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expression (1)."The resulting values of X for the S,'1
and V,T admixtures are

Xs, r = —0.93+0.09,

Xv, z =+0.96+0.04.

These quantities are indistinguishable from the case of
a pure Fermi transition, which would yield values of
either —1 for the scalar invariant or +1 for the vector
invariant. The A" mirror transition is, therefore, con-
siderably more favorable for a recoil experiment than
was previously indicated by the values, X8, z = —0.36
and Xv, z=0.68, calculated from the old ft value of
3400 seconds. An experimental measurement of X for
A", however, would have to be corrected for the weak

"This method of predicting the angular correlation coeKcient
was suggested by D. C. Peaslee.

lower beta groups before the results could be compared
with the above predictions.
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A theory is developed of the continuous radiation spectrum which accompanies nuclear capture of atomic
electrons. It is shown that quantitative predictions of the spectrum intensities must take into account the
inQuence of the electrostatic Geld of the nucleus on the radiation process. This is accomplished by evaluating
and making use of a particularly simple form of the Green's function for electron propagation in a Coulomb
Geld. In a Grst approximation which treats the atomic electrons nonrelativistically, the spectra radiated
by electrons captured from S-states are shown at all energies to have the form x(1—x)', where x=E/E, .
Radiative capture of electrons from E-states is shown to produce a spectrum which becomes extremely
intense at low energies, where it merges continuously with the characteristic x-ray spectrum. Certain
relativistic corrections to the S-state radiative capture probabilities are evaluated and shown to bring
about an energy-dependent reduction of the intensities of the corresponding spectra. Functions are tabu-
lated from which the spectra for allowed capture from various orbital states of any element may be deter-
mined. The calculated spectra are found to be in satisfactory agreement with those observed experimentally.
In particular, the unexpectedly high intensities found at low y-ray energies are explained by the radiatively
induced capture of electrons from I' states.

1. INTRODUCTION

LTHOUGH capture of orbital electrons is one of
the more common forms of nuclear decay, the

indirect nature of the methods by which it has been
detected has limited its usefulness as a source of nuclear
data. In particular the usual observation of the process
by means of the subsequently emitted x-rays or Auger
electrons has contributed only a knowledge of decay
lifetimes. The efficient analysis of nuclear p radiation,
which has recently become practicable, makes possible
a much more direct means for studying orbital capture.
This method takes advantage of the radiation which is
emitted in a certain fraction of the decay processes as
a result of sudden acceleration of charge and magnetic
moment. Although such radiation is weak in intensity,

*Present address: Institute for Theoretical Physics, Copen-
hagen, Denmark.

an emitted photon shares the large energy which is
released by the capture, an energy which would other-
wise be carried oG entirely by the neutrino. The con-
tinuous p-ray spectra which result bear an analogy to
the electron spectra of P decay. They may be expected
to furnish corresponding information on energy releases
and changes of spin and parity.

An early calculation of the radiation to be anticipated
in E capture was made by Morrison and SchiG. ' They
predicted that the intensity distribution would have
the form x(1—x)', where x is the ratio of the p-ray
energy to the energy released in the reaction. The
observed spectra show a considerably larger number of
low-energy p rays than this form predicts. In particular,
in every element for which the spectrum is known down
to energies approaching the characteristic x-ray region,

' P. Morrison and L. I. Schiff, Phys. Rev. 58, 24 (1940).
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there is an unanticipated rapid increase of intensity
with decreasing photon energy. For certain of the
heavier elements, e.g. , Cs"', the steep rise of intensity
dominates the spectrum shape entirely, obliterating the
expected maximum at E=3E, . In a previous note'
we have indicated that this behavior is caused by the
radiative capture of electrons from states of unit orbital
angular momentum. %e have also outlined a mathe-
matical technique with which the spectra may be
accurately determined by simple analytic means. The
present paper, and another that follows, will be devoted
to explaining, by this means, the detailed shape of the
spectrum for allowed transitions, and to furnishing
quantitative predictions of its intensity.

An allowed capture process accompanied by radiation
may be pictured as taking place in two stages: an
electron emits a photon during a virtual transition to a
state from which it is subsequently captured by the
nucleus. Since an electron may be captured from any
S state, and since all intermediate S states lead to
equivalent decay processes, the amplitudes for the
transitions they define add coherently. The virtual
transitions to S states already occupied in the atom are
forbidden by the exclusion principle, but equal trans-
ition amplitudes will be shown to arise from processes
in which capture of the obstructing electron precedes
the radiative transition. Consequently, the matrix
element for radiative capture is a summation of ampli-
tudes for transitions through all S states.

If the compound process is one which leaves vacant
an initially occupied S state, the radiation is emitted
during a transition between/two spherically symmetric
states of the system. The radiation must therefore be
caused by a reorientation of the electron spin. This is
the process considered by Morrison and Schiff in the
calculation of the spectrum noted earlier. They em-

ployed free-particle wave functions for the intermediate
states and neglected the momentum of the electron in
its initial bound state. Because the process takes place
in a region in which the Coulomb field is most intense,
these assumptions prove quantitatively unreliable,
except for very energetic p rays radiated in the fields of
the lightest nuclei. By avoiding these assumptions, we

shall, in the present work, provide a theory of much
wider applicability. The possibility of a more accurate
theory is aGorded by the observation that the summa-

tion over intermediate states in a Coulomb field,
required to find the matrix element, may be expressed
exactly in closed form. Performing the intermediate
state summation will be shown equivalent to finding
the amplitude that an electron which has emitted a
virtual photon of a particular energy and at a given

point succeed in reaching the nucleus. The latter
amplitude, or Green's function, satisfies a simple

inhomogeneous form of the Schrodinger equation. The

' R. J. Glauber and P. C. Martin, Phys. Rev. 95, 572 (1954).

p-ray spectrum may be obtained directly from this
function.

Electrons initially in I' states may undergo radiative
capture by making electric dipole transitions to the
intermediate S states from which they are captured.
Although these processes are overlooked when the
initial electron momentum is neglected, simple con-
siderations indicate that their contribution dominates
the low-energy portion of the p-ray spectrum. In par-
ticular, the process in which the capture of a 1$ electron
is followed by a radiative 2I' to 1S transition divers
from the usual course of E capture followed by the
radiation of a characteristic K-series x ray only by
relaxing the requirement of energy conservation in the
intermediate state. The continuous photon spectrum
becomes extremely intense in the neighborhood of the
characteristic x-ray line and, indeed, in its immediate
region represents no more than the wing of the line.
On the other hand, the P-state intensity remains
appreciable for photon energies considerably greater
than the characteristic x-ray energy. At these latter
energies, as we shall see, no single type of virtual
transition contributes a dominant portion of the
intensity.

The sections which follow are devoted to formulation
of the transition probability for radiative capture, to a
discussion of the Green's function, and to calculation
of the spectra radiated in electron capture from various
orbital states. To simplify the discussion, nonrelativistic
bound-state wave functions will be used, in most of
this paper. In Sec. 9, however, the treatment of
relativistic corrections to the S-state spectrum is begun

by showing the inft.uence of spin-orbit coupling. To
remove the approximations made in the present paper,
which may be inaccurate for the heavy elements, a
fully relativistic treatment of the S-state spectrum will

be given in a subsequent paper. That treatment is

separated from the present one since a major part of
the problem encountered is the more general one of
developing simplified techniques for performing calcu-
lations with the solutions of the Dirac equation in a
Coulomb field. The inAuence of the screening field
generated by the atomic electrons will also be discussed
in that paper in keeping with the desire for greater
accuracy.

2. TRANSITION AMPLITUDE FOR
RADIATIVE CAPTURE

Since the problem of radiative capture involves
electrons in bound states, it is convenient to employ a
representation in which the electron field operator P(x)
satisfies a Dirac equation' containing the nuclear

'We employ units in which c=1, 5=1. Points of space-time
are represented by x„=(rit) The anticommuting matrices. p„
have normalization y„~= —1 and we define p=g*yo where yo

$+4o
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Coulomb field4 A„&'&= (0,0,0,iZe/r),

(1 8
+~A„&' ~+m P(x)(i Bx„

(2.1)

general, conserve energy. Such process are represesented
by the commutator term of (2.5), and we define a part
of the transition matrix, S2', which describes these
alone:

Our interest in the interaction of the electron field with
the radiation 6eld A „(x) is limited to processes in which
a single photon is emitted. Hence we need only employ
the part of the interaction Hamiltonian,

H&~'(x) =eiP(x)y„A„&+&(xg (x), (2.2)

where A„&+) is the portion of the field operator which
describes photon creation. Likewise our concern with
the coupling of the electron field to the nucleon and
neutrino fields is limited to processes in which an
electron is captured. Hence we need only employ the
corresponding terms of the general P-decay interaction,

H'"( )=2 "(0-(x)T"'4.(*))(x(*)T"'4(x)) (23)

This expression, an arbitrary linear combination with
coeKcients c" of the P-coupling operators, Ti", allows
for all possible interaction mixtures. The functions

@, p„, and x are operators for the neutron, proton,
and neutrino fields, respectively.

The probabilities of processes involving both photon
emission and electron capture may be found from the
second-order term of the scattering matrix, '

'

S,=— d4xi d4x2(H&~& (xi) H&a~ (x2) )+. (2.4)

Here ( )+ denotes a time-ordered product which places
the operator evaluated at the earlier time on the right.
On introducing the function e (t) = t/

~

t ~, the product
may be written as

(H&~& (xi),H&c& (x2) )p
= g{H&~'(xi)H&a&(x2)+H' '(x2)H' '(xl))

+-,'[H (*,),H (x,)j.(t,—t,). (2.5)

This expression, substituted in (2.4), effects the sepa-
ration of processes whose intermediate states are
respectively real and virtual. For the terms in curly
brackets, the time integrations indicated in (2.4) may
be factored and separately performed. This procedure
imposes separate conditions of energy conservation on
both the capture and radiative steps of the processes
described. For an atom initially in its ground state,
the terms in curly brackets describe the electron capture
processes which are followed by radiation of the char-
acteristic x-rays. The continuous spectrum of photons
accompanying electron capture, however, comes from
processes in which the intermediate state cannot, in

4See, for example, W. H. Furry, Phys. Rev. 81, 115 (1951).
The screening e8ects of the electrons are neglected for the present.

~ F. J. Dyson, Phys. Rev. 75, 486 (1949).

S2 =
2 J

d xi d x2[H&~& (xi),H'a' (x2)j
Xe(ti —t2). (2.6)

To show explicitly the inQuence of the exclusion
principle when more than one electron is present, we
express the electron field P(x) and its conjugate P(x)
as sums of the various stationary state wave functions
of Eq. (2.1) multiplied by the annihilation and creation
operators for these states.

P(x) =Q a P„(r) exp[—iE tj,
P(x) =Q at iP (r) exp[iE t7.

(2.7)

The explicit separation of the time dependence will aid
in the evaluation of S2'.

For a process in which a photon of propagation
vector k is emitted, the operator H&~' may be written
in the form'

f
H&a& (x)dr

- pif&

=2 H.&"(p)a~

Xexp[i(p —E,+DE)t]. (2.9)

This form permits electron capture from any occupied
state.

With the use of these expressions, the corresponding
matrix element of S~' becomes

(S '), ,= —Q H &~~(k)H, &a&(p)[at a,a,je, (2.10)
~Pv

where

~&O pop

exp[i(Ep —E +k)tij

Xexp[i(p —E„+DE)t2)e(ti—t2)dtidt2. (2.11)

The time integrations may be performed immediately

6 Spin and polarization indices will later be indicated explicitly.
7 The neutrino mass is assumed to vanish.

Making the usual assumptions of adiabatic decoupling as
$—+~ oo.

H&~'(x)dr =P H&ii&ip (k)atpa
4 O. , P

Xexp[i(E&i —E +k)t$. (2.8)

This operator allows a wide variety of electronic
transitions to accompany photon emission. An analo-
gous operator may be introduced for the process in
which a neutrino of momentum y is emitted' and an
electron captured. Assuming the nucleus simultaneously
undergoes a transition from its initial state i to its final
state f, changing its energy by an amount AE, we may
write
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to yield

8 = 2~i' (p+k+AE E-„
+Ep E—) (Ep E—+k)

—' (2.12)

the first factor of which represents over-all energy
conservation.

The expression (2.10) involving the electron creation
and annihilation operators may be reduced, in view of
the anticommutation properties of these operators, in
the following manner:

the origin. It is convenient, until the final stages of
calculation, to abbreviate the summation over the
di8erent forms of coupling of the spinor fields. This is
done by introducing the symbol EJ;,

Jyf p ( ( ) (2 y( ))f 2 y( ) (2.17)

for the weighted sum of Dirac matrices occurring in the
expression (2.16). We designate a matrix element of
the transition operator (2.14) for radiative capture of
an electron from the state o. by

(S2') ), , r...=27(i5 (p+k+)) E E~)—M~(k, p) &
(2.18)

2.13
where the amplitude M (k, p) is given by

This condition, that the state y from which capture
takes place be the same as the final state P of the radi-
ative transition, is a direct consequence of the restriction
to virtual intermediate states.

Substituting (2.12) and (2.13) in the expression for
the transition operator, we obtain

M (k,p) = e(2)r/k)'*

(X () xA())) A()e.V. "V ()

Ep E+k— . (2.19)

II ( )(k)H ( )(p)
a . (2.14)

Ep E+k—
This operator accounts for radiative capture of an
electron from any occupied state. It is especially to be
noted that the summation over states P is unrestricted
by the possible occupation of these states by other
electrons. Although certain radiative transitions which
would be followed by capture are indeed forbidden when
the intermediate state is occupied, the absence of these
terms in the summation is precisely compensated for
by the occurrence of processes in which the capture of
the obstructing electron precedes the radiative transi-
tion. The matrix element for radiative capture from
any state may thus be computed as if all other states
were unoccupied.

We begin the evaluation of the matrix elements
describing radiative capture from occupied electron
states by explicitly exhibiting the quantities Hs ("'(k)
and H~(c) (p), which occur in (2.14). The first of these is

The summation over intermediate electron states in
(2.19) extends over the bound states of the Coulomb
field and those of the continuum as well. The evaluation
of the individual radiation matrix elements followed by
the summation indicated would present a task of formi-
dable proportions. An alternative procedure proves far
simpler. We first carry out the summation over inter-
mediate states and then perform the spatial integration.
This is possible because the summation

A(r) A(r')

Ep E—(2.20)

(H E)Gz (r,r') yo —b(r r'), —— —

and its adjoint.

G).(r,r')yo(H E)= b(r r'),— —

(2.21)

(2.22)

which is the Green's function Gs(r, r') for the wave
equation of the electron in a Coulomb field, occurs in a
particularly simple form in Eq. (2.19).

The equations satisfied by Gs(r, r') are

where H is the Dirac Hamiltonian of an electron in a
H() (~) (k) =e(2~/k) ' )ps(r)e„y„e

—'"')p (r)dr, (2 15) Coulomb field. Written more explicitly, these equations
become

where e„ is the polarization vector of the emitted
photon. In considering allowed transitions the capture
matrix element is given by'

Hs'"(p) =2 &"(2'"'))'(xp(0) 2'"'V( (0)), (2 16)

where (T),(')y, is the matrix element of the operator
T),(' taken between the initial and final nuclear states,
and )(~(0) is the neutrino wave function evaluated at

' This form assumes the use of nonrelativistic representations
of the electron bound state wave functions.

L
—iy V' —yo(E+eA o('))+no)Gs (r,r') = l) (r—r'), (2.23)

Gs(r, r')$iy V' —yo(E+(Ao('))+m)=()(r —r'), (2.24)

where in the second relation V' is understood to operate
on the function Gs(r, r') which precedes it. The property
which renders the use of the Green's function particu-
larly convenient is the simple form it assumes when one
of its arguments, as in (2.19), is the center of the
spherically symmetric electric field. The occurrence of
this symmetrical form of the Coulomb Green's function
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of course reRects the fact that electron capture takes
place only at the position of the nucleus.

The matrix element for radiative capture written in
terms of the Green's function reduces to

G&(r,r'). Upon performing an integration by parts, we
then obtain

M (k, p) =e(2s/k)'~ (g, (0)1V~~gs s(0 r)[iy. V

M (k, p) = e(2~/k)-* (x,(0)Xy,GE. x(0,r)

Xe„y„e '"'P (r))dr. (2.25)

If the electron initially in the state P (r) is pictured as
emitting the photon while at the point r, it is evident
that the Green's function Ga s(O, r) represents the
amplitude for its subsequent arrival at the nucleus.
According to this picture the electron moves with an
energy E —k during the brief interval between the
radiation and capture processes. For y-ray energies
which are less than" 2m, a restriction imposed by the
energy releases of most E-capture reactions, the energy
E —k will lie between the limits m and —m. The
Green's function consequently cannot represent a
freely propagating wave. Instead, as we shall see, it is
a rapidly decreasing function of the distance from the
nucleus with a range that depends on the energy of the
emitted photon.

For purposes of calculation, it is convenient to express
the Green's function Ga(r, r') in terms of an analogous
Green's function for the second-order form of the Dirac
equation. The latter function, which we shall refer to
as the second-order Green's function gs (r,r'), is defined
to satisfy the equation

[—iy V' yp(E+eAp ')—+nz][iy V

+"rp(E+eA p&')+m]gs (r,r') =b(r —r'),
or11

[V +(E+eAp~'~)s —m —ice' VAp~'~]gs(r r')
= —5(r—r'), (2.26)

together with its adjoint

g~(r, r') [V"+ (E+eA p&')' —m' —ien. V'A p~'&]

h(r —r'), (2.27)

in which V" operates to the left. The function G~(r, r')
which satisfies (2.23) and (2.24) may now be written
in terms of the second order Green's function as

GQ(r, r') = [iy V+'rp (E+eA p~') +m] gz (i,r') (2.28)

= gE(r, r') [—iy V'+yp(E+eAp&')+m]. (2.29)

The matrix element for radiative capture (2.25) may
be expressed in terms of the second-order Green's
function by substituting in it the expression (2.29) for

"More exactly, the condition is that k be less than 2m minus
the binding energy of the electron in the state a. The availability
of larger energies implies that real positron emission competes
with E capture.

"The Dirac matrices n; (j=1,2, 3) and P are expressed in
terms of the y„by the relation n; =y0y;, p=yo.

+yp(E Ip—+eA p~')+m]e„y„e '"'P (r))dr

Because P- (r) satisfies the stationary state wave
equation this expression reduces to"

M, (k, p) =e(2s/k)' (x,(0)Ni;bs s(0,r)e '"'

X[—2ie V+ie„o„„k,]P (r))dr. (2.30)

The two operators e V' and e„o-„„k„are,respectively, of
odd and even parity under spatial inversion and so play
their principal roles in basically different types of
transitions.

Our attention in the sections that follow will be
devoted chieRy to methods of evaluating the matrix
element (2.30). For the present we merely note the
way in which a knowledge of the matrix element as a
function of the photon and neutrino momenta deter-
mines the photon spectrum. In particular, the total
probability per unit time m for radiative capture of an
electron from the state n may be found in the familiar
way by summing the squared absolute values of the
appropriate matrix elements (2.30) of the transition
operator. We thereby obtain

t0.=(2')—' P ~3I (k,p) )'
Sv, 6,f

X8(P+ Ip+AE E)d pdk, (—2.31)

where the summation is over the spin variable s„of the
emergent neutrino, the polarization e of the photon,
and the magnetic quantum numbers of the final nuclear
states, labelled by f This express. ion should, of course,
be averaged over the orientations of the initial nuclear
states i, an operation which is assumed implicitly
hereafter.

The integration over the momentum directions of the
emitted quanta in (2.31) is simplified by the fact that
we are in general interested in summing all of the
transition probabilities for the electrons which fill an
atomic subshell, that is, all of the electrons with a given
principal quantum number and a given orbital angular
momentum. Since completed subshells are spherically
symmetric, the only angular dependence of the resulting
photon-neutrino emission probability is on the angle
between k and p. Labeling the subshells explicitly
with the indices e and l and the states within them
with their orbital and spin magnetic quantum numbers
m and s, we may write the transition rate for a full

"The relativistic spin operator is defined as p»= ',if'»y,J-
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subshell as

'ii'at=+ jaime

= (2~')-' 2 2 (I ~-i-(k, p) I').
s„ebs 4

X&(P+k kmaa)P dPk dk (2 32)

Here the symbol k, =E„~—AE has been introduced for
the maximum photon energy available, along with the
brackets ( )~ indicating a function of the neutrino
momentum averaged over the directions of y with
p=

~ p ~
fixed. Performing the integration over the

magnitude of the neutrino momentum in (2.32), we

have

w„i——(2~')—'P P (~M„i,(k, p) ~')I
s„e nzsf 4

Xk'(k max —k)'dk, (2 33)

an expression whose integrand represents the energy
spectrum of the radiated photons.

3. APPROXIMATIONS

The atomic system in which radiative capture occurs
furnishes a natural scale for the energies of the emitted

p rays. It will be convenient for later purposes to
distinguish between three energy regions which may be
expressed, using the fine-structure constant o, = e'

=1/137, as
k &-', (Zn)'m, (I)

—,'(Zu)'m&k&Znm, (II)
Znm &k . (III)

The first, or low-energy, region is one in which the
photon energy is less than the binding energy of a
E-shell electron. The second region extends from this
level to the energy at which the momentum of the
emitted photon equals the average momentum of a
E electron, and the third includes all higher energies.
The behavior of the spectrum, it will later be shown,

may be approximated by somewhat diQ'erent means in
all three regions.

In the present paper we shall carry the analysis of
the internal bremsstrahlung spectrum as far as possible
using nonrelativistic approximations to the atomic
electron wave functions. This procedure, we shall show,
yields the spectral intensity distributions in general to
a relative accuracy of order Zn. Slightly more detailed
representations of the wave functions, however, prove
necessary to correct for certain relativistic effects in
the low-energy portions of the S-state spectra, and these
are introduced in Sec. 9. Since corrections of order Zn
and higher may be noticeable in the heavier elements,
the problem has been examined further by methods
based on the exact relativistic wave functions. These
rather more elaborate calculations will be presented in
a subsequent paper,

While, for the present, we shall make certain non-
relativistic approximations in treating the atomic elec-
trons, it must be emphasized that the appearance of a
neutrino in the capture process limits the extent of the
consequent simplifications. Since the neutrino is pre-
sumed massless, the four components of its spinor wave
function are in general of the same magnitude. We
must, therefore, preserve the four-component spinor
form of the wave functions and be careful only to
discard terms of order Ze. To this accuracy, the space
and spin dependence of the initial electron wave
functions may be factorized by writing

y.(r) =N.p.(r), (3.1)

where the q are the usual nonrelativistic atomic
orbital functions and e is a normalized spinor eigen-
function of the operator P corresponding to the positive
eigenvalue unity, PN =u.

Corresponding to the above reduction of the wave
functions, a considerable simplification may be made
in the form of the Green's function. The relativistic
Green's functions defined earlier must be expressed, in
general, as four-by-four matrix functions of position
coordinates, A particular advantage of using the second
order form of the Green's function is that if the term
n VAO&' in the differential Eqs. (2.26) and (2.27) may
be neglected, the function may be approximated as a
unit matrix in its spin-energy dependence. The terms
containing e VAO(' in these equations are responsible
along with the (ego&a&)' terms, for the effects of fine

structure in atomic systems. Since effects of this order
have already been neglected in the wave functions, it
will be consistent to drop these terms. At a later point
where somewhat higher accuracy is desired (Sec. IX)
the eGect of retaining them will be estimated by means
of a simple transformation applied to the approximate
Green's function.

On neglecting the fine-structure terms in the di6er-
ential equations defining it, the second-order Green's

function may be written in the form

g~(r, r') = g~'(r, r')I,

where I is the unit matrix and g~'(r, r') is a scalar
Green's function. The particular function gs'(0, r')
required for the evaluation of the matrix element (2.30)
is seen to satisfy a reduced form of Eq. (2.27),

('P' jE' nz'+2eEAO&'(r'))g~—'(0 r') = —8((r'). (3.2)

The approximations noted simplify the calculation

of the transition probability by allowing the factor-
ization of the quantities to be summed over spin states
and to be integrated spatially. Before discussing the
Green's function further, it will be useful to illustrate

the spin summation. For this purpose we begin by
considering radiative capture from 5 states,
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g (k) = gx„, ,(0,r) e ''v .s (r)
—dr (4.3)

The squared absolute values of these matrix elements
must be summed rather than averaged over the initial
electron spins since both spin states of the S shell are
occupied. They must further be summed over the spin
states of the emitted neutrino. These calculations are
performed in the familiar way by introducing the
positive energy projection operators sr(1+p) and
(2p) '(p+n p) for the electron and neutrino respec-
tively, and extending the summations over all states.
When averaged over directions of the neutrino mo-
mentum, the result is

= (s e'/2k) Tr{e,o,qkq*Ãt;~X~, e„o„„k„(1+P)}g,
which, with use of the relation e„o„.k„=i(e„y„).(y„k„)
and its adjoint, reduces to

P (IM„s(k,p) I'),=s.e'Tr{1P;glVg;(k+rr k)}g (4.4).
SV, S

The matrix product Xt;~XJ;, when averaged over the
initial nuclear magnetic quantum numbers and summed
over the final ones, becomes invariant under the unitary
transformations expressing rotation. Since the trace as

4. S-STATE SPECTRA, PRELIMINARY
CALCULATIONS

In a nonrelativistic approximation, all orbital wave
functions except those of S states vanish at the nucleus.
This implies that electron capture takes place only from
intermediate S states. An equivalent statement is that
the Green's function gx'(O, r) is spherically symmetric
and hence expressible as a superposition of S-state
wave functions.

In discussing the radiative capture of electrons which
are initially in S states, it becomes possible to simplify
considerably the form of the matrix element (2.30). In
particular, since the radiative transition takes place
between spherically symmetric states, the matrix ele-
ment of expI —ik r]e 7 is found to vanish, a fact which
expresses the forbiddenness of electric radiation in
zero-to-zero transitions. The operator e„g„,k„on the
other hand, contributes magnetic transitions which are
clearly permitted. With the neutrino wave function at
the nucleus designated by

(4 1)

where e~ is a normalized spinor, and with the approxi-
mate forms introduced for the wave functions and
Green's function, the matrix element for radiative
capture of an mS electron may be written in the form

M„s(k,p) =ie(2rr/k) i(8sNr, e„a„,k,'rs„s) r}(k), (4.2)

where g(k) represents the integral

a whole is invariant, the contribution of the n k term
must vanish. By making use of (2.33), and noting that
the photon polarization sum introduces a factor of two,
we may write the total transition rate for radiative
capture from the eS shell as

e'
ro 8=—p Tr{Nt;flV f;} res(k)k'(k, k)—'dk (4.5)

f

For purposes of comparison, the rate of ordinary
electron capture without radiation from the 1S shell
may be computed by the same methods. The result is

1
wx= —P Tr{iVt;flV f,(1+/) }mrs'(0) (k~,„)rs', (4.6)

4x &

where pre(0) is the central value of the 1S wave
function. The matrix P occurring in the trace in (4.6)
gives rise to interference terms when the factors S~, are
written as the linear combinations of coupling matrices
(2.1'7) which they represent. These are the familiar
Fierz terms which would yieM interference between the
scalar and vector couplings, and between the tensor
and axial vector forms, if both members of either pair
occurred in the beta-decay interaction. Searches for the
effects of these terms on the shapes of P-decay spectra"
and on ratios of electron capture to positron emission"
have furnished uniformly negative results. Any T-2
interference has been shown to represent an eGect of
less than 2%, while 5-V interference is less than 10%.
If we assume the interference terms to vanish, the trace
occurring in (4.6) becomes the same as that in (4.5).
The ratio of the transition rate for radiative capture
from the eS shell to that of ordinary E capture may
then be written as

~ 8 4e'
I g(k)k'(k .—k)'dk. (4.7)

roz s 'lols (0) (k ) 1s ~

S. 8-STATE SPECTRA, HIGH-ENERGY FORMS

Before undertaking the more general solution of the
problem it is instructive to perform a simple approxi-
mate calculation of the S-state spectrum shape at high
energies. This may be done by means of the assumptions
introduced by Morrison and Schiff. These authors
simpli6ed the problem by neglecting the initial mo-
mentum of the captured electron and neglecting the
influence of the Coulomb field on the electron in the
intermediate states. Only when the recoil momentum
of the electron after photon emission greatly exceeds
its initial momentum, will the first of these assumptions
be valid. The second may be characterized as a Born
approximation treatment of the intermediate states,
which requires for its validity Zn/s«1, where o is the
approximate recoil velocity of the electron following

"J.P. Davidson and D. C. Peaslee, Phys. Rev. 91, 1232 (1953)."R.Sherr and R. H. Miller, Phys. Rev. 93, 1076 (1954).
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photon emission. It is evident that both conditions
restrict the treatment to photons in the high-energy
region, k&&Zo.ns.

Ignoring the Coulomb field in the intermediate states
amounts to setting Ap( ) =0 and using the free-particle
Green's function solution to (2.27) or (3.2). The
second-order free-particle Green's function may be
written in the familiar scalar form

ei& r

gg('&(O, r) = 8Q
(2m)'~ q' —E'+ m2

=e "'/4~r,

(5.1)

(5.2)

where p=(m' —E')'*. The initial momentum of the
electron is neglected by approximating its wave function
as a constant. Since capture takes place from the
immediate neighborhood of the nucleus the constant is
chosen as the value of the wave function at the center.
These replacements greatly simplify evaluation of the
integral g(k) given by (4.3). With the electron energy
E 8 approximated by m, we Gnd

g(k) = g ~("(O,r)e '~'dry„e(0)

= y e(0)/2mk. (5.3)

Substitution of this result in (4.7) indicates immediately
an intensity distribution of the form x(1—x)', where
x=k/k . .

An important consequence of ignoring the initial
electron momentum is to forbid the radiative capture
of electrons from states of nonvanishing angular mo-
mentum. This is immediately seen on re-examining the
general expression for the matrix element (2.30) .
Electric radiations proceed via the operator —ie V'

= e y, which is assumed negligible when applied to the
initial state. Magnetic contributions are not present
either since the wave functions for t&0 vanish at the
011gXD.

While these arguments show that states of non-
vanishing orbital angular momentum cannot con-
tribute appreciably to the p-ray intensity for k&&ZQ.m,
the spectra observed experimentally show strong devi-
ations from the form x(1—x)' at lower energies. To
account at all for the possibility of capture from other
states as a means of explaining these deviations, it is
necessary to remove the approximation of neglecting
the initial electron momentum. This is quite easy to
do and furnishes, together with our later results, sepa-
rate measures of the accuracy of the two approximations
underlying (5.3). The integration of g (k) remains
elementary when the full expression for an S-state wave
function is substituted along with the free-particle
Green's function. Neglecting terms of order (Zn)' and

higher, we Gnd for the 1S state, for example,

~ .(o)
a(k)=

2mk+2Znmp
(5 4)

where p= Lm' —(rN —k)')&. Accounting correctly for the
initial electron momentum therefore reduces the 1S-
state spectral intensity by a factor t 1+Zn(p/k) J'. This
expression is a decreasing function of energy, taking on
the values ~L1+(2Zn)&$'. for k=Znm, (1+Zn)' for
k=m, and unity for k=2@x. For Fe", for example, the
1S state intensity is reduced by a factor 2.6 at 100 kev
and, even at the upper limit of the spectrum (220 kev),
by a factor of 1.7. The efkcts of the initial electron
momentum are hardly negligible for any save the most
energetic capture processes. Ke shall show nevertheless
that the result (5.3) obtained by neglecting these
eGects along with those of the Coulomb Geld is essenti-
ally correct.

The intensity reduction brought about by accounting
for the initial electron momentum is easily explained.
The Green's function (5.2) entering the matrix element
has a range p '=(m' —(m —k)'j '*so that electrons
which emit virtual photons within this distance from
the nucleus may undergo capture. The 1Swave function
decreases exponentially and may be considerably over-
estimated, within this range, by its value at the nucleus.
While removing this approximation reduces the S-state
intensities, taking proper account of the Coulomb GeM
in the intermediate states may be seen to have the
opposite e6ect. The probability amplitude for an elec-
tron reaching the nucleus following emission of a photon
is enhanced by the electrostatic Geld. That is to say,
the Green's function evaluated in a Coulomb GeM will
be found to exceed the free-particle function (5.2). It
will be proved presently that this eBect largely counter-
balances the reduction due to the initial momentum.
To show this, we first solve for the Green's function in
a Coulomb field.

p = (m2 —E') & g =Ze'E/p, =ZnE/y,

together with the dimensionless variable

(6.2)

(6.3)

the homogeneous form of the di6erential equation
(6.1), obtained by omitting the delta function on the
right, may be written as

d' 1 g ( x)—y- xg.'i o, —
~
=0.

dx' 4 x E 2y]
(6.4)

0. COULOMB GREEN'S FUNCTION

We seek the spherically symmetric solution to Eq.
(3.2), which, with the Coulomb field inserted, becomes

fV' m'+E'+2E(Ze'/r) —joe'(O, r) = 8(r) (6.1—).
On introducing the parameters
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In the energy interval ~E~ &m, to which our interest
will be principally confined, this homogeneous form of
the equation is analogous to the radial wave equation
for bound states in a Coulomb field. Since, however,
the energy is a fixed parameter, not equal in general to
any of the bound state energies, it follows that the
solutions for gs' must be irregular either at infinity,
at the origin, or both. The only solution of (6.4) which
remains regular at infinity is the Whittaker function"
xmas' W„,~„which decreases exponentially with in-
creasing x. Since 8'„,~ remains finite at the origin,

W„,;=1/I'(1 —ri), (6.5)

gs' will be singular there as 1/x, or r '. With this
solution of the homogeneous equation, solving the
inhomogeneous equation (6.1) becomes simply a matter
of adjusting the normalization. By integrating both
sides of (6.1) over the volume of an infinitesimal sphere
described about the origin, the condition that the
solution satisfy the inhomogeneous equation may be
stated as the boundary condition,

where the path of integration encloses a cut extending
from 0 to ~ and encircles the origin in the positive
sense. In the work that follows we shall be chiefly
interested in values of the parameter p lying between
zero and one. In particular for q&1 the contour integral
may be reduced to the real integral

P(1 ri)W—„i(x)=e *" t ~(t+x)re 'dt, (6.10)
0

with the aid of which the Green's function may be
written as

e "" r" ( 2pr)~
8 '(Or)=

I
1+

4~r~, E
(6.11)

The latter expression shows explicitly that the Green's
function in a Coulomb field, gs'(O, r), exceeds the free-
particle function (5.2) for ri &~ 0. By changing the
variable of integration in (6.11) to s=t/2pr, we secure
the form

lim4~r' —gE'(O, r) = —1.
dr

The properly normalized solution is therefore

gs'(O, r) =F (1—ri) W„,;(2pr)/4mr.

(6.6)

(6.7)

gs'(O, r) = (li/2~)e &" e 'I""s &l(1+s)&ds, (6.12)
~o

which is a convenient one where further integration
with respect to r is required.

'7. S-STATE SPECTRA, GENERAL METHODS

It may be seen from the behavior of the gamma
function in (6.7) that the Green's function becomes
infinite for positive integer values of the parameter g.
This occurs at the energies E„=m[1+ (Zo./rr)'] l where
n= j., 2, 3, , that is, apart from fine structure
corrections which have been partially omitted, just at
the energies of the bound S states. That this is the
behavior required of the Green's function may be seen
by noting that for E near m the wave Eq. (6.1) is
nonrelativistic in form. The Green's function which
solves it may then be written as the familiar expansion
in orbital eigenfunctions, "

~-s(0) e -s(r)
gs'(O, r) = P, (m E)«ns, (—6.8)

2m ~ ~ms —&

which has poles at the bound state energies noted.
It is convenient for computational purposes to intro-

duce an integral representation of the Whittaker
function. This may be done by means of the contour
integraP'

e *(2 r(&+) ([+a) n—
I'(1—ri)W, , .(&)= e '~

~
d&, (6.9)

e
—"~—1„&t)

"E.T. Whittaker and G. N. Watson, A Course of Modern
Analysis (The Macmillan Company, New York, 1943), p. 337.

"Similar eigenfunction expansions of the Green's function
may be made at all energies, but since the wave Eq. (6.1) is still
partially relativistic in form the eigenfunctions used must corre-
spond to an effective charge Z'= (8/mlZ. In particular for E=0,
a case which arises with photons of energy near k =m, the Green's
function assumes the free-particle form.

The most important step, as we have noted, in finding
the spectra radiated by electrons captured from 5-states
is the evaluation of the integral

g(k) = gs„, t'(O, r)e ""'rp„s(r')dr (7.1)

We shall now show that for these particular states this
may be done to an accuracy of order Zn simply by
making use of certain general properties of the Green's
function. The arguments we employ are diferent in
each of the three regions of photon energy noted earlier.

For photon energies k&Znm, that is, in both the
low-energy and intermediate regions, the Green's func-
tion may be represented as the eigenfunction expansion
(6.8) so that g(k) becomes

qo. s(0)
g(&) = 2 to- s(r)

2m ~' E~ s E~s+k"—
Xe '"'q~s(r)dr. (7.2)

Photons in the low-energy region k(-', (Ztr)'m have
wavelengths at least (Zrr) ' times larger than the atomic
system. For these we may therefore drop the retardation
factor exp) —tk r). The integrals then all vanish for
n'An, showing that the radiative process is a simple
spin Qip, and we find

(7.3)
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In the intermediate energy region, —', (Zn)'rm (k (Znm,
retardation is not negligible and many terms of the
summation (7.2) may be expected to contribute. Here
insight may be gained by considering the overall form
(6.11) for the Green's function gs„. i'(O, r). In partic-
ular it is to be noted that the function decreases rapidly
with a range

ordinary E capture is then

&kmax ( kmsxg))s(0)

12~m' E(k .x) isq is(0) &

(7.8)

(~ s(0)1'
~

~k(k ..—k)dk (7.7)
wx ~eP(k, „)is' ( q is(0) j &

p,
—'= [m' —(E„s—k)'j—'* (7.4)

= [2mk —k'+ (Zn/N)'m (rw k)—j ') (7.5)

which is of the order of atomic dimensions for k (Zn)~m

and roughly (2Zn) '*m ' for k=ZnrN. Throughout this
interval the range of the Green's function remains
much smaller than the photon wavelength so that the
retardation factor may again be omitted. Since the
wave function and Green's function are spherically
symmetric, the error thereby incurred is of the order of
k'/p' which does not exceed Za for k Znrn. Once the
omission of the retardation factor is justified, it is
convenient to return to the summation (7.2) for g(k),
in which we again 6nd that the only contribution comes
from the term g'=e. The value of the integral is once
again. g(k) = y„s(0)/2rmk. It is interesting to note that
the foregoing argument traces an almost circular path.
The summation (7.2) consists of many terms in which
retardation is by no means negligible, but in the
summation as a whole we have shown that retardation
is negligible. When the retardation factor is dropped,
the summation reduces to a single term. The many
orbital transitions possible interfere to produce the
same radiation as a simple spin-Rip with no change of
orbital state.

For still higher photon energies, k tn, retardation
must be taken into account. But the Coulomb Green's

function may be adequately approximated by the free-

particle Green's function. The latter, as we have noted,
is accurate to order Zn/i) (where i) is the electron recoil

velocity), and this is of order Zn for k m. Since the
error of neglecting the initial electron momentum in

this region is again of order Zn, we may use the calcu-
lation of Sec. 5 which led to the result (5.3), the same

expression we have found in the two regions of lower

energy.
Since the result (7.3) for g(k) is now established to

order Zn over the entire energy range, the total transi-
tion rate for radiative capture from the eS shell may
be written, using (4.5) as

ie„s= (e/2~m)'q„s'(0)g Tr(lV;f 1Vf )
f

k(k, —k)'dk. (7.6)

If the Fierz interference terms in the X-capture proba-
bility (4.6) are neglected, the ratio of radiative to

where k, of course, varies slightly with the binding
energy of the state. That this more accurate spectrum
preserves at all energies the high-energy form derived
in Sec. 5 shows explicitly the compensation of the two
approximations discussed there.

It may be noted that the role played by positrons in
radiative capture process is included implicitly in the
foregoing calculation. One of the paths by which the
reaction takes place is the virtual emission of a positron
followed by single-quantum annihilation with an orbital
electron. It is the possibility of positron emission which
explains the behavior of the range of the Green's
function with increasing photon energy. This parameter,
as we have seen, represents the distance from the
nucleus at which virtual photon emission may occur if
it is to be associated with a capture process. From (7.5),
the range may be seen to correspond to the atomic
radius for low-energy photons, the electron Compton
wavelength for k m, and to increase without limit as
the photon energy approaches the threshold for real
positron emission k= rm+E„s.

That electron-positron annihilation accounts for part
of the result (7.6) may be seen by resolving the operator
e„o„„k„contained in the matrix element (4.2) as follows:

e„o„,k, =~ (eXR)+i(e n)k. (7.9)

The term o' (eXk) leads to the usual positive energy
magnetic transitions, while the term i(e n)k, being an
odd Dirac matrix, leads to annihilation. Since the four
components of the spinor wave function of the emitted
neutrino are in general of equal magnitude, the eRect
of annihilation is equal to that of the positive-energy
transitions. Intermediate states containing positrons
contribute half of the intensity (7.6). It is remarkable
that positrons -play a part even in the emission of low-

energy photons, and some interest attaches to following
the eRect in closer detail. This is done in Sec. 9 where
more detailed representations of the wave functions
and Green's function are introduced, and the consequent
corrections to the S-state intensities at low energies
are discussed.

8. P-STATE SPECTRA

The present section will be devoted to calculating the
p-ray spectra radiated by electrons captured from
8 states. Such spectra will be shown to make up a
large part of the observed intensity. This is in marked
contrast to the result based on the approximations of
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Morrison and SchifP (Sec. 5) which showed a vanishing
contribution from P states. The latter result, as we
shall see, correctly indicates that the P-state intensity
is weak at high energies. At low and intermediate
energies, however, (k(Znm) the E-state spectra are
characteristically quite intense. In a large part of this
range they dominate the S-state spectra completely.

The matrix element for radiative capture from the
NP state is given. by Eq. (2.30) with substitution of the
appropriate wave function and energy. It is seen to
contain as a factor the integral

gz„p „'(O,r)e '"'[—2ie V+ie„o„„k,5q p(r)« (81).

Since the Green's furiction is spherically symmetric,
the orbital angular momentum of the electron changes
by one unit in a radiative transition from a P state.
The amplitude furnished by the e„o-„„k, term would
vanish by orthogonality were it not for the retardation
factor. As a consequence, for photon energies which are
not too high, the P-state intensity is furnished almost
entirely by the e V' term. An order-of-magnitude esti-
mate using the range of the Green's function, p, ', and
the general form of the P-state wave functions shows
that the contribution of the e„o-„„k„term is smaller than
that of e.V by a factor k2/u' k/2m, and may conse-

quently be neglected for k(Zunis. At higher energies
these terms may become comparable in magnitude,
but both are insignificantly small.

Since almost all of the P-state radiation lies in the
range 0&k(Zan, we may restrict our consideration
to this' region and retain only the e V' term of (8.1).
We may furthermore neglect the retardation factor in
the integrand since the error in so doing is again of
order k'/u', which is less than Zn. The matrix element
then becomes

~„p(t,p) = 2ie (2n—/k) '(vNq;u)

X t ge ~k'(O, r)e Vp p(r)«(82)

written as

b@2 —Jg (O,r)e V.+2p(r)dr= (2ira) '*Q,p(k), (8.4)

where Q2p(k) is the dimensionless integral

Qip(k) = ~bs2~i, '(O,r) [1—(r/6a)]e ""dr (8. .5)
4a'~

An analogous integral Q„p(k) may be defined for capture
from each of the higher P states by using the appro-
priate wave functions in (8.4).

To find the total probability of radiative capture the
matrix elements are again substituted in the expression
(2.33). The required summations over initial and final
spins are carried out as in Sec. 4. The expression
which results for the transition rate from the eP state is

g2

uinp= Q Tr{Nt;kg;(1+p))
x'a f

X Q.p'(k) k(k ..—k)'dk. (8.6)

The trace occurring here is the same as that in the rate
of ordinary X capture (4.6) since the radiation interac-
tion employed for P states involves no Dirac matrices. '7

The ratio of eP-state radiative capture to ordinary
capture is therefore

&eZ
Q.p'(k)k(k . -k)'dk, (8.7)

isa m.Z'um'(k .„)is' &

where the value (ira') '= (Znm)'/ir has been substituted
«r e is'(o)

To evaluate the integral Q2p(k), explicit use must be
made of the representations of the Green's function
developed in Sec. 6. The energy parameter of the
required Green's function is E=E»—k, in which the
bound state energy E» may be written, neglecting
fine structure, as i'——', (Zn)'m. Since consideration is
being restricted to the region k(Zo.m, the parameters
u and iI defined by (6.2) may be approximated as

To illustrate the further calculations it becomes
convenient to specialize to the case of the 2P states.
An orthonormal set of 2P wave functions may be
written as the three components of the vector
(32ira') 'r exp[—r/2aj, where a= (Znm) ' is the Bohr
radius divided by Z. If, for a given photon polarization
e, one of the states is taken to be the component

qr2p(r) = (32ira~) &(e r) exp[—r/2a), (8.3)

it is immediately clear that the remaining two orthog-
onal states yield vanishing matrix elements. The inte-
gral required for the wave function (8.3) may be

and
p = [2mk+-,' (Zn)'m'] &,

g= Znm/p= 1/pa.

(8.8)

(8.9)

' It is of some interest to note that the E-state intensities
contain the same Fierz interference terms as the E-capture
probability, while these are absent from the S-state intensity
(4.5). Failure of these terms to vanish would cause a relative
readjustment of the S and I' state intensities.

The inverse range parameter p, assumes the value
1/2a for k=O and is an increasing function of k. The
parameter g thus decreases from the value 2 at k=o,
and tends toward zero for large k. As we have noted
in Sec. 6, the Green's function has a pole, and the
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integral Q»(k) therefore becomes infinite, at the energy
corresponding to q= i. This behavior is seen more di-
rectly by using the representation (6.8) of the Green's
function as a superposition of S-state wave functions.
With the energy E given by E»—k the denominator of
the term. contributed by the 1S state has a pole at the
photon energy k=8» —Ers=-', (Zn)'m, which corre-
sponds to g=1. The energy at which this resonant
behavior occurs is that of the characteristic K-series
x-ray which ordinarily follows capture from the E shell.
The inner bremsstrahlung which takes place in capture
from P states is, as we shall presently show, very closely
related to the characteristic x-radiation, and, in fact,
inseparable from it although extending to much higher
energies.

All experimental measurements of the photon spec-
trum are made at energies above the characteristic
x-ray region and hence correspond to g in the interval
0(r)(1. The integral representation (6.11) may thus
be used for the Green's function in evaluating Q»(k)
as given by (8.5). The spatial integrations required to
find Q»(k) then become simply those of powers of r
multiplying a decreasing exponential and may be carried
out directly, so that we are left the parametric integral

t" (1+s) o 1+2s
Q (k) =&'

I I
ds. (8.10)

s ) (1+2s+-,'ri)4

With the substitutions

e=s/(1+ s), X= (2—ri)/(2+re),

the integral becomes

In this way, after algebraic reduction we hand

Q»(k) =
4 (1—-'4'')'

XL1+-;~-(7/»)~'+(4/3)~'E() )g. (8.13)

The integral E(X) defined by (8.12) cannot be
evaluated in closed form, but may be represented by
rapidly converging series expansions. Performing the
integration of (8.12) by parts, we obtain

1

E(X)=log(1+X)+r) "x—
& ' log(1+Xx)dx. (8.16)

Substitution of the power series expansion of log(1+),x)
provides the series for E(X),

(-)I.) &

E(X)= log(1+)I.)—r)P, (8.17)
= j(j—~)'

which is seen to converge as j . It is possible, by
performing a second integration by parts before ex-
panding, to obtain an alternating series which converges
as j-'. Since X is small, however, the convergence of
(8.17) is already conveniently rapid. Numerical values
of Q»(k) for several photon. energies, expressed in
units of the 1S-state binding energy ro(Za)orw, are
given in Table I.

The calculations for radiative capture from the
3P states proceed in an entirely analogous way. Once
again only one of the three oriented substates can
radiate photons of a given polarization. The integral
Qoi (k) which corresponds to Q»(k) is defined by

'e-& 1—v')
8p. (8.11)

J gEo, (A0)re&q»p(r)dr= (2ora) &Qo&(k). (8.18)

The integrand of th s expression may be expanded in W'thth b t t '
f hit t e su stitution o t e appropriate wave unction,'t f t

partial fractions and each of the resulting integrals
'+3+(gj assumes the form

expressed in terms of the function

E(p) =p dx
~o 1+px

pP y
=P"J

o 1+y

(8.12)
Q»(k) = (2/»") 8-.-. (0r) L6-2(r/~)

+-'(r/a) '$e rloodr. (8.19)

The inverse range parameter of the Green's function is
8.13)

p = L2ri4k+-'o (Zn)'m')i (8.20)

and its derivatives by means of the identities

II1 e
—o ( 1)y dy pl

8v= EEL

"o (1+KB)'+" Pl dP" o 0+Xii

TABLE I. The integra1 Qap(k), defined by (8.4), with corre-
sponding values of the parameter p. The photon energy k is given
in units of ~~(Za)2m, the 1S-state binding energy.

( 1)r dn

E(~/r)
)I.p! dt'"

1 t dy&
~

p'—
I E(p)

p9i '& dpi P=X.
(8.14)

1.79
2.53
3.75
4.92
6.00
8.75

12.50

0.7
0.6
0.5
0.440
0.4
0.333
0.280

0.340
0.192
0.109
0.0769
0.0594
0.0378
0.0248
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TABLE Il. The integral Q&p(k) and the parameter & for several
values of the photon energy k, measured in units of $(Za)'m.

Ogp(k)

k—4, we find

(2s-a) ~Q p(0)= —
s E'

~
p s(o) p s(r)e rp p(r)dr.

n'

1.67
2.67
3.51
4.83
7.0

12.0

0.75
0.6
0.525
0.45
0.375
0.3

0.246
0.0992
0.0648
0.038
0.022
0.010

The primed summation indicates that the term n'=n
is to be omitted from the sum, as a consequence of the
degeneracy of the nS and eP states. The sum may then
be written as

(2s-a) 'Q„p(0)= ——,
' ~5(r)e rp p(r)dr

and rf= (fia) ' lies in the interval 0&rf&3. The Green's
function consequently has two poles at 6nite photon
energies corresponding to q=2 and 1. These are at the
frequencies of the 3P—2S and 3P—1S characteristic
x-rays, respectively. At energies above the latter of
these, the integral representation (6.12) may again. be
used for the Green's function, and the same succession
of integrations and transformations carried out as for
the 2P case. In this way we find

4 2

Qsp(&) =—,, {(1—sn)[1+v —2(sn)' —8(sri)'7
27 (1—st)'

+(4/3)n'(1 —sn')It(p)) (8 21)
where

p= (3 n)/(3+v—),

and the function K is given by (8.12) or (8.17). Values
of Qsp(k) are given in Table II. A rough comparison
of the intensities of 3P and 2P radiation may be made
from the high-energy behavior of Qsp and Qsp. For
small values of rf we find the intensity ratio (Qsp/Qsp)'
= (16/27)'=0.35, a figure which will be subject to
considerable reduction when the effects of screening
are accounted for.

The foregoing calculations establish the intensities
of the P-state spectra for photon energies lying above
the characteristic x-ray resonances. For energies lying
between or below these resonances, the integrals Q(k)
may be evaluated by employing the more general
contour integral representation (6.9) for the Green's

function. The detailed intensity distributions are, how-

ever, of little experimental interest in this region, so we

con6ne the discussion to some qualitative properties of
the spectra at low energies. To find the form of Q„p(k)
as k approaches zero, it is convenient to use the sum-

mation (6.8) to represent the Green's function, so that
we have

(2~a)—:Q.p (k) =
2m & s—&.p+&

&& q „s(r)e Vy~p(r)dr. (8.22)

The gradient operator may be written as V'= ip
=m[r,Hj, where H is the electron Hamiltonian. On

inserting this expression and taking the limit of Q as

where the first term on the right clearly vanishes, so
that we have

Q p(0)=-'(27rs)'q s(0) t p se rp„pdr. (8.23)

In particular we find Qsp(0)= —4. Since Q~p(0) is
finite, the P-state spectra may be seen from (8.7) to
rise linearly at first. Their initial slope greatly exceeds
that of the S-state spectra.

The calculated forms of the P-state spectra are
shown in Fig. 1 for 26Fe" which has a maximum photon
energy of 220 kev. Since this energy is considerably
greater than that of the characteristic x-rays (7 kev
for the unscreened atom), the scale does not permit
showing detail in the x-ray region. In particular the
two peaks of the 3P spectrum remain unseparated.

Some qualitative interpretations of the form of the
P-state spectra will be presented in Sec. 10.

9. S-STATE SPECTRA, RELATIVISTIC CORRECTIONS

The calculations of the preceding sections have
neglected, as a relativistic e6ect, the interaction of the
magnetic moment of the electron with the Coulomb
field surrounding the nucleus. In the present section
we shall show that this interaction, although a weak
one, significantly affects the low-energy behavior of
the S-state spectra.

When spin-orbit coupling is accounted for, the orbital
angular momentum of an electron is no longer constant.
A state originally of angular momentum / has added
to it an admixture of wave functions corresponding to
1—1 or /+1. This has the important consequence of
allowing capture to take place directly from the
''P states" of total angular momentum J=-,', since
they contain a certain amount of S-state wave function
which does not vanish at the nucleus. Since this rela-
tivistic admixture is an effect of order Zo. the corrections
it introduces are in general no larger than others which
have already been neglected. An exception, however,
is found to occur in the low-energy parts of the S-state
spectra, where the factor of Zn may be partially
compensated by an increased probability of radiation.
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In the previous work, in which spin-orbit coupling
was neglected, it was noted that radiative capture of
an electron from an S state requires emission of a
photon in a transition between spherically symmetric
states. It followed that the radiation takes place
through a reorientation of the electron spin. The matrix
element for this is proportional to the frequency of the
emitted photon, a fact responsible for the weakness of
the S-state spectra at low energies. When spin-orbit
coupling is taken into account, the radiative transition
is no longer between spherically symmetric states. An
electron initially in an S; state may make a radiative
transition to a P; state by means of the electric dipole
operator e V', and subsequently undergo direct capture.
In the low-energy region k( ts (Zn)'nz, the electric dipole
matrix element is larger than that for magnetic dipole
transitions by a factor sufEcient to overcome the
admixture parameter Zn noted earlier. As a result, in
the binding energy region, where the S-state intensities
are quite weak, the spectrum forms will be shown to
deviate from those given by (7.7). While the percentage
corrections due to this coupling decrease with increasing
photon energy, their effect remains noticeable at higher
energies where the S-state intensities are much stronger.

In the preceding sections, the second-order Green's
function. gs(r', r), which is in general a four-by-four
matrix function of r' and r, was approximated as a
scalar function multiplying the unit matrix. The
approximation which permitted this was the neglect of
the term n VAs&@ in the differential equations (2.26)
and (2.27). It is this term which destroys the constancy
of the orbital angular momentum and leads to the
eGect we wish to calculate. A convenient means of
representing the second order Green's function more
correctly is to express it in terms of a similarity transfor-
mation performed upon another function gz'(r', r) by
writing

gs(r', r) =exp(n p'/2E) gs'(r', r) exp( —e p/2E). (9.1)

The function gs'(r', r) so defined satisfies transformed
differential equations in which the coupling n VAp()
=in pA p&' is eliminated to first order. These equations,
apart from the terms of order (Zn)' and higher, assume
the same form as those used to de6ne the scalar Green's
function discussed earlier. To this accuracy, which is
ample for the present, the function gz' may be identified
with the Green's function of Secs. 3 to 8. In partic-
ular, g~'(O, r) satisfies (3.2) and (6.1).To corresponding
accuracy, the electron wave functions can be repre-
sented as

P„~(r)=exp( —Pn p/2m)Ny„. ~(r), (9.2)

where the spinor I and the orbital function y ~ are those
defined in (3.1).

Finding the matrix element for radiative capture
(2.30) requires evaluating a spatial integral which may

"L.Foldy and S. Wouthuysen, Phys. Rev. 7S, 29 (1950).
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I'"IG. 1. Gamma-ray spectra for radiative capture from various
electron shells of I'"e". The dashed curves for the 1S and 2S
spectra are the nonrelativistic forms (7.7). The solid curves
beneath them are the 1S and 2S spectra with the relativistic
modifications of Sec. 9. The characteristic x-ray region lies to
the left of ~&z, the E'-shell ionization energy.

be expressed as the limit as r' approaches zero of

L„,(r')= g „(',r) -'"'[—2e V

+e„a.„„k„)P((r)dr. (9.3)

Since the intensity corrections sought are larger than
Zn, it will sufFice to preserve a relative accuracy of
order Zn in evaluating this expression. The corrections
occur principally at low energies k(Znm, for which it
is permissible, according to the arguments of Sec. 3,
to drop the retardation factor in the integrand of (9.3).
To this order we may also write E„&—k=nz in the
correction terms, and by means of (9.1) and (9.2)
reduce L„~(r') to the form

I. )(r') = [1—i(2m) —'n V'7 bg„( g'(r', r)

X[—2e. V+e„o.„„k„7uy„&(r)dr. (9.4)

The occurrence of the term n V' operating on the
Greens function in this expression requires that the
dependence of the Green's function on the angle
between r and r' be taken into account even in the
limit r —+0. While in the preceding sections it was
sufhcient to use the spherically symmetric form the
Green's function assumes in the limit r'~0, we must
now carry out an expansion for small r'. This expansion
may be written in the form

8 '(r', r) =8 '(0r)+(r' r)B "'(0r)+ (9.3)

The function gz&'& which is thereby defined represents
the P-wave part of the Green's function. The difI'er-

ential equation it satisfies may be found by separating
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the equation for the Green's function,

[V'+W —nz'+2E(Ze'/r) jgz'(r', r) = —8(r—r'), (9.6)

into its partial wave components. The homogeneous
form of the radial equation for gz&'& (O,r) is then

shown in (7.9), and the expression for L„E(0)written as

L„z(0)=[e.(eXk)
+i(e )kB„E(k)]p„e(0)/2rlk, (9.13)

where the factor B E(k) is defined by

d2

dr2

2'gp 2—&i'+ ——r'gz&'& (O,r) =0
r r2

(9.7)
2

B E(k) =1+ bz 8-&,o&(p,r)r pe(r—)dr. (9.14)
3p„e(0)& dr

where the parameters g and p are the ones defined by
(6.2). The solution of this equation which remains
regular at infinity is once again a Khittaker function,
r'bz"&(O, r) W„,~(2&ir). The function gz&'&(O, r) must
become singular at the origin, and from (9.7) it may be
seen to do so as r '. The simplest method of normalizing
the solution for gz"&(O,r) so that it satisfies a suitable
inhomogeneous equation is to note that the Green's
function must become singular as 1/4n. ~r—r'~, when r
approaches r'. That is, when r becomes small, but
remains larger than r', the series (9.5) must assume
the form

The form (9.13) for L„E(0)facilitates the comparison
of the present calculation of the S-state spectrum with
the previous one. In particular, when B„e(k)=1 the
matrix element and the spectrum which follows from
it become the same as those of Sec. 7. Since the
range of the Green's function decreases with increasing
photon energy, the expression (9.14) for B e(k) may
be seen to approach unity for large k. More generally,
for 8„&/ I, the spin summations of the squared matrix
element are easily performed and yield a ratio of
nS-radiative capture to ordinary E capture which may
expressed as

1 r'r
bz'(r' r) = + +

4xr 4xr'
(9.8)

The normalized function bz&'& (O,r) is given by

gz&'& (O,r) =&il" (2—»)W„,~ (2&ir)/4m r'. (9.9)

As in (6.12), an. integral representation" may be
introduced for the Khittaker function which yields

g &'&(p,r) = (&i'/m)e I "~ e '&'"s' (1+s)'+&ds, (9.1p)
0

a form valid for g &2.
To evaluate the matrix element for capture from

S states we substitute the expansion (9.5) in (9.4) and
take the limit of L„E(r') as r'~:

Xk(k s~—k)'dk. (9.15)

Z.,(k) =-', [1+B„,m(k) j. (9.16)

In addition to the expression (9.14) for B„Eanother
useful one may be derived by using in (9.4) the identity
e V=ie f&=rz[e r, Hj. After some reduction, we then
find

2mk
B ms (k) c&zn a k

~'& (o,r) r' p„s(r)dr, (9.17)
3~ E(0)~

The relativistic correction factor for the energy spec-
trum R„E(k) is given by

L„z(0)=e„o.„,k„gz„, &,'(O,r) p„e(r)dr

+im ' gz„, &,
&" (O,r)(n r)(e V)q„e(r)dr. (9.11)

The erst of the integrals occurring in this expression is
given by (7.3). The integrand of the second is easily
averaged over angles, with the result that

2mk

+(0.'.e), gz . di&(p, r)r—q„e(r)dr. (9.12)
3' dr

The sum e„o-„,k„may be separated into two terms, as

a form which simpli6es the discussion of low-energy
behavior. The Green's function g"& remains finite in
the limit k—4 when its energy variable E„~ is that of
the lowest S state, E~g. Since B~q then vanishes as
k—&0, the 1S spectrum according to (9.16), is only half
as intense, at this limit, as the form predicted earlier.
For the higher S states, n~&2, the existence of I' states
which are degenerate with these causes the function
b"& to become singular as k ' in the limit k~. The
values B e(0) for e~&2 therefore do not vanish. They
are most easily found by means of the technique used
to evaluate Q E(0) in Eqs. (8.22)—(8.23). This yields,
in particular, B2E(0)=—2, so that the 2S spectrum
is slightly enhanced at its low-energy extreme.

To evaluate either of the integral forms (9.14) or
(9.17) for B„E(k), it is convenient to express the
Green's function gz&'&(O, r) in terms of the S-state
Green's function, gz'(O, r) discussed in the earlier
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TABLE III. The quantity B&s(k) defined by (9.14), and the
relativistic correction factor R&s(k) for the intensity of the 1S
spectrum. fPhoton energy k in units of s'(Zn)sm, the 1S-state
binding energy. g

TABLE IV. Bms(k) and the relativistic correction factor E2s(k)
for the intensity of the 2S spectrum. Lk is given in units of
$(Ze)'m. g

Bgg(k)

0.00
1.04
3.00
5.25
8.00

12.0
18.0
24.0

aIS(k)

0.000
0.280
0.462
0.557
0.622
0.678
0.728
0.761

RIS(k)

0.500
0.539
0.607
0.655
0.693
0.730
0.765
0.790

0.00
0.75
1.79
3.75
6.00
8.75

12.50
24.75

—1.500—0.161
0.171
0.392
0.51
0.59
0.65
0.74

1.63
0.51
0.51
0.58
0.63
0.67
0.71
0.77

sections. For this purpose, we note a connection between
the integral representations (6.12) and (9.10) which

may be stated as

(9.18)

and the function E(P) is given by (8.12) and (8.17).
A convenience in tabulating Bis(k) is the slow variation
of E($) in the interval 0&g&1. In particular for
ran&0. 7 the function E($) is approximated to accuracy
better than 1%%uq by the first two terms of its power
series expansion,

E($)=log2 L1 ( /12)lrf. (9.23)

for r)0. Using the differential equation (6.4) for bs',
we then 6nd

(9.19)

where a= (Zrrrl) '. Substitution of this expression in

(9.14), followed by integration by parts and use of the
Schrodinger equation for y & yields

B s(k)
2 r d 2 1

gs„, s'(O, r) —+—— q ~s(r)dr
3aq „s(0)&

'
dr r n'a

rf = t 4+ (2k/Z'cars)) (9.24)

Numerical values of Bis(k) for several photon energies
expressed in units of the 1S state binding energy are
given in Table III. Although the increase of B~g from
the value zero for A=O is fairly rapid for energies not
greatly exceeding the binding energy, its approach to
the value unity at high energies is seen to be quite
slow. As a result, the correction factor for the intensity
distribution, Ris(k), remains noticeably less than one
at energies relatively far above the characteristic x-ray
region.

For the 25 state, the parameter q is given by

=1+(3e'rla'k) '
The expression for Bss(k) in terms of rf, for vi&1, is
found to be2 f' d 2

gs„, i, '(O,r) —+— y„s(r)dr, (9.20)
3aq„s(0)& dr r Bss(k) =1—

where the integration of one of the terms has been
carried out by using the representation (6.8) for the
Green's function.

The integral remaining in (9.20) is quite similar in
structure to the integral Q„r (k) which occurred in the
calculations of the I'-state intensities. It may be
evaluated by the same sequence of steps as was used
in deriving (8.10)-(8.17). Hence only the results for
the diGerent states need be given.

For the 1S state, the parameter q is given by

rl =[1+(2k/Z'n'res)] f—(9.21)

The quantity Bis(k), expressed in terms of q, is found
to be

4
Bis(k) =1—— 1+ t 2E(()—1) I (9.22)

3 1+re 1—g

where

5= (1—~)/(1+v),

where

2 5
—(1—rf')E(X) —3—rl+-rfs (9.25)

(1 'n')' 3—--
&= (2—n)/(2+v),

and E(X) is again the function discussed in Sec. 8.
Numerical values of Bss(k) at several photon energies
are given in Table IV along with corresponding values
of the relativistic correction factor Ess(k). For energies
above the characteristic x-ray region, R2& is slightly
smaller than Rjq and increases toward the value one in
a similarly slow manner.

The eGect of the relativistic corrections on the S-state
spectra of Fe" is shown in Fig. 1, where both the
uncorrected and the corrected forms are plotted. Since
the variation of Eis(k) and Ass(k) over the energy
range of the spectrum is not large, these factors do not
appreciably alter the spectrum shapes, For capturt:
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simple shape of the 5-state spectra, but they bring
about noticeable reductions of the absolute intensities.

For the P-state spectra, the function I„~(k) assumes
the form

processes whose energy releases are larger in comparison
to their 1S-state binding energies, the total variation
of the correction factors would be larger and the
consequent changes of spectrum shapes more noticeable.
For the more energetic processes, however, it must be
emphasized that the neglect of retardation which
underlies the calculation of the present eRect is correct
only for energies less than or comparable with Znns.
In the spectrum of Fe", this is no limitation since k,
is roughly 2Zo.ns. The decay of A", by contrast, has an
energy release of 816 kev which corresponds to 12Zo.m,
so that it is only in the lower portion of its spectrum
that the present corrections apply.

Estimates of the relativistic corrections to the P-state
spectra show that these do not exceed the order Zn,
which is the level of accuracy maintained thus far.
This accuracy will be improved and the S-state cor-
rection factors evaluated at all energies in a forthcoming
paper based on a fully relativistic treatment of the
problem.

I.~(k) = (2/Z ) kQ„2(k), (10.3)

where the function Q„~(k) is defined by (8.4) and given
numerically for n=2 and 3 in Tables I and II. The
P-state intensities are found to be quite weak at high
photon energies but to rise rapidly as the energy
decreases, reaching precipitous heights near the char-
acteristic x-ray region.

The singularities of the P-state spectra which occur
at the characteristic x-ray frequencies show that the
two types of radiation are, in fact, inseparable. This
may be seen directly by noting that among the processes
summed over in determining the rates of decay are
those in which capture of an electron from a low-lying
S state precedes the radiative transition of a P electron
which refills the state. These processes, which give rise
to a continuous spectrum, diRer from the vastly more
probable course of ordinary EC or I capture, followed
by the emission of characteristic x-rays, only in that
the intermediate states do not conserve energy. YVhen
the photon energy is close to a characteristic x-ray
frequency, however, energy is nearly conserved in the
appropriate intermediate state and the processes be-
come indistinguishable

In the immediate neighborhoods of the x-ray fre-
quencies, the continuous P-state spectra may be
thought of as representing the wings of the character-
istic lines. The expression (8.22) for Q„~(k),

10. RESULTS AND DISCUSSION

The preceding sections have been devoted to detailed
calculations of the spectra emitted in the radiative
capture of electrons from S and P states. For the states
of higher orbital angular momentum, the radiative
capture probabilities are decreased because of the
smaller probabilities that the electrons are in the
immediate neighborhood of the nucleus and the higher
multipole orders of the radiation processes. The D-state
spectra, for example, are much weaker than those
considered. here and negligible for present purposes.

The results of Secs. 7 to 9 may be summarized in
a single formula for the spectrum intensities which takes
account of the inQuence of the binding energies of the
diferent states on the maximum energies of their
spectra. If the photon energy k is measured in units of
the 1S state binding energy for a pure Coulomb 6eld,
—,'(Zn)'m=Z"X13. 6 ev, the ratio of radiative capture
from the state el to ordinary E capture becomes

(27') & g „.s(0)
Q ~(k)= p~ qe Vp„pdr,'& s—&p+k

illustrates this behavior. W'hen k takes on a value for
which one of the denominators is particularly small, the
function Q„p2(k) assumes the form of a line shape seen
at a distance from its center much larger than its
intrinsic width. '9 While the singularities of the P spectra
represent the x-ray lines, it shouM be noted that their
intensities are only given correctly by the one-level
resonance formula within small intervals (of the order
of an electron binding energy) about the line centers.
The general rise of the P spectra which begins at
energies far above the x-ray region represents the
constructive interference of a large variety of transition
amplitudes.

Certain limitations should be noted on the accuracy
of the foregoing calculations. In particular, no explicit
consideration has thus far been given to the inQuence
of atomic screening. While screening causes little change

u1xt + & I'™x k+~~1 ~1s
I„1(k) 1— dk (10.1).

'wx 4' o — (kmax) 1sJ

I- (k)=k&- (k)I ~- (0)/p (0)7, (102)

where the relativistic correction factor E„s(k) is defined
by (9.16) and given numerically for I=1 and 2 in
Tables III and IV. When screening is neglected, the
required electron density ratio at the nucleus is 8 for
x=2, and decreases as e '. The eRects of screening
cause it to decrease more rapidly still. The relativistic
corrections of Sec, 9 do not substantially alter the

'~ The radiative damping corrections which would remove the
singularities of the P-state spectra have no numerical eGect at
distances from the line centers measurable by counter spec-
troscopy,

The constants e„1 are the ionization potentials (e„1)0)
of the various atomic states measured in the same units
as k. For the S-state spectra the function I„1(k)assumes
the form
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in the lowest S state, it will decrease the electron
densities near the nucleus for states of higher l and e.
Its principal effect then, will be to reduce the 2P and,
more especially, the 3I' intensities in comparison with
the S-state spectrum. Secondly, the relativistic cor-
rections, whose effect on the spectrum shape partly
compensates that of screening by reducing the S
intensities preferentially, have only been evaluated
completely for energies up to k Znnz. These omissions
are justiied in the present work. because the e6'ect of
screening and the relativistic corrections at high energies
are numerically comparable, in general, with terms of
order Zn which have been consistently neglected in
order to simplify the calculations. Attention will be
given to all of these in the more exact treatment of the
p~p~~ to follow.

The observations by Madansky and Rasetti" of the
&-ray spectrum emitted in the decay of Fe" were the
«st in which the intensity distribution was measured
over a w'ide enough energy range to provide a sub-
stantial test of the theory. These measurements showed
an unexpected and steep rise of the intensity with
decreasing p-ray energy which has since been found ' "
in a number of other elements including A", V", Ge~',
and Cs'". The intensity distribution in each of these
cases is found to be of just the type which follows from
summing the spectra contributed by the various states,
as given by (10.1). The relative contributions of the S
and P states vary greatly in form and magnitude among
these elements. Thus for A", with k, 800 kev, the
rise of the P spectrum takes place at energies much
lower than the maximum of the S spectrum, leaving
the features of the two spectra separately distinguish-
able" For Cs'" on the other hand, the large nuclear
charge and low-energy release (350 kev) cause the I'
spectra to overwhelm the S-state contributions, and

only a steeply sloping intensity curve is seen."In both
these cases, as well as in the others, the predicted

20 L. Madansky and F. Rasetti, Phys. Rev. 94, 407 (1954).
"T.Lindqvist and C. S. Wn, Phys. Rev. 100, 145 (1955).
~ R. W. Hayward and D. D. Hoppes, Phys. Rev. 99, 659 (1955).
"B.Saraf, Phys. Rev. 95, 97 (1954)."B.Saraf, Phys. Rev. 94, 642 (1954).

shapes are in general accord with those observed
experimentally.

More detailed comparisons of the theoretical and
experimental intensities would be dificult in the present
context since the experimental spectra have been
reported directly as curves of counting rates verses
energy. These subject the actual intensity distributions
to substantial changes due to the resolution and sensi-
tivity of the counters used. The comparison is best
carried out at present by reducing the theoretical
spectrum to the form which might be detected by a
particular spectrometer. The nonrelativistic forms of
the spectra predicted here have already been compared
with experiment in this way by Lindqvist and Vfu, '
using their own measurements for A" and those of
Madansky and Rasetti for Fe". The 6t is found to be
excellent at high energies and the sudden rise at low
energies occurs where predicted. The intensity discrep-
ancies of 20% which arise in the intermediate region
would be removed by a slight readjustment of the
relative normalizations of the S and P spectra, which is
quite consistent with the level of accuracy noted earlier.
Indeed, for the case of A", further calculation has
shown that the discrepancies are removed by using a
more fully relativistic treatment of the process and
taking screening into account. The slightly altered
theoretical spectrum which results has been shown in a
recent letter" to agree quite well with the experimental
measurements.

An interesting experimental check of the theory
presented would be provided by the detection of photons
of the continuous spectrum in coincidence with the
characteristic x-rays. This would make it possible to
separate the 1S spectrum from the others which overlap
it, since the x-rays which follow radiative capture from
the higher states are very much softer than those which
follow E capture. Intensity calibrations of the photon
spectrum relative to the rate of ordinary capture are
also of interest. The present theory predicts a depend-
ence of this ratio on the nuclear charge which should
be observable even at high energies.

25Glauber, Martin, Lindqvist, and %u, Phys. Rev. 101, 905
(1956).


