
PH YSICAL REVIEW VOLUME 104, NUM B ER 6 DECEMBER 15, 1956

Quadrupolar Nuclear Spin-Lattice Relaxation in Crystals with Body-Centered
Cubic Lattice Structure
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(Received November 14, 1955)

In a recent paper, Van Kranendonk has estimated the e6ect of lattice vibrations in contributing to the
spin-lattice relaxation time due to quadrupole interaction in crystals with a simple cubic structure. In the
present paper, his method is extended to the case of crystals with a body-centered cubic structure.

INTRODUCTION the covalency. As a matter of fact, we expect y2 to be
approximately equal to (1+I'„I)' in this case. We
therefore felt it necessary to extend Van Kranendonk's
ionic model calculations to the CsCl lattice which has
a body-centered cubic structure. We have presented the
results of this calculation in the next section.

We have closely followed the notations in Van
Kranendonk's paper (which we shall refer to henceforth
as I) as far as the general expression for the transition
probability is concerned, but of course we need a larger
number of L and Ã functions because of the larger
number of nearest neighbors, vis. , 8 in a body-centered
lattice as compared to 6 in a simple cubic lattice. As
our calculations are based on Van Kranendonk's paper,
they naturally involve the same assumptions, vis:

(a) The nuclei whose resonance is under study are
situated at equivalent lattice sites and are therefore
subject to similar quadrupolar interaction with the
surroundings.

(b) The nuclear magnetic dipolar interactions be-
tween the species are assumed to have negligible eGect
on the quadrupolar relaxation.

(c) The crystal is ionic, so that the charges may be
regarded as roughly concentrated around the respective
lattice sites.

(d) The frequency spectrum of the lattice vibrations
is approximated by an isotropic Debye expression.

'
QOUND' first showed that in crystals, the quadrupole

interaction of nuclei with surrounding charges
contributes eGectively to the spin-lattice relaxation
time in nuclear magnetic resonance experiments. Van
Kranendonk2 has developed a method for calculating
the relaxation time due to the perturbation of this
quadrupole interaction by the lattice vibrations. The
idea is essentially similar to Wailer's' mechanism for
paramagnetic relaxation due to lattice vibrations, but
we have now to deal with electric quadrupole interaction
and not magnetic dipole interaction as discussed by
Wailer and later adapted to the nuclear case of Bloem-
bergen et a/. 4 Besides, Van Kranendonk uses a system
of quantized oscillators to represent the lattice vibra-
tions instead of the classical Fourier expansion em-

ployed by Wailer. Van Kranendonk mentions the effect
of polarization of the atomic orbitals by the nuclear
quadrupole moment, discussed in detail by Sternheimer'
and his collaborators, and also the eHect of the lattice
vibrations in distorting the little covalent binding that
may exist between neighboring atoms. This too would
lead to incipient departures of the electron distribution
round the nucleus from spherical symmetry. f Both
these effects lead to an effective departure of the eqQ
at the position of the nucleus from that expected by a
simple interaction between the quadrupole moment of
the nucleus and the field-gradient due to surrounding
point charges in the ionic model. Van Kranendonk takes
this into account by his simple "one-parameter" model,
introducing a parameter y so that each neighboring
charge is taken as ye instead of e, where y is to be
obtained from the measured relaxation times. It was
expected that for ions like Cs+, where the Sternheimer
effect leads to a total induced moment of y Q, ' with y„
calculated to be —143.5, this effect could be much more
substantial in contributing to y than the distortion in

RESULTS

Van Kranendonk's expression for the probability
of a transition between states characterized by tn

and (ttt+ts) of the central nuclear spin, (ttth and
(trt+ts)5 representing eigenvalues of I, the Z direction
being that of the external magnetic field), due to the
quadrupole interaction, is

P (ttt, ttt+ tt)

I Q.-I'
t

""tn'I f(~)I'*Present address: Department of Physics, University of Cali-
fornia, Berkeley.' R. V. Pound, Phys. Rev. 79, 685 (1950).' J. Van Kranendonk, Physica 20, 781 (1954).' I. Wailer, Phys. 79, 370 (1932).

4 Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).
~ Foley, Sternheimer, and Tycko, Phys. Rev. 93, 734 (1954);

R. Sternheimer and H. M. Foley, Phys. Rev. 102, 731 (1956).
$ Refer to recent. paper by K. Yoshida and T. Moriya, J.Phys.

Soc. (Japan) 11, 33 (1956) and the note at the end of the presen
paper.

M„(isa)dot, (1)
(e -1)'2~3d2~2 J ~2

where Q„=(rrt+ts I Q„ I
ttt), the quadrupole moment

tensor of the nucleus Q being defined as in Eq. (&) of I
in the conventional manner after Casimir. ' Also,

t H. B. G. Casimir, INterackorl, between Atomic 1Vuclei and
Electrons (Teylers Tweede Genootschap, Haarlem, 1936).
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d=mass density of the crystal; a=velocity of propa-
gation of long-wavelength sound waves independent of
direction of polarization; and k= 1/4o, the wave number
of the lattice waves. p(lo) is defined so that the number
of lattice oscillators with frequency between co and
4o+dlo is given by

p(lo)doo= f(lo)die,
2Ã 8

I Z

aC&7

V representing the volume of the crystal.

M„(kj2) = p p A„;;1„L.;l,.;j„(442),
s,e' q'jim,

L„l,, j (ka)={B;(k$)Bl(k,$)}{Bj(k',$')B (k',$')},
(4)

FIG. 2. Portion of a b.c.c. lattice indicating signi6cance
of fs„s,l terms; p, q =1, 2, 3.

the colon referring to the tensor scalar product. Here

F/t42$

terms of increasing order in the relative displacements
r; of the surrounding ions, with respect to the displace-
ment of the central nucleus; i.e.,

+2
l'(r) = Z lf'P. (r) (&)

FIG. i. Picture of a
b.c.c. lattice.

aCz3

the B;(k,$) are defined by:

B;(k,$) =8($,1)(cosk a;—1)+6($,2) sin(k a,), (5)

where $ is a number which is equal to 1 or 2, and

a;= R,—Ro, (6)

R; and Ro representing the equilibrium positions of the
central and ith nuclei, respectively. k and k' represent
the directions of wave propagation and the curly
brackets in (4) indicate averaging over all directions
of k. The averaging occurs in expanding the effective
potential V(r) at the position of the ith nucleus in

with

W„=A„+Q A„; r;+Q A„;j.r;r, +
i)

We shall neglect first-order vibrational processes repre-
sented by the second term on the right hand side of
Eq. (8). Also the results derived in this paper do not
apply at very low temperatures. Following Van Kranen-
donk. , we choose the unit cell so that it contains only
one central nucleus, and we have to carry out the sum
over all the lattice points within the unit cell. Our
nucleus under study being now at the center of the
body-centered lattice, as in Fig. 1, it su%ces to carry
out summations over i,j=&1, &2, &3, &4. Also,
since the central lattice site is one of inversion sym-
metry, we have the further condition s=s', as in I.
Referring to Figs. 1 and 2, we find that out of 2)&84
functions I.„~.,„ for a body-centered cubic lattice,
only the following different ones occur:

$=2
L241;sjm +{$1} +Ll
L2jl;2 jm +{$1}{$1$2} ~L2y

i= %l
i=+l.

j=anz.

j=1, ns=2, 4, —3,
j=2, m=1, 3, —4,
etc. ;

i.e., point m lies at points like S and D if j is at A.

L24l:2jm =&{$1}{$1$2}=&Ls) z= +l j=1
j=2
etc. ;

m=3 —2 —4.) ) )

m=1, 3, —4;

i.e., point nz lies at points like C when j lies at A.

L2jl:2jm {$1$2} L4p

i=2
etc. ;

l=2, 4, —3; j=i, m=2, 4, —3;
l=i, 3, —4; j=2, m=1, 3, —4)
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i.e., l lies at points like 8 and D when i is at A; m lies at points like 8 and D when j is at A.

L2il;2jm= {$1$8}=L6 Z 17

i=2
etc. ;

l=3, —2, —4; j=1) m=3, —2, —4;
l=4, —1, —3; j=2, m=4, —3, —1;

i.e., l lies at points like C when i is at A; m lies at points like C when i is at A.

L2il:ijm ($1$2){$1$8} L6y

i=2
etc. ;

l=2, 4, —3; j= i,
l=i, 3, —4; j=2,

m=2, 3, —4.
m=4 —37 ) 7

i.e., l lies at points like 8 and D when i is at A; m lies at points like C when j is at A.

Llil;1jm (cl } L7&

= (c12}(clc2)=L6,
= (c12)(clc2)=L2,
= {clc2)'=Llo,
= (clc6)'= Lll,
= {C1C2){C1C6}=L12

ijbn
i j&n
ij&n
ijkn
ijlns

ijlm

same as for L~,

same as for L2,
same as for L3,
same as for L4,
same as for L5,
same as for L6. (10)

c,=cos(k a„)—1,

$„=sin(k a„); r=i 2 3.

In the case of L~, the positive or negative sign is taken
according as whether positive and negative signs occur
in both the equalities of i with respect to l and j with
respect to m or in one of them only. In L2 and L3, the
positive or negative sign is taken according as i=+1
or i= —1, respectively.

The averages over all the directions of k are given by:

so that from (1),
12

pl IT+ g2Cs

D„(T*)=T* L„(cT*x)dx,
(c* 1)2

P(m,
'
m+ji) =c„T*'P N„„D„(T*),

(3IQ,-I'~
c=k a= (6vr')', (16)

0 2rd2v6a6 2

(»'}=-:——:fW~y),

($ ")= :f(y) l f(~~y)-, —

($,$,) = ', f(vzy) ', f(y),-——
{ ') =l 2f(V8)+—lf(~~y),

( c ) =1—2f(-:v3y)+-:f(~2y)+lf(y),

(clc6}=1 2f(2V3y)+ 2—f(&2y)+ 2 f(y-)

I1Mm= @i|km=E0) (17)

E being the Boltzmann constant. T* is the reduced
temperature T/0". The D„(T*) functions are related
to the L~ functions discussed and shall be discussed
further subsequently.

Ke now proceed to calculate the functions A„:
Using a one-parameter method as in I, i.e., regarding
the charge on each adjacent lattice site as q=pe,
we have the potential at a point distant r from the
position of a central nucleus given by:

where f(y)=siny/y, y=ka; a being the side of the

b.c.c. lattice.
Just as in I, we can now write (3) as:

M„(y) = P N„L„(y),

where we have assumed a Debye distribution so that
f(id) =1.0 is the Debye temperature defined by

(12)

l (r)=Z'l '(r—r'), (18)

Npl, 2. 3 2 ~Npi jim&
ijim

(NA 1, 2, 3)

V;(r) representing the potential at r arising from the
charge on nucleus i when its displacement r;=s;—so
relative to the displacement s of the central nucleus is
zero. (i =1, 2, 3, 4, —1, —2, —3, —4, as indicated in
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Fig. 1.) We get easily,

2g
Vr(r) =

Jl 54r' 3—60r'x' 1—80r's' —360%2xsr'+280x4+560v2xos+840x's'+28(h/2x's+70s41,
Sb/3as

Us(r) =A $54r' —360r'y' —180r's' —360%2r'ys+280y'+560v2y's+840y's'+28042ys'+70s'j,

Vo (r) =A L54r' —360r'x' —180r's'+360&2r'xs+280x4 —560&2x's+840x's' —28(h/2xso+70s4$ &

V&(r) =A L54r' —360r'y' —180r's'+36042r'ys+280y' —506v2y's+840y's' —28042ys'+70s'],

where A =2q/8 1v03u' and V, (r) = V;(r).
From these relations, we get the tensors A „;;:

(19)

A o11=A

Ap33=A

A11]=A

A 211=A

A233——A

204 0 —60v2
0 —36 0

.—60v2 0 —168 .
204 0 60%2

0 —36 0
. 60&2 0 —168
—300v2 —360v2i 816

360—v2i 180v2i —144i
816 —144i 70v2.

24 126i 12042
126i —144 90v2i
.120v2 90v2i 120

24 126i —120v2
126i —144 —90v2i ,.—12fhj2 —90v2i 120

—36 0 0
A oss =A 0 204 —60V2

0 60%2 —168

Ap44= A

A 144=A

A222=A

A244=A

—36 0 0
0 204 6042
0 60%2 —168

—36002i 36(h/2 —144
36042i 6th/2i —816i

.—144 816—i —240v2i.
' 144 126i 90v2i

126i —24 —120v2
. 90v2i —120v2 —120

144 126i 90%2—i
126i —24 120v2

.—90v2i 12(h/2 —120

(20)

where A„;;=A„, ;, ; and A„;;=A „;;~.
From these values of A„;;,we get 6nally:

N o1= 16X85536A'= 1Vp7)

&o2=0=&os,

Ep3 0 Log)

Sp4=3lps= 16X41904A'= Eo, 1o=Ão, 11,

&p6=0=&o, 12,

Ã1, 1
——16X25666084A'= X1,y,

S1 2=A'1, s=0,
&1,3=&1,g=0,

+1,4 +]., 5 16X90~42A +1, 10 +1,11)

+1,6 +1,12

X2, 1
——16X157464A2 =X2, g)

&2, 2=&2, S=o,

372, 3
——X2,g=0,

Ã2, 4 +2, 5 4X51984A +2, lp +2, 11)

+2, 6 +2, 12

From these values of X„„,we get:

P(~ yg+~) —~2
~ Q ~

2CTesg (Te)
where

C =64e'/(6564-d'e'ato)

(22)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1901
0.4343
0.4105
0.3890
0.3324
0.2930
0.2536
0.2347
0.1964
0.1888
0.1912

D4 (pQ)

0.0
0.0200
0.0354
0.0316
0.0272
0.0230
0.0205
0.0172
0.0158
0.0154
0.0124
0.0128

0.0
0.1236
0.7478
0.9941
0.9477
0.8518
0.7763
0.6885
0.6255
0.5782
0.5271
0.2703

Dlo(2 +)

0.0
0.0300
0.2087
0.2774
0.2777
0.2513
0.3130
0.2030
0.1819
0.1723
0.1511
0.0778

&o (T*)= 85536 (Dr+ Dr)+41904 (D4+Do+Dro+ Dtr),

Egr (T*)=25666084 (Dr+Dr)
+90142(D4+Do+Dro+Drr), (23)

Ego (T*)= 157464 (Dr+Dr)
+12996(D4+Ds+Dro+D&r).

The relevant curves for Lr(y), L4(y), Lo(y) and L7(y),
L&o(y), L»(y), which are the only ones necessary from
a consideration of the equations (21) for X„,are plotted
in Fig. 3, ranging from 0 to a value greater than C.

(21) Numerical values of the D functions are given in Table
I. Besides, asymptotic expressions for the relevant D

TAsLz l:. Numerical values of the integrals D (T ).
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We get numerical values for L„o and L„2 and hence
D (T*), using (12).

Dt (T*)=0.1912—0.09560/T*'+

D4 (T*)=0.0128—0.00463/T*'+

Dr (T*)=0.2703—0.4032/T*'+

Dto (T*)=0.0778—0.1262/T*'+

(26)

&io

To get the relaxation time(s), ' a suitable combination
of the transition probabilities I' ~„should be taken,
depending upon the experimental conditions. At high
temperatures including room temperature the observed
relaxation times should be proportional to y 'T* '. The
proportionality constant depends on the nucleus and
crystal structure under consideration.

CONCLUSION

The calculations for the body-centered cubic lattice
is essentially similar to that for a simple cubic lattice
structure, and indeed Van Kranendonk's method may
be used to calculate relaxation times for any type of
lattice, using a suitable coordinate system. Unfortu-
nately, the relaxation time for Cs"' in cesium halide
crystals has not been measured so that we cannot
compare y' with Sternheimer's' (1+

~ y„~ )' which, from
the value of y mentioned in the introduction, is of the
order of 2X104 in this case.

FIG. 3. Plot of the relevant 1„(y) functions.

functions for low- and high-temperature ranges can be
obtained as in I. Thus, for low temperatures, replacing
the upper limit of the D„ integrals by ~, we can easily
obtain, using Eqs. (12) and (15):

Dz' =1.05X104T*',

D4' ——D5'= 1.17X 1o'T*',

D '=4.48X10'T*',
Dio'= Dzz'= 1.49X 10 T*'.

(24)

where
D„(T*)=L„o—1/12L„s(eT*) '+

~C

x"L„(x)dx.
gdo

(25)

Thus, at low temperatures, remembering the T*'
factor. in the expression for E(m, tts+p) in (14), the
tra.nsition probability and hence the inverse relaxa-
tion time is proportional to T*'. At high temperatures,
expanding D„(T*) in descending powers of T*, we

have as in I:
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Note added its proof. After this pape—r was sent for
publication, the paper by Yoshida and Moriya, referred
to earlier, appeared. These authors calculated the con-
tribution to the relaxation process from the distortion
of the covalent bonding between the atoms and rejected
the direct ionic contribution to the relaxation process,
which they estimated as being an order of magnitude
10 4 smaller, without the antishielding Sternheimer
factor. However, for Br and I ions, the cases in which
they were interested, values of y of about —100 and
—200, respectively, would not be unreasonable, con-
sidering Sternheimer and I'"oley's recent values of —70.7
and —143.5, respectively, in the neighboring ions Rb+
and Cs+. (1+

~
y„~ )' would then be about 104 and 10'X4

for Br and I ', respectively, so that both the mecha-
nisms would be of comparable importance.

' F. Reif, Phys. Rev. 100, 1597 (1956).


