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Ionized Impurity Scattering in Nondegenerate Semiconductors
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The treatment for the scattering by ionized impurities in a semiconductor using the partial wave technique
is set up and applied using a square well for the attractive impurity and a square barrier to represent the
repulsive impurity. For the case ka«1 (where k is the wave number of the charge carriers and o is the
range of the impurity potential), analytical solutions are obtained for the mobility, p, and Hall coe%cients
applicable to nondegenerate semiconductors at low temperatures with high impurity content. The mean
free time for scattering is a function of the parameters ko and (&2m~q'a/O'D)&, where q is the charge of
the carrier and D is the dielectric constant. The present treatment for reasonable choices of a yields limiting
laws of y oc T &El & for repulsive centers, while for attractive centers there are three possible limiting cases:
y&~1 &XI &, p2~ T&EI ' and ps—+~. Case 2 refers to a form of resonance scattering and case 3 is the
Ramsauer eBect in semiconductors. These results are markedly diferent from previous formulas valid for
ka))1 which yield p ~ Tel ' for both attractive and repulsive centers.

7rq4Er lnL1+ (2ka)'$—
1+1/(2ka)'

sec, (2)

where El is the concentration of ionized impurities; D
is the dielectric constant; m* is the effective mass of the
charge carriers; q is the charge of the carriers; A is
Planck's constant divided by 2m,. 8 is the energy and
ka is the product of the carrier's wave number, = 2w/)I. ,
and the e6ective distance at which the potential is
cut o8. (It may be shown that k is proportional to h'*.)
It is thus seen that the only diGerence between these
two results is iri the replacement of one logarithmic
term by another which, because of the insensitiveness
of these logarithmic functions to this change, are roughly
equal.

It may be shown that the respective formulas have
similar limits of validity. The classical calculation, from
a requirement that the scattering trajectory be well
defined, requires ka))1. The Born approximation, from

' E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950).
~ H. Brooks, Phys. Rev. SB, 879 (1951).
3 P. P. Debye and E. M. Conweli. Phys. Rev. 93, 693 (1954).

INTRODUCTION

WO theoretical treatments have been proposed to
describe ionized impurity scattering in semicon-

ductors, the Conwell-Weisskopf' (C+W) and the
Brooks-Herring treatments's (B+H). In the first, a
classical calculation is carried out using the Coulombic
scattering cross section which is cut off at a minimum
angle of scattering and at a given radial distance from
the scattering center. In the second a screened Coulomb
potential is used and a cross section is calculated using
the Born approximation. The' two methods yield for
the mean free time for ionized impurity scattering:

D'(2nz*) '*h'*

~(C+W) sec, (1)
q Er inL1+ (2ka)'(D'h'8/2m*q') )

a requirement that the phase shift be small, 4 gives the
condition

k)) (m*q'/O'D) cm—'. (3)

If we insert values for these symbols, we find for repre-
sentative values of u that the condition ka))1 is also
satisfied. In a semiconductor, A; decreases as the tem-
perature T decreases and, further, a decreases as the
concentration of ionized impurities increases. The result
is that for many concentrations of ionized impurities
and ranges of temperatures where ionized impurity
scattering is dominant, the available treatments are not
applicable.

DETERMINATION OF CUTOFF DISTANCE

The choice of a, the potential cut-off distance, requires
some discussion. (C+W) have suggested that this
distance be chosen equal to one-half the average distance
between neighboring impurities, i.e.,

as ——1/(2'') cm. (4a)

The argument is that each ion is considered to scatter
independently of its neighbors. Thus when a charge
carrier exceeds the distance of —,'the average distance
from one center, then in this approximation it is scat-
tered by the neighboring center. "(B+H) and Dingle'
have taken for a the Debye-Huckel screening distance
which is based on the statistical behavior of the con-
duction charges in forming a cloud of charge of the
opposite sign about the ionized center and thus "cutting
o6" the scattering range of the center. This leads to

at ——(Dks T/4nq'e) '* cm, . (4b)

where the symbols have their previously defined
meanings, ko is Boltzmann's constant and e is the con-

4 N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Clarendon Press, 1949, Oxford), second edition, p. 125.

s N. Sclar and J. Kaplan (to be published).
The correlation between centers in scattering is estimated in

a forthcoming publication and is shown to be small for most of
the available semiconductors.

7 R. B. Dingle, Phil. Mag. 46, No. 379, 831 (1955).
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centration of free charge carriers. There are diKculties
with both of these choices. For ao, the eGects of screening
by the charge carriers, considered in a&, have been
neglected. In addition, the choice of the factor —', is
somewhat arbitrarily based on a square uniform array
of ionized centers. If spherical symmetry is assumed,
for example

(3)& 1
82= — cm.(~i Nz&

(4c)

or

g
&(1,

2.72DkoTa

q (32wm*a) i (Pzz) '
(k~&"»-I I

=1.36X1o'I —
I

kE 272 ) &D)
' (7)

where P represents the ratio of the effective mass of the
charge carriers to the free-electron mass at rest and
where k, the average wave number, is obtained by
weighting the wave number with the Boltzmann dis-

Regularity in positions of the ions presumes the existence of
an impurity lattice, the probabilities for which are sina]1. (See
reference 5.}

R, H. Iowler, Statistical technics (Cambridge University
Press, New York, 1936), second edition, p. 269.

This modification would have the eGect of changing
the factor from O.SG to 0.62. A further difhculty with
the (C+W) choice is the use of an average distance
between scattering centers. Actually, of course, there
will be appreciable deviations of the positions of the
ions from the average position and' a value for u smaller
than the average may be appropriate, i.e.,

us ——(fz/2Nz&) cm with fi(1. (4d)

With this type of adjustable constant, b, it is pointless
to distinguish between (4a) and (4c).

We now discuss the applicability of (4b). (This has
been previously discussed at length by Fowler. ') The
derivation leading to (4b) is based on calculating the
atmosphere of charge about a given impurity as a
function of the distance from it. It is based on the
solution of Poisson's equation

Vs@= 4rrp/D, w—ith p=zsq exp( qp/ksT)—, (5)

where p is the charge density in the vicinity of a given
ionized impurity. To obtain (4b), the exponential term
is expanded and only the first two terms are retained.
The solution of (5) then gives a screened Coulomb
potential whose characteristic distance is given by (4b).
The condition for the expansion of the exponential is
that

qp/ksT«1, with P= (q/Dr) exp( —r/a). (6)

This condition obviously cannot be realized at sufB-

ciently small values of r. For r= a, we may obtain the
condition

tribution

2m no*8 4
k=(2s/)~), = =—(2szzs*koT)&

h h
=5.37X10'(PT)& cm—'. (8)

For representative values of (13zz/D)'* suitable for non-
degenerate semiconductors, we find that this is a
requirement for (ke)Av &~1.

To obtain the expression a& (4b), it was also necessary
to neglect the interaction of the charged atmosphere
about a given ionized impurity with a neighboring
impurity. Thus the treatment is formally valid only
when it yields screening distances that are small com-
pared to the separation of the ionized impurities. In
other words, it is valid only if it yields an a that is
smaller than aa.

We return to a discussion of the quantity b introduced
in (4d). It is clear that this fz is to be associated with
the (C+W) choice but not with the (8+H) choice.
The x'eason is that the quantity is associated with a
characteristic distance between the impurities. The
(8+H) choice, however, does not depend on the separa-
tion between the impurities (it assumes infinite dilution)
and thus cannot be corrected in this way. A possibility
for estimating b comes from the following point of view.
A necessary condition for the semiconductor to become
metallic is for the radius of the bound charge about an
impurity to be equal to the characteristic distance
between the ionized impurities. This happens for concen-
trations above a certain limiting concentration of
impurity. When this occurs, metallic behavior is obtained
as the bound charge is now shared with all the im-
purities. " The concentration at which this occurs is
approximately given by the concentration at which
the ionization energy of the impurities vanishes.

This leads to as= fz/2Nz&=uzi. —For an, we take the
Bohr radius in the semiconductor medium:

an DA'/Pmqs cm.——

Solving for b, we obtain

b =2NziDAs/(Pznq') = 1 06X10 sNziD. /P (10)

Using the values for the critical concentration of im-
purities' "for germanium and silicon given in Table I,
we calculate values of b=0.452 for germanium and
b=0.343 for silicon. In the case of indium antimonide,
the experimental data for the limiting concentration
are not yet available. We propose to estimate b for this
material from a di8erent point of view. Now b, roughly
speaking, is a measure of the extent of ordering of the
impurities in the semiconductor and this is certainly a
function of the temperature at which motion of the
impurities is readily available. In general, for a given
crystal structure, the lower the melting temperature

"This is a necessary and sufhcient condition for an impurity
band.

"G.L. Pesrson and J. Bardeen, Phys. Rev. 75, 865 (1949).
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TABLE I. Evaluation of the quantity b, used in the determination
of the effective distance between impurities.

Concentration
of impurity
for metallic
conduction

(cm 3)

P.
D, effective

dielectric mass
constant ratio

Tmp
melting

point
in 'K

n(Ge)
n(Si}
N(InSb)

15 X10'7s
1.25 X10'8 "
4 9 X1014c

16
12
16

0.20
0.40
0.020

0.452 1210
0.343

'
1690

0.671 800

a See reference 3.
& See reference 11.
e Calculated.

RANGE OF VALIDITY

In Fig. 1, we have plotted curves for (kat)A, ——1 and
(kas)A„——1 as a function of temperature and concentra-
tion of impurities for e-type InSb, Ge, and Si. For the
computation of aj, we have taken e~= Ã—Eg E,
where E and Ez are the concentrations of the major
and compensating impurities, except at the lower tem-
peratures when e&)e~ and the calculated a))a». The
curve (kat)s„——1 is terminated at the temperature at
which e=e~. It is worth noting that when e becomes
small as at low temperatures or for (1V—kg)/1lt'o«1
(compensation) that the statistical approach leading to
a~ becomes dubious and the calculation leading to a~ less
reliable. For the computation of a3, we have used the
values of b deduced above. These curves can be used to
compare the relativ magnitudes of the u's. Recalling
that both a3 and a~ are inverse functions of the concen-

's Analysis based on a Debye-Hiickel approach LEq. (5)g with
expansion of the exponential leads to this dependence.

of the material, the more ordering will be obtained,
since there will be less thermal agitation to oppose the
tendency of the ionized impurities to become ordered
when they are free to move. (There will be an ordering
tendency arising from the mutual repulsion of the
impurities from each other. ) In approximation, we
take"

5 ~1/T p,

where T n is the temperature ('K) at which the semi-

conductor becomes liquid. Using the b values previously
obtained for germanium and silicon to evaluate the
constants in Eq. (11), we thus deduce the value for
InSb of 6=0.67~. If the above approximations are valid,
we may calculate the limiting concentration of im-

purities needed to make e-type InSb metallic. The
value obtained is 4.9X10"/cm', which awaits experi-
mental veri&cation. To verify the above, measurements
in the temperature range 1—2'K will be needed.

The point of view that we are adopting in regard to
the choice of the cut-oG distance is to prefer that value
of a~ or u3 which is the smaller. It is clear that in the
absence of other criteria, the one yielding the smaller
value will be limiting since once the ionized impurity's
charge is screened or cut oG, there will be no additional
screening possible for a given scattering center.

tration of impurities and that A; is a function of the
temperature and not the concentration, then it follows
that for a given temperature the curve (ka)s„——1 lying
farthest to the left (and smaller concentration coor-
dinate) refers to the smaller value of a. Thus we see
that a~ and a3 are roughly of the same order of mag-
nitude and that for germanium and silicon a3 &a~ at all
temperatures. In the case of InSb, ca&a~ for tempera-
tures above 14'K while a~&a3 at lower temperatures.
The space to the right of the (ka)A, ——1 curves pertains to
values of Er, T where the condition (ku)s„(1 is satisfied,
while the space to the left of these curves applies to
the condition (ka)A,)1. The dashed line plotted on these
curves corresponds to the usual condition for degeneracy
obtained when kpT ~&Ep (Fermi energy).
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FIG. 1.Delineation of regions of validity of theory and comparison
of a~ with a&. Here, fca= (ko)A„of the text. —

'3 We consider degenerate cases in a future paper. Additional
analysis is then necessary in making a choice of a.

I
=4.23X10 "—deg. (12)

2m*kp E8s) P

According to this criterion, the space to the right of
these curves refers to E&, T values where degeneracy
prevails while the space to the left refers to the classical
or nondegenerate region. For the case of InSb, the
(kas)&„——1 curve apparently lies in the degenerate region
suggesting that the present nondegenerate calculation
may not be applicable. "To illustrate the scale of these
curves, regions to the right and left of the (kas)s, = 1curve
have been shaded in for the germanium case. The
shaded region to the left of this curve includes the E~, 7
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for which 2 &&(ku)A„&&1 while the region to the right per-
tains to (ka)A, values for which 1 &~(ku)A, &~ —',. It is seen
that important ranges of Nr, T values are in the (ka)A 1
region. I'or these cases numerical calculations are neces-
sary since neither the previous treatments nor the pres-
ent approximation is applicable. ' "There is, however, a
limited range of validity for the range of (ku)A„(1 which
is accessible to experiment and it is of interest to obtain
analytical expressions valid for this range to compare
with those that are valid for (ku)A, »1.

4q
p = rP exp( 8/kpT)d—8,

3s.1rN*(kpT) 'I' ~ p

(13)

METHOD FOR COMPUTATION OF THE
TRANSPORT PROPERTIES

To calculate the eGect of ionized impurity scattering
for the range ku&1, we ignore the known structure of
the energy bands for some of the known semicon-
ductors and assume an isotropic quadratic energy
dependence of the charge carriers on momentum. This
will give rise to spherical energy surfaces in momentum
space. Under these conditions, with the usual assump-
tions regarding the use of the Boltzmann transport
equation, the mobility p and Hall coefficient R for
small magnetic Gelds in the extrinsic range are given,
using nondegenerate statistics, by

obtain the familiar Born formula

1 00

=2rrNrv -P(n+—1) sin'(5„—5~r),
7 jP m=0

(18)

which is an exact expression. To proceed further it is
necessary to solve the radial portion of the reduced
Schrodinger wave equation

251
+ k'—

dr
V(r)—

A2

N(++1)

r2
x =0. (19)

We obtain a solution for r(a, and match the solution
and its erst derivatives to the solution obtained for
r&)a at r=u. If y„ is the ratio of slope to value of the
interior wave function, then'~

8prPm* p" sinL2kr sin(8/2) j
f(8) = — ~ V(r) r'dr, (17)

k' ~ p 2kr sin(8/2)

where V(r) is the potential characteristics of the scat-
tering. This makes it possible to solve the scattering
problem without an explicit knowledge of the phase
shifts. When the Born approximation may not be made,
we insert Eq. (16) into (15). After some mathematical
manipulation, given in the mathematical Appendix, we
obtain

1 t3w) t'2(kpT)'")

rl,qc( 8 ) E w'* )
kj„'(ka)—p„j.(ka)

tanb„=
kryo„'(ka) —y„g„(ku)

(20)

J0
r'8' exp( 8/kpT)d—h

J
re& exp( 8/kpT)d8—

0

The mean free time r which is characteristic of the
mechanism of scattering is given by

p
7I

—=2vrNlv
~

(1—cos8) I f(8)]' sin8d8,
T 0

where ff(8)j' is the cross section for scattering into the
angle 0 and is given by4

00

f(8)= P (2m+1) )exp(2i8„) —1jP„(cos8), (16)
2ik =o

where P„(cos8) is the rsth Legendre coefficient and 8„
is the eth phase shift which is a measure of the change
in the wave function of the charge carrier induced by
the scattering center. The Born approximation obtains
when 8„«1 and exp2iB„—1 =29„.Under this circum-
stance the resultant series may be summed and we

' The transport properties corresponding to these cases are
being calculated with the help of a digital computer.

where j„and g„are the spherical Bessel functions and
spherical Neumann functions and j„' and q„' are their
corresponding derivatives. Thus, in principle, if we can
obtain the y„we can solve the scattering problem. In
practice, however, it is necessary to resort to numerical
integration for all but the simplest scattering potentials.
It is therefore of interest to ascertain how sensitive is
the Incan free time to the choice of scattering potential.

2 1 1g
r&u

Vr(r)= D r a

.0,

(21)

~(q'/Du),
Vp(r) =

0,
(22)

"L.I. Schiff, QNuntnm 3fechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), p. 111.

CHOICE OF SCATTERING POTENTIAL

To obtain information on the sensitivity of the
scattering potential on the mean free time, two addi-
tional potentials were used to calcule a r in Born
approximation and these will be compared with ~ (g+w)
and v. (g+I). The potentials investigated were
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c coska+b„sinka
(28)tanb„=

c„sinka —bn coska
~(q'/Dr), 8 & t);„=2 tan-1[qs/D~*esap],

(23) where c„and b„are polynomials in powers of 1/ka and
involve p . After some manipulation, the quantity,
sin'(8„—b„+1), which appears in our r may then be
expressed in terms of these polynomials as

Cn 1~n Cnbn 1

V(r) =& (q'/Dr) exp( —r/ai). (24)

(+ +)
sin'Q„—5~i) =

(c„'+b„')(c~i'+b~P)

Equation (21) represents a Coulomb potential which

is screened by a shell of charge of opposite sign located
at r=a. Equation (22) represents a square well or
barrier potential. The results obtained using the Born
approximation in a straightforward calculation, making
use of the approximation that the cosine integral Ci(2ka)
~sin2ka/2ka for ka»1 are

(29)

We list here the first few values of c„and b„.

bp —(1/—k—a) (1+ypa),

bi 1—ci/——ka,

co= 1q

ci——(2+7ra)/ka,

D'(2'*)'*8-'* i 1
! sec,

prq'Xr k [ln(2kad)' —1]&

(25)
cs——3(3+yea)/(ka)' —1, bs (1/ka) [——3+ysa —cs],

( 15'
cp= ——3+(4+pea)! 1—

ka. (ka)'&

(30)

D'(2m )'8& ( 1
! sec,

q'X, & [ln(4kaa) —1]&
(26)72= c3

bs =—1— + (4+vsa).
(ka)' (ka)'

where d is a constant equal to 1.281.
Comparison with r&o~wi and r&z+» [Eqs. (1) and

(2)] indicates the mean free times are identical except
for a replacement of the logarithm terms by other
logarithm terms of the same order of magnitude.
This result encourages us to believe that r is indeed
insensitive to the exact form of the scattering potential
at least in Born approximation. To verify that this is
also true for cases where ka(1, we refer to the work of
Morse" who finds that the above insensitivities carry
over to these ranges as well.

The values of the corresponding y„are, from Eq. (27),
if we set x= tanna/na and s=na:

(1+ypa) = 1/x,

(2+yra) = s'x/(x —1),

3 3
(3+ysa) = (x—1) —1 x——,

.S2 S2
(31)

15 6 15
(4+yea) = {[3—s']x—3) ———x+ 1——

z. s'
PHASE SHIFT CALCULATION

For reference we list here the potentials that lead to express Eq. (20) in the form
respectively to the Conwell-Weisskopf and Brooks-
Herring mean free times:

Because of the above results, we take for our potential
the square well or barrier potential to describe the
impurities; the well describes an attractive potential
while the barrier represents a respulsive potential. For
this choice, analytic solutions are possible. For y„we
have"

where
~ -=n J-'(«)/J-(«),

na= [k'a' (2m*V/—I's')a']'.

(22)

"P. M. Morse, Revs. Modern Phys. 4, 577 (1932).

We thus see that the mean free time will be a function
of the parameters ka and [&(2rl*/A') (q'a/D)]'. Even
with this simplified potential the sum of Eq. (18), is

very complicated for arbitrary choices of these param-
eters. Since, however, this sum may be expressed in
ascending powers of ka, for values of ka(1, it is neces-
sary to deal with only the first few phase shifts. We
work to this approximation. By making use of the
properties of the spherical Bessel functions, it is possible

s +tans
p

s +1~

P sill (bp —bi)+2 siil (bi—bs)+3 siii (8s—bs)

-'(ka)'[1+0(ka)'/s']

Case Z.— (33)

Using this formalism, we obtain respectively for
attractive potentials (s real) and repulsive potentials
(s imaginary) with y= tanh! na! /! na!,

sin'(b„—8~i) = (ka)'(x —1)'[1+O(ka)'], (32a)
and

sin (8~—by+1) = (ka)'(y —1)'[1+O(ka)'] (32b)

where O(ka)' means terms of the order of (ka)'.
For the repulsive potentials, y is a regular monotonic

decreasing function of its argument but for the case of
the attractive potential the variation of the quantity x
leads to two cases of interest in addition to the general
case given by (32a).

Case I.— s—+(2m+1)e./2, x—+pe.

P(0+1) sin'(8p —bi) = [1—O(ka)'].

This corresponds to a resonance-type scattering.
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This corresponds to a Ramsauer eGect in semicon-
ductors.

The corresponding mean free times for scattering are
accordingly for ka«1.

Repulsive poterotiul

(2tro*)&$ ' (tanh«
re ——

(
—1

~
sec,

S~X." i «
where Eg is the concentration of the compensated
impurity centers which give rise to repulsive centers
for the free charge carriers.

A ttr active potential.
General case:

(2m*)lB ' (tan«
SxXga' 0 «)

lower limit in contrast with previous calculations2 is
better satis6ed for this approximation. Noting that for
ka«1, [(tan«/«) —1$ and [(tanh«/«) —1j are
substantially independent of energy; the appropriate
values for p and E using Boltzmann statistics are in
cm'/volt sec and cm'/coul, and the subscripts R and A
refer respectively to the repulsive and attractive
scattering:

Repulsive. —
g 1 (tanhna

pg= x xi
3V2vrIN ac'(m*k To) i 300 E «)
3w(1 q

Rit ———
(

S itsqc)

Attractive. —
Case I.—

Case Z.—
(2rN*)

*6*'

71A— sec,
Sxh'Xg

3548 '~2

T2A sec,
SxÃgao(2m*)l

g 1 t'tan«t~=,x x)(34) 3V2vr'1Vgas(tio*koT) ' 300 E «
3or f 1

S Euqc]

Case 1.—
where E~ is the concentration of attractive impurity
centers.

In addition to the cases treated here, there is an
additional resonance scattering condition. This obtains
in the case of an attractive potential when the incident
energy of the charge carrier is equal to a discrete energy
associated with a bound state. For this case, k'= 2m*h/fs'
in Eq. (19) may be replaced by (2rto*/ft')

~

—e~, where

~

—
e~ is the energy of the bound state. In addition if e

is small enough so that we need only keep the case,
rt=0, then (19) becomes

4q(m*koT)' 1
psA= X

3v27rtÃgb' 300

Case 2.— Rig = (15/16)Rg.

P2& =

R2g ~~ as 20~0q
as vv~0,

qA4 1
X [—Ei(—to)]~~

(2w)'(rio*koT)'t'Xylo 300

(37)

and

~res
(2m*)

* (h+ e)
sec,

8mO2/g8&

2m
[e+I'(r) jx=0

t& A

(36)

Case 3.—
tioA lAti[1+e/(2koT))

(35)
where —Ei(—to) is the exponential integral

J-"Lexp(—t)/t3«

which is a result independent of the exact form of the
potential. This expression is formally valid only for
(s)A.—~

—e ~. Equation (36), which we shall refer to here-
after as Case 3, should be compared with Case 1 of
Eq. (34). For e=0, these are identical. It is unlikely
that Case 3 will be important for germanium and
silicon but it may be important for InSb.

In the integrals involving the p and R, the variable
(h) is integrated between 0 and infinity. 'r The upper
limit may be retained even for the range ka«1 because
8 involves only k, so that the upper limit is still very
large and may be used as inanity with little error. The

ir In the Born approximation for which k))m*qo/AoD, it is not
formally correct to use the lovrer limit as zero,

15 e f e
R»=R~ —+6 + I

- 4 koT &koTi
12+

k, T&

Attractive. —
7'.69X10' tan+a —1ps=
X~&TrPrb' «

If we adopt aa to describe the cut-off distance, a, our
expressions for the mobility in practical units become:

Repulsive. —
7.69X10 t'tanh«

Xo'T'p*b' E «)
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Case 2.—
8.68X 10»PiT:

Attractive. —

pg=
DP'*T'Ng na

4.05'&06~-tan a
1 0

Case 3.— P2A~ ~ ~ (38) Case l.—
pr~ ——8.68X 10"P'*T~/N~.

with
f4,g= f4', [1+e/(2koT)))

na= (24r4*qza/AsD) ' = 1 41 X104(Pb/DN ') '

Case 2.—
Case 3.— pw.~~ ~

i »=w~L1+e/(2&oT)3
Since the analysis that leads to b is somewhat specu-
lative, we list here the equations that are applicable
when a~ is used to describe the cut-oG distance.

Repulsive. —

with

4.05)&106m tanya —1Pa.=
DP'TlNo na

na= 5.10 X 104(P'T/ D)&t.s

In view of the previous discussion of the cutoR' value,
we believe that for germanium and silicon, a3 is to be

(39) preferred over equation at and thus that the formulas
o (38) are to be preferred over (39).Figures 2(a) 2fb)
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and 2(c) show a plot of pT& vs Nr based. on formulas
(38) for e-type InSb, Ge, and Si for the case where
nondegenerate statistics are applicable. Reference
should be made to Fig. 1 to determine the temperatures
that are applicable. Because of the conditions ka(&
that needs to be satisfied, the discontinuities at lower
concentrations of impurities may not be realizable. The
dashed curves indicate the limiting values of the mo-
bilit due to resonance scattering. The temperature
dependence for the mobility is given as p, ~ T & except
at resonance when p ~ T&. In Fig. 3(a), we have plotted

/ o w, JI[tanou or tanhou)/naj —1}'vs Nr&/T' for
n-type germanium where p~ is t»e mobi i y
here (by the partial wave technique) and p&c+w& is the

b'lity calculated by using the Conwell-Weisskopf
expression for which comparison is most readi y ma e.
This mobility is given in cm'/volt sec by
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Fra. 3. Comparison of present treatment with
Conwell-Weisskopf treatment.
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To facilitate comparison, the quantjties

[(tanna/na) —1$' and [(tanhnu/na) —1$'

are plotted as a function of Nr in Fig. 3(b). It may be
noted that for small values of Nr*/T' which corresponds
to low concentration and/or high temperature, t e
Conwell-Weisskopf calculation gives the higher va ue
of mobility. This is also the region where ka)&1 and
where the present calculation is not valid. At the ig er
values of ¹/T', the mobility calculated here becomes
greater. This is also the range where the condition
ka((1 is more nearly satisfied. Thus, the indications
are that at low temperatures and high concentrations o
impurities, a higher mobility should be obtained than
that predicted by the Conwell-Weisskopf (and Broo s-
Herring) formula.

In Fi . 4, we have plotted the mobility as a function
of the concentration of impurities when it is appropriate
to use ai to describe the cut-off distance. This has been
done for the case of InSb at 80'K. The dependence on
cv lmost entirely from the transcendenta
factor since in the mobility expressions of Eq. or
the repulsive and attractive scattering the quantities
n/No (N Nc)/No and n/——N—z (1 No/N) are only———
slightly sensitive to the concentration of the respective
smpunty cen ers.t The temperature dependence is here
given by a power of T that ranges between +1/2 and
—5 2.

In the Conwell-Weisskopf formalism, the condition
for the expansion of the logarithm term

(i.e., (3DkoT/q'¹)'«1)
is equivalent to a requirement that the minimum angle
for scattering must be greater than 90', an unrealj. stoic
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condition for a classical calculation. The aforementioned
requirement that ka»1 also militates against this
expansion, as may be seen in the alternate form for the
logarithm term in Eq. (1). If we formally expand the
logarithmic term, however, we obtain

4~&ra'
sec. (41)

Comparison with Eq. (34) indicates that the correct
limiting functional dependence is obtained in this
way with the neglect of the transcendental term of
Eq. (34). Equation (41) is also greater by a factor of
two. The origin of this factor of two is uncertain. It
may be shown that it is not due to our use of a potential
that is too small since any increased scattering tends to
diminish r rather than to increase it.

OTHER SCATTERING MECHANISMS

The other forms of scattering which may inQuence
the mobolity are lattice vibrations, dislocations, and
neutral impurity scattering. These are discussed briefly
in reference 3.

The existing analyses indicate that neither lattice
scattering nor scattering by djslocatjons in good
crystals is likely to be important at the low temperatures
and the fairly high impurity concentrations for which
we may expect the present theory to have applicability.
On the other hand, comparison with the scattering by
neutral impurities indicates that neutral impurity scat-
tering may be comparable or dominant if X&, the con-
centration of neutral impurities, is equal to or greater
than the concentration of ionized impurities. Thus it is
important to be able to separate the contributions of
each from the experimental data or to combine the
contributions of both to compare with the experimental
data. In principle, this latter can be done by adding t%.e
reciprocals of the respective r for each type of scattering
and then carrying out integrals of the type of Eqs. (13)
and (14) for the combined scattering. In practice, this
is dificult because of the different energy dependences
of the r and a useful approximation (which however
may be in error by 50+c or more) is to add the reciprocals
of the mobilities:

and
p

pzz = 1.17)(10"—0.734)(10 '
DX~

p$
+30.2

p-',

These results, which are remarkably similar and be-
tween which it may be di%cult to choose experimen-
tally, introduce additional error in attempts to separate
out the effects of neutral and ionized impurity scatter-
ing.

To complete the discussion, it is necessary to know
the magnitudes of E~, El, S~, S~, lV, and e which
again are respectively the concentrations of neutral
impurities, ionized impurities, attractive ionized im-
purities, repulsive compensating ionized impurities,
total major impurities and free charge carriers. The
quantities are interrelated as follows: For neutral
impurities, we have

Nzz= N Nc rl, (T—). — (45)

In the case of ionized impurities, when the sign of the
charge associated with the ionized impurity is sig-
nificant,

Nz=N, =Nc+~(T)
for attractive scattering and

(47)

for repulsive scattering. When the scattering is inde-
pendent of the sign of the charge of the impurity, as at
high temperatures,

Nz=N~+Nc= 2Nc+n(T). (48)

For the case where the concentrations of free charge
carriers are due to ionization from the ground state of
the impurities with activation energy, 8,,

(rs) (Nc+rs) (2s-rzs*ksT y
1

t
—h;q

I expl I (49)
N Nc N— —h h' j t. k,T j
Solving for e, we obtain

(Nc+Z) (Nc+X) 4Z(N Nc) t-
i

1+ . (50)
2 j ( 2 j (Nc+Ã)'

1/I = (1/I z)+(1/7 ~) (42)

where p& is the mobility of the charge carriers scattered
by neutral impurities. This mobility has been calculated
by Krginsoy" and by Sclar" who used different models
to represent the impurity. They obtain, respectively in
practical units:

We may expand the radical and obtain,

for low temperature:

E«Nc, rs 5(N Nc)/Nc jE, —
for high temperature (saturation):

&»&e, —&—&e.

(51)

pzz = 1 43 X10"P/DNA.
& (43)

"J.Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950)."D.L. Dexter and F. Seits, Phys. Rev. 86, 964 (1952).
"Sy good crystals, we mean single crystals of the degree of

perfection possible for weIl-grown germanium crystals. These are
characterized by about 104 dislocation lines/cm~.' C. Erginsoy, Phys. Rev. 79, 1013 (1950).

» N. Sclar, Phys. Rev. 104, 1559 (1956), following paper.

The appropriate quantities needed for comparison with
theory may thus be obtained from a measurement of
the Hall coeS.cient since the theory indicates that
R=1/rzgc within a few percent except at resonance.
From a knowledge of e as a function of temperature
and the above relations, we can deduce the appropriate
concentrations.
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DISCUSSION

It has not yet been possible to check this theory with
experiment. The reason for this is that it is not easy
to separate out the eRects of the other mechanisms for
scattering. The chief other mechanism is, as previously
noted, neutral impurity scattering. Neutral impurity
scattering can be reduced by the choice of material
highly compensated with minority impurities Lsee Eq.
(45)j. Previous published measurements at low tem-
perature, however, have dealt largely with material in
which attempts were made to minimize compensation.
In addition, it is important to be able to determine Sg,
but this requires careful measurements over a large
range of temperature. In the case of n-type InSb, for
which the ionization energy of impurities is small, there
will be no neutral impurity scattering at low tempera-
tures (down to about 1—2'K). Measurements on this
material at low temperatures would be helpful to
compare with the above theory. Because of the low
degeneracy concentration in this material, the theory
pertinent to the degeneracy condition will also be
necessary.

In the absence of a detailed comparison with experi-
ment, some trends of this calculation may be noted
which are in agreement with experiment. These may be
listed as follows:

(1) A higher mobility than given by the Conwell-
Weisskopf theory is obtained at low temperature. '

(2) Under certain conditions, it is possible to obtain
a mobility which increases as the impurity content is
increased. ""

(3) Under certain conditions, it is possible to obtain
a mobility which is suddenly substantially reduced as
the impurity content is altered. "'

In addition to the details of the calculation already
pointed out above, we note further that although the
theory predicts a mobility that approaches infinity for

.scattering from attractive centers under certain condi-
tions, this obviously is never realized. (This corresponds
to the Ramsauer effect in semiconductors. ) The reason
is twofold. We have taken for u an average value to
describe the range of the scattering potential. Fluctu-
ations from this average will give rise to deviations
from the extreme condition. The second reason is that
the other mechanisms for scattering, i.e., lattice, neutral
impurities, or repulsive ionized impurities, take over
and limit the mobility. In the other extreme (resonance
scattering), the mobility is prevented from reaching
zero by the details of the calculation (Case 2) which
limit the scattering. An important aspect of this cal-
culation compared with previous calculations is that
there is a fundamental diRerence between scattering
from a repulsive center and an attractive center. We
can see why this is so from an intuitive argument. For
high-energy particles there is little chance for a particle

"F.J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954)."H. Fritzsche, Phys. Rev. 99, 406 (1955).

to be bound. Ke therefore expect equal deviations to be
caused in the path of a particle scattering from an
impurity although the deviations will be in opposite
directions. In the case of low-energy particles, however,
where there is a chance that a particle of the proper
sign may be bound, we would expect an appreciable
diRerence between the impurity centers since an attrac-
tive impurity may swing the particle into an orbit
about it, whereas a repulsive impurity would merely
scatter in the usual way.

The present calculation suffers from the following
defects:

(1) It is limited to the range ka(&1.
(2) Polarization and exchange effects have been

neglected throughout. These eRects are quite important
with neutral centers at low particle velocities, but for
the ionized scattering considered here they are neg-
ligible because it is unlikely that we can produce a
polarization in the impurity that can be comparable
with the Coulombic force already present, and in the
case of exchange, no exchange is possible (in first
approximation) because of the tight binding of the
electrons in the filled shells of the impurities.

(3) We have ignored impurity band conduction since
this is not yet well established, and the phenomenon
may in fact be due to the eRects described here.

(4) No account has been taken of the known structure
of the energy bands. It is known that when this eRect
is taken into account it alters some of the details of
the calculation. For the e-type material considered
here, the eGect (ellipsoidal energy surfaces) may be to
change the definition of the eRective mass if the scat-
tering between surfaces is ignored.

Although these calculations are applicable only for
ku«1, it is possible to visualize the pattern to be
expected as ka—+1. Inspecting the expression for
nu [Eq. (27)], we note that it is symmetrical in both
ku and L(2rN/hs) Vj&a. Thus, we can expect a type of
resonance condition in r for ku similar to those obtained
for (2m/O'V)'a for particular values of this parameter.
The resulting eRect on the mobility and Hall coefFicient
will be somewhat different from that obtained here
because of the weighting and integration with b re-
quired. However, there nevertheless exists a possibility
of explaining the anomalous behavior of the Hall coefIi-
cient and magnetoresistance in germanium as a function
of temperature in the low-temperature range. '4 Pre-
viously this behavior has been attributed to a property
of an impurity band but such an explanation does not
seem able to explain all of the experimental findings.
It is hoped that the numerical calculation being per-
formed that will cover this range, will be able to eluci-
date this question.

)Vote added irt, proof. In addition to the—potential
cut-off distances considered in Eq. (4), at low tempera-
tures when rs«Ão and ai [Eq. (46)] fails, another
choice is possible. This is u~ with n replaced by Eg.
This possibility arises from the preferential population-
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ing of the neutral centers by the free charge carriers in such a way that the remaining attractive ionized
centers are eGectively screened by the compensating ionized impurities. I am indebted to Dr. G. R. Gunther-
Mohr for pointing out this additional possibility.

APPENDIX L DERIVATION OF EQ. (18)
We have

with

Squaring (2) gives

00

f—=2s Xv (1—cos8) Lf(8)$' sin8d8,
r dp

00

f(8) = P (2N+1) I exp(2'„) —1jP„(cos8).
2Q n=o

-2

(A1)

(A2)

Lf(8)]'= —g (2N+1)(cos28„—1)P„(cos8) + —g (2m+1) sin28 P (cos8)
2k =o 2P m=o

1 00

(2l+1)7'2(1—cos28~)PP(cos8)+ P (2m+1)(2nz+1)
4k2 tn n(tnt)

&& $(cos28 —1)(cos28„—1)+sin28„sin25 $P„P

Collecting terms and making use of trigonometric identities, we obtain

00

ff(8)$'= $Q (2l+1)'4 sin'h~P~(cos8)+2 Q (2m+1)(2tn+1)L4 sin'h„sin'h +sin2h„sin25 7P„P
4k' n, na(n&~)

Let

I= (f(8)]'(1—cos8) sin8d8, x= cos8;
0

then
p
—1

dx = —sln8,
0

and

I= P (2l+1)'4 sin28~PP(x)+2 P (2++1)(2m+1)L4 sin'h„sin'8 +sin2h„sin28 7P„P (1—x)dx
4k'~ ~ ~=o n, m (n&m)

2 00

=—P (2l+1) sin'hq —P (++1)$2 sin'h„sin'8„+~+~~ sin2h„sin28~. ~7
P L=o n=o

where we have used the integral properties of the Legendre polynomials. Using again trigonometric identities and
combining the running indices, we obtain

2 00

I= Q(v+1)/sin'B„cos —h~~+sin B~~ cos'8„—2 sinh cosh„sinh~~ cosh~~j+P e sin h„—(I+1) sin'h~&
jP n=o n=o

But

Q e sin'8„—(v+1) sin'8~~=0,
n=o

as may be seen by writing the terms down and canceling the (x+1) terms with the I terms. Thus

2I= P(x+1) sin'(8„——8~&),
jP n=o

upon using a trigonometric identity, and

2
—= (2s.Xru) —Q (m+1) sin'(8„—h~g),
r jP n=o

which is Eq. (18).


