
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between resonances and in the resonance region will
permit the separation of compound nuclear effects. In
this connection we note it will be necessary to consider
the interference between the two modes of excitation.

In the main body of this paper we have estimated the
direct-interaction cross section for the inelastic scat-
tering of neutrons. With only minor modification the
theory can be applied to direct-interaction processes in
inelastic proton scattering and to (zz,p) and (p, zz) reac-
tions. We have employed the following crude model and
approximations which we expect will yield results of
correct qualitative character and order of magnitude.
We have taken the interaction between the incident
neutron and the struck nucleon to be a three-dimen-
sional delta function, an assumption which permits
important calculational simplifications. This interaction
is not unreasonable physically, however, since we expect
the incident neutron to move in the average field of all
the nucleons in the nucleus, the particu1. ar force of
interest being then a Quctuation away from this average
which is felt only when the nucleons are very close. '
We have not included exchange forces except those
which, like the Majorana type, reduce to an ordinary
force for a delta function interaction. The target nucleus
has been described in terms of the single-particle model
as follows. The nucleus has been considered to consist
of a core of spin j, together with an orbital nucleon of
angular momentum / and spin s, which are combined to
give a spin of j. The spin of the target nucleus J is
composed of j, and j. The interaction of the incident
particle is taken with the orbital nucleon only, the core
being regarded as inert.

Certain of the approximations which have been made
for higher energies are not made here, however. The
effect of the nucleus upon the incident neutron is
included through the use of the method of distorted
waves in which the empirically known nuclear potential
is used to describe the elastic scattering, and the inter-
action between the incident neutron and the target
nucleon is considered throughout the entire nucleus.

INELASTIC SCATTERING

We consider a neutron of wave number k, energy E,
incident upon a target nucleus of mass number A. The
Hamiltonian for the system is

H =Ho+ T(rp)+P ~V(rp, r~).

Here, Hp is the Hamiltonian of the target nucleus, r,
are the coordinates of the ith constituent nucleon, lp are
the coordinates of the incident neutron, T(rp) is its
kinetic energy, and V(ro, r;) is the interaction energy
between the incident neutron and the ith nucleon in
the target nucleus.

We expand the wave function describing the system,
4'(rp, r), where r represents the coordinates rr, , r~,

8 Lane, Thomas, and signer, Phys. Rev. 98, 693 (1955).' N. I . Mott and H. S. Massey, The Theory of A. tomic Collisions
(Oxford University Press, London, 1950), second edition, p. 144 ff.

in a set of product functions

where

(3)

(3'o—&o)so= —Vorsi, (5a)

(~1 +1)sl Vlo&0 (Sb)

where BCo= T+ (k I + V'I &) V&&= (~
I Z V'I t), and

Ez E eo. We may so——lve t—he second Eq. (5b) to obtain

&1 V10&0
El+ze —Kl

(6)

where the ie insures that we are considering only
outgoing waves. Substituting in Eq. (5a), we obtain

~o+ Vol
Er+ze —Rr

~10 Ep &0 0)

so that the effective potential for so (and therefore the
empirical potential had we included all the effects from
the higher states) is

V.tr = Voo+ Vor Vro.
Er+ze Kr—

We could now introduce the solution of Eq. (7) for so
to obtain v~. Another procedure, and the one we shall
use, assumes that the effective potential for v~ is given
approximately by Eq. (8). We do expect some energy

The e„are the energies of the various states of the target
nucleus arranged according to increasing energy. The
function so in Eq. (2) gives the nonexchange elastic
scattering, e~ gives the nonexchange inelastic scattering
with excitation of the first level of the target nucleus,
etc. We now insert expansion Eq. (2) into the
Schrodinger equation for the system and obtain, after
premultiplication by fo and integration over the coor-
dinates of the target nucleons, the following set of
equations:

LTy.,—Z+(big Vlk)].,+g (big VI~)s„=O, (4)
'b nAk i

where

(&IX' Vl~)=(A Z' V(«, r')0-)
The complete solution of these equations is of course

impossible. We shall outline, however, the form of the
solution in sufficient detail to indicate the origin of the
average potential for vp and the perturbing potential
that gives rise to the excitation of higher states in the
target nucleus. For this purpose it is sufhcient to discuss
only the equations for vp and v&. The generalization to
the more complete system is obvious. Consider, there-
fore,
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dependence for V,ff, but over the energy ranges of
significance here this should not be important. We can
therefore rewrite Eqs. (5) in the following form:

malism. "We first note that

S(r—r,)=P(—)-Y(r., —~; Q)

XY(L,m; Qo)&(r —ro)/r', (13)

where

(&+V.«—&0)&0=0,

(7 +Veff +1)01= Qloi og

(9a)

(9b)
where the I"'s are the usual spherical harmonics. Then
the matrix element is given by

Q 10 Vl0+ (Vi1 Voo) Vlo
Bi+is Xi—

=Z~(—)'+ ' '(2L+1) '
X (J'J M'M—

l
J'JI.M M')—

x (J'l[Yr, l] J)Y(I-, M M';—Qo)R(ro)R'(rp), (14)

—Voi Vio Vio. (10)
Bi+is—Xi Xi+is—Xi

It is clear that the general solution of the complete
set of Eqs. (4) may be put into form Eq. (9) where, of
course, Q and V,«will not be given by Eqs. (8) and
(10).Note that V.ff and Q are not Hermitian as would
be expected. At this point we must note the physical
meaning of the quantities appearing in Eqs. (9).

V f& is fairly well known empirically. We take the
simple square-well form4

V.«= —Vo(1+ii ), r &R

r&R,

where Vs=42 Mev, /=0 05, an. d R= (1.26&&+0.7)
X10 "cm.

The quantity Qio in Eqs. (9b) and (10) is a matrix
element of an operator Q. This eGective interaction
operator is the remainder of the interaction term in
Eq. (1) after the average interaction with the target
nucleus, V,~g, has been subtracted. We therefore expect
Q to be of very short range, i.e., to be important only
when two particles, the incident neutron and a con-
stituent nucleon of the target nucleus, are so close
together that the field of all other (2 —1) particles in
the nucleus may be disregarded. This suggests the form

Q=g p; b(r,—ro). (12)

This omits any many-body forces which may be
expected to be present in the nucleus.

With the assumptions contained in Eqs. (11) and
(12), we now have a completely defined set of Eqs. (9a)
and (9b) for determining the cross section for the ex-
citation of the first excited state of the target nucleus.
We must next evaluate the matrix element Q~p which
is only a function of |.'p. The angular momentum state
of the single target nucleon, whose transition is the
result of the inelastic scattering, is given by f(j,m) in
the ground state and P(j',m') in the first excited state.
The target nucleus has the angular momentum quantum
numbers (J,M) and (J',M') in the ground and first
excited states, respectively. We shall assume only one
term of Eq. (12) has any effect (this approximation
will be discussed later). Its matrix element may be
readily evaluated by means of the Racah tensor for-

where R(rp) and R'(rp) are the radial functions for the
orbital nucleon in the ground and excited states, respec-
tively. To continue further, it is necessary to evaluate
the reduced matrix element of I'L which in turn depends
upon the model. We assume that

J= Ie+I and J'= j,+j', (15)

we have
j= I+8 and j'= 1'+s, (17)

(l"j'll Y~lli~j) =(—)'+' "(4 ) 'L(2j+1)(2j'+I)
X (2l+1) (2l'+1))1(l'l00!I'lIO) W(l' j'lj; sL). (18)

Combining these results, we obtain

Qip g( )——& ' —&'+ —'i—' '+'(4 -)irlf(2J—+I) (2J'+1)je
XQL i~(2L+1) '(J'J M'M

l
J'JLM—M')—

XIVv(J'j'Jj; j.L)Z(l'j'lj; ',I.)-
X Y(L, M—M'; Qo)R(ro)R'(ro), (19)

where the function Z is dered by Biedenharn, Blatt,
and Rose"

We comment on the neglect of interaction with each
particle in the core. The eGect of these terms is to
a great extent cancelled by the results of the anti-
symrnetrization of the orbital wave function with that
of the core. The matrix element QJp must still be of form
Eq. (19) except for a numerical factor whose value
would depend upon rather model dependent properties
of the ground state and first excited state wave functions
of the target nucleus. However, since g is not known we
shall in the remaining equations combine g and this
numerical factor to form a new constant g'.

We finally wish to expand the right-hand, side of (9a)
in spherical harmonics. For this purpose we write

00(ro) = g fr. (ro) Y(L',0), (20)
Lfm

"G. Racah, Phys. Rev. 62, 438 (1942).
"Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249

(1952).

where j, is the spin of the core. Inserting these eigen-
numbers, we obtain

(j'j.J'll Y.ll jj.J)
= (—)'~~' 'L(2J+1)(2J'+1)$&

XVV(j'J'jJ j.L)(j'I!Y~llj) (16)
Finally, from
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1
, (r) ~ H „r,, e([4't (L"+1)m'/2)

~00
(23)

where we have omitted the spin dependence in view of
the spin-independent nature of Eqs. (11) and (12).
Combining this with Eq. (19) and employing the ex-
pansion for a product of angular momentum states, we
obtain (dropping the subscript on ro)

f/~ovo = (g /4r) ( )—&'' »'+M' P g g i~(2L +1)'
LI Lfl

x (2L"+1) :(I'I—M'M—
I
I'ELM M')—

x (L'r.oo
I
z,'r.r."o)(L'LOM M'

I
—L'LL"M M')—

xw(J'j'Jj; j.L)z(l'j 'ij; -', L)R(r)
XR'(r) fr, .(r) I'(L", M M').—(21)

The solution of Eq. (9a) then reduces to the solution
of the equation

1 d d I."(L,"+1) 2m——r'— + (Eg—V.(/) hz; r, (r)
r' dr dr r' J

R(r)R'(—r) fr, .(r) (22)

with the required asymptotic dependence

where k' is the wave number of the emergent neutron.
The asymptotic dependence of v& may therefore be
given in terms of HL"L which, in turn, determines the
inelastic scattering amplitude.

It should be noted that the analysis so far gives us
only the nonexchange inelastic scattering. There are
also contributions from processes in which the incident
neutron and the struck target nucleon exchange places.
We should only like to point out that for the interaction
potential Eq. (12) there is essentially no effect. To
prove this, it is sufficient to consider the interaction
between the incident particle and the target nucleon,
placing the parent nucleus in a passive role. For inter-
action Eq. (12) there can be no scattering in the space
antisymmetric states, i.e., in the triplet spin states. As
a consequence, the amplitude of the exchange and non-
exchange scattering must be equal so that the amplitude
for scattering in the space symmetric state, singlet spin
state, is doubled and the cross section quadrupled.
This, however, must be multiplied by the probability
of finding the particles in the singlet state which is just
(1/4), reducing the cross section to that for nonexchange
scattering.

We return to Eq. (23) and obtain the cross section as

(tt) = (g'/2~)'(~/~')'(&'/&) (»'+1)
I Z 2 2 2 2 2 2 2 (-)'~' exp[i'~(L+L."-L.-L")j

M M' L' L1' L L1 L" L1"

x[(2L'+1) (2L g'+1))'*[(2L"+1)(2L)"+1)$ '*(I'J'—M'M l/'I LM M') (I'J'M—'Ml J'JL—,M—M')

x (L'Loo
l
L'LL"0) (L,'L,oo l L,'L,L,"0)(L'LOM M'

l
L'LL'M— M') (L,'L,O—M M'

l L,'L,L—,'M M')—
XW(r'j 'rj;j,L)W(J'j 'rj; j,Lg)Z(Pj 'ij; ,'L)Z(lj''ij; 2—Li)Hr,"z;Hr i"r i'*

X I'(L", M M') //*(Lx", M— M')
l
. (24)—

This expression can be simplified somewhat by the methods discussed in reference 11. We obtain finally

( g' g m//)' k/'p

0(~)=
I I I

—
I I

—I(»'+1) & & 2 & & P(—)'(2m+1) '*exp[-', im(L)"—I,"+I)'—I.'—e)]
(8~5/2) EA2) (, 0) L' 0 Iz' o L L''Lz" n

x (L'I 00
I
L'LL"0) (I&'Loo

I
I&'LL&"0)(I&"L"00

I
I&"L"eo)w'(I'j 'rj;j,L)z'(1j''lj; -,'L)

XZ( gL' L"('L"L; Le)Hr, r, Hrg"r)'*T(r/, ,0), (25)

where the sums on L, L", L&", and e are limited by the
vector inequalities

lz.' —I
I
&r."&L'+L, lr.' LI &I,,"&L'yL, —

I
i—Pl &L, &i+P,

I
L "—L"

I
«&L "+L"

I
L '—L'

I
&& &L('+L'

and L"+L'+L, L)"+L)'+L, I+l'+L, and L,'+L'+r/,
are all even. The function I"(e,o) is

the e=o term in Eq. (25). We obtain

(g $ (5$) (k ) co

(r=
I

—
I I

—
I I

—
I
(2~'+1) 2 E Z

42m) Kh') 4k ) L, =o z. z."
x (I 'Loo

I
L'LL "0)2w'(Ij''Jj;j,L)

xZ (P~'f~; 2L) lH.„..
I

. (26)

V(N, O) = [(2N+ 1)/4s.)~Z„(cos~). With Eqs. (25) and (26), the problem of evaluating
the inelastic cross section requires the solution of dif-

The total inelastic cross section is given by 4s times ferential Eq. (22) subject to the asymptotic condition
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of Kq. (23). The equation is solved in terms of a
Green's function by

where

kz-z;(r) = Gz" (»I»')zizz (r')r"dr',
0

~z (r) =R(r)R'(»)fz (r)

(27)

Fz-(r) —+ —exp[iiIz, "(k')j
Xcos[k'r —-', ~(L"+1)+gz,"(k')). (29)

We choose the irregular solution which has the following
asymptotic form:

Iz"(r) —+ —exp[ik'r —2' (L"+1)+2igz (k')7. (30)
g-+00 P&~

The quantity p&" is a complex phase shift. Ke note that
the homogeneous form of Eq. (28) is identical with the
equation satisfied by f&, except that the wave number
k is replaced by k'. Therefore, qz, "(k') is the scattering
phase shift as given by the "cloudy crystal ball" model4

evaluated at the energy of the emergent neutron.
The Green's function may now be expressed in terms

of Iii," and Il," as follows:

Gz" (r I
r') =ik' exp[—iqz" (k')$

X (31)
Fz, .(r)Iz; (r'), »'&r

z
—+ Fz, (r') exp[i-k'r —~is (L"+1)+izz, (k')$. (32)

f'~00 y

We may now obtain the general expression for HI, -L,.
by inserting the above result into Eq. (27). We find

F00

Hz" z, ' =i exp[igz, (k')j Fz .(r')R(r')

and Gz, (r I
r') satisfies the differential equation

1 d d L"(L"+1) 2m
+—(Ei—V.ig)

df' dt' t' S~

XGz-(r I
r') = —8(r—r'). (28)

YVe distinguish two solutions of the homogeneous form
of (28), Fz (r) and Iz (r), where F and I are regular
and irregular at the origin, respectively. We note that
asymptotically

where jL, and e& are spherical Bessel and Neumann
functions, respectively. As k' approaches zero it is
clear the Ill," and therefore HL,"I, will go to zero as
(k')".

The total cross section and the angular distribution
are, of course, sensitive to H~ z, . Near threshold,
(k'—+0) the I."=0 term will make the principal con-
tribution. In this case Eq. (26) gives

t'g )'t'm)'(k $ t' 1
~=

I

—
I I

—
I I

—I(2I'+1)Z
I

42~) Eh,') E k) z 42L+1)

XIV'(I'j'Ij 'j L)Z'(I'j'Ij 'kL) IHo&l' (34)

so that near threshoM 0- O'. Similarly, we may see
directly from Eq. (25) that the angular distribution
near threshold will be spherical. Both of these results
are, of course, expected.

Simplifications will also occur when the energies E
or 8' fall within a resonance of the "cloudy crystal ball"
model. Then F&" or f& or possibly both will be large
within the nucleus and one may expect that Hl. I,
would be correspondingly large. If both E and E' are
within such a resonance, one would expect that the
terms in Eqs. (25) and (26) involving only a particular
l." and I.' to be dominant. The angular distribution
in this case will be for the most part symmetric about
90'. This, however, will not hold when one of the ener-
gies falls outside the resonant region. Then many terms
in Eq. (25) will contribute to the angular distribution
which will then depend upon the details of the situation
under investigation.

We conclude this section by listing one case for which
Eq. (25) simplifies greatly. If J=I'=0, i.e., if both the
ground and excited states of the target nucleus have
zero spin, then

~(~) = I

—
I I

—
I I

—
I I 2 i"H-v(N, 0) I' (35)

)g'
~

' )nsq '
t k'q

&2m) Eh') & k ) n

BORN APPROXIMATION

For purposes of qualitative understanding it is useful
to solve Eq. (9b) by the Born approximation rather
than using the wave functions given by the "cloudy
crystal ball. " We of course realize that such a calcu-
lation can only serve as a guide and as a consequence
we do not give any of the details. The cross section for
inelastic scattering in the Born approximation is

~(~)= I

—
I I

—
I I

—I(»'+I)
pg' q

' (my ' (k'y

&2 ) &k~) Ek)

XR'(r') fz:(r')r"dr'. (33)

Note that at suSciently large distances

Fz (r) -+ [cosy' jz (k'r) —singz, ez (k'r)]exp(i»jz ),

where

fz= ~ RR'jz, (Ik Iz'Ir)r'd». —(37)

XQ W'(Jj Jj 'j L)Z'(I j Ij;,zL)I fz, I' (36)
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Fzo. 1. Normalized angular distributions in center-of-mass sys-
tem of neutrons inelastically scattered from C'» with excitation of
4.43-Mev level for incident energy of 5, 6, and 7 Mev.

Here k is the wave number of the incident neutron, k'
of the outgoing neutron.

From this formula we can deduce some simple results.
The angular distribution near threshold is Rat, but as
the energy increases it becomes rapidly anisotropic.
Even when J' is not equal to zero, the angular distri-
bution is not zero near zero deQection since even here
k does .not equal k'. Since the argument of jl, in Eq.
(37) will generally be relatively large for neutrons
undergoing 180' deQection, we will generally find that
the distribution is peaked in the forward direction.
Similarly we And that for relatively large excitation
energies the magnitude of the cross section is reduced
since again k—k is large. Again, if the change in the
spin of the target nucleus is large so that I. cannot
assume small values, the cross section is reduced. When
these two factors combine, the over-all effect is to
reduce the cross section by an order of magnitude. For
example, the inelastic cross section for excitation of a
level 4.4 Mev above the ground state and involving a
spin change of 2 is roughly (1/10) the cross section for
the excitation of a level l Mev above the ground state
and involving no spin change, all other factors being
equal.

APPLICATION TO CARBON

As we pointed out in the introduction, the most
favorable set of circumstances for the observation of
this effect at low energies mill occur in light nuclei.
Here, the levels of the compound nucleus are suKciently
widely spaced so that in between them their contribu-
tion to the inelastic cross section will be a minimum.
We have therefore evaluated the cross section for the
direct process for a light nucleus, namely, C". Unfor-
tunately, recent evidence indicates that there are

several resonances in the energy region near the first
level so that this nucleus may not be a good target for
testing our results.

The chief problem which arises in the application of
the preceding analysis to a specific nucleus is the deter-
mination of the functions E (r) and E'(r). In the present
calculations, we have assumed that the 4.43-Mev level
arises from the transition of a single particle across the
split 1p shell. " To obtain specific representations of
E(r) and R'(r), we have used wave functions of a square
well with radius equal to the nuclear radius, and with
a depth adjusted to give the observed binding energy
of the ground and first excited state for a 8-function
spin-orbit potential located at the well edge. For C"
me use J=O, J'=2, j,=» j= » j'=~» /=l'=1. The
elastic scattering cross section calculated with the
parameters of Eq. (11) fits the experimental data only
very roughly. However, since we are mainly interested
in qualitative results we have not attempted to adjust
the parameters of the well to obtain a better 6t,
although this procedure should be followed in a more
quantitative study of inelastic scattering. The computed
(normalized) inelastic angular distributions for three
different incident energies are shown in Fig. 1.

The total cross section is given in Fig. 2, and shows
a characteristic rise with energy. The scale is, of course,
relative since we have no way of evaluating g'. However,
it is useful to make a rough estimate. We take for g the
integral over the singlet nucleon-nucleon potential, ~iz. ,

g=kr~ V, (r)r'dr.

We take unity for the factor arising out of interactions
with "core" particles, minimizing the resultant cross
section. The constant (mg'/2mk')' then turns out to be
about 100 mb, indicating that under favorable circum-
stances, e.g., spin change zero and low excited level,
the cross section for the direct process can be consider-
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FIG. 2. Total cross section for excitation of 4.43-Mev level in
C'2 as a function of energy in center-of-mass system using inte-
grated singlet nucleon-nucleon potential for interaction constant.

"D.R. Inglis, Revs. Modern Phys. 25, 390 (1953).
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able. With this value the scale for the abscissa in Fig. 2
is, as shown, of the order of millibarns, and we see that
the cross section for this case is very small. On the other
hand, a similar calculation by Margolis and Pollack"
for a zero to zero transition, with the excited level 1 Mev
above ground, gives a cross section of several tens of
millibarns, very close to the maximum of 100 mb.

n B. Margolis (private communication).
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Neutrons from the D-D Reactions*
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An investigation has been made of the neutron spectra resulting from D-D reactions for a range of incident
deuteron energies of 4.75 to 7.33 Mev, using a pulsed-beam time-of-Bight method. In addition to mono-
energetic neutrons from the reaction D(d,a)He', a continuum of neutrons is observed corresponding to
D(d, rtp)D. The yield oi the latter reaction has been measured at about 0.5-Mev intervals at zero degrees,
and at an energy of 6.3 Mev an angular distribution has been obtained for both reactions. At 6.3-Mev
deuteron energy and at zero degrees the yield of the continuum for neutron energies above 0.95 Mev is 17%%u~

of the yield of monoenergetic neutrons. The yield from both reactions is strongly forward in the laboratory
reference frame, and for the breakup process increases rapidly with increase in energy above threshold.

INTRODUCTION

HE exothermic reaction D(d, rt)Hes is commonly
used as a source of monoenergetic neutrons for

energies above 2.5 Mev. The neutrons from this
reaction are the only ones produced in a D-D process
up to the bombarding energy for which breakup of one
of the deuterons becomes energetically possible. Above
that energy a continuum of neutrons is to be expected
due to the three-body process D(d, rtp)D in addition to
the monoenergetic group due to D(d, rt)He'. Such a
continuum has indeed been observed for 14-Mev
deuteronst although at that energy breakup of both
deuterons is energetically possible. It seemed worth-
while, therefore, to make a detailed examination of the
neutron spectra from the D-D reaction at energies
above the threshold for breakup, that is, above a
laboratory energy of 4.45 Mev. Such data should be
useful as input data for other experiments which use
energetic D-D neutrons, and are pertinent to the
physics of the reactions of light nuclei.

METHOD AND APPARATUS

Neutron spectra were obtained by a straightforward
application of the pulsed-beam time-of-Qight techniques
previously described, ' using the pulsed deuteron beam

*This work performed under the auspices of the U. S. Atomic
Energy Commission.

' Bogdanov, Vlasov, Kalinin, Rybakov, and Sidorov (private
communication); J. Exptl. Theoret. Phys. (U.S.S.R.) (to be
published).' L. Cranberg and J. S. Levin, Phys. Rev. 103, 343 (1956).

output of the large Los Alamos electrostatic accelerator.
The gas target was 6 cm long, 6lled with D2 gas at a
pressure of 60 cm of Hg, and was sealed oG from the
vacuum system by a nickel foil 1.5 p thick. Design of
the target was such as to minimize the amount of
material in the immediate vicinity of the gas which
might scatter neutrons. Although this was the 6rst
time a pulsed deuteron beam was used no special
problems were encountered. A high neutron back-
ground 6lled the target area even when there was no
beam on target, due presumably to the deflected beam
striking low-Z material, but the shielding around the
detector was very effective against this background.
The detector used was the same as the one previously
described' and was mounted at a distance of j..5 meters
from the target. The average target current was about
0.05 pa and the running time for a spectrum was about
ten minutes.

RESULTS

Spectra have been obtained as a function of angle
at the primary deuteron energy of 6.3 Mev at ten
degree intervals up to 40 degrees, and at zero degrees
data have been taken in approximately O.S-Mev
intervals from 4.75 Mev to 7.33 Mev.

Figure 1 shows the time spectra obtained at zero
degrees with and without deuterium in the target for a
deuteron energy of 6.3 Mev. These spectra were
recorded in the same way as those described previously. '
Although the raw data are in the form of a 100-channel


