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Rayleigh Wave Propagation on Anisotropic (Cubic) Media
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The essential features of surface-wave propagation for elastic waves on anisotropic media are delineated

by consideration of the solution for cubic crystals. In using the coordinate system defined by the surface
and the direction normal to it, transformation of the elastic coefficient tensor is required. Conventional
means for doing this can be prohibitively laborious; but by invoking the isotropy condition, the calculation
becomes quite amenable. Detailed elaboration is given for propagation in the (100) and (110) planes.
The set of relations from which the damping coeKcient and the Rayleigh wave velocity can be evaluated
is derived.

INTRODUCTION

HII E the propagation of surface waves has been
characterized for isotropic media, the more

general problem for anisotropic media apparently has
not been considered beyond possibly the special case of
propagation along the cubic axis of a crystal', as we
shall show, this isolated solution is not correct and the
analysis fails to bring to light the basic features of the
anisotropy. Other extensions of Rayleigh waves may be
found in the literature such as Sveklo's' treatment for
orthotropic materials and Fu's' interesting investigation
of spherical-type surface waves. 4'

Our approach consists of utilizing a coordinate system
containing the planar surface and the orthogonal direc-
tion of damping. This means that the tensor for the
elastic constants (here taken as the stiffness coeKcients
c, )msust be transformed to these generalized coor-
dinates. The transformation usually entails laborious
details'; but we introduce a technique based upon the
isotropy condition which considerably facilitates this
operation.

For simplicity we have confined our treatment to
cubic crystals and have elaborated the calculation for
propagation in the (110) and (100) planes. Other
crystal systems can be dealt with in similar manner but
with necessarily more cumbersome algebraic detail. 4

As might perhaps be anticipated, we find that the
expression for the penetration depth involves square
roots of algebraic terms, which make it very awkward
to extract an explicit solution for the Rayleigh wave
velocities. Nevertheless, the velocities can be found by
graphical means. Also, as we shall see, once having
found the essential relations for propagation in the

(100) plane, we can immediately deduce those for the
(110) plane.

(100) plane

Xg Xg X3
Xi' cose sin9 0
X2' —sin8 cos8 0
X3' 0 0

(110) plane

Xg X2 X3
Xi' (1/V2) sin8 (1/V2) sin8 cos8
Xs' (1/v2) cos8 (1/~2 cos8 —sin8
X ' —1/V2 1/K2 0

For the (100) plane, 8 is the angle between direction of
propagation and cube axis (Xi'Xi); the (110) case has
8 the angle (X,'Xs).

The fourth rank tensor for the sti6ness coe%cients
of a cubic crystal transform via the well-known relation
(actually the definition of the tensor) which reads
symbolically

Bx Bx& Bx& Bx'
gijkl gijkl

)
~~i ~j ~+A ~l

whereby we find' the transformed tensors of Table I.
In general the transformed coefFicients are of the form

cjk

clif

1�(8)+clzfz(8)+c44fz(8)
Operationally, relation (1) means

A„,™ =P Q P P A„„"cos(X,X ')

(2)

TRANSFORMATION SYSTEM

We initially designate our coordinate system by
primes Xi', X2', X3' with the cubic reference frame
specified by X&, X2, X3, the plane of propagation is X&',
X2' with damping along X~'. Thus, for the two planes
we are considering, the transformation matrices are

' G. Garcia, Univ. nac. La Plata. Pubis. I'ac. cien. fismat. 11,
No. 2 (1941).' V. A. Sveklo, Doklady Akad. Nauk U.S.S.R. 59, 871 (1948).

3 C. Y. Fu, Geophys. 12, 57 (1947).
4 Recently, Stoneley' has formulated the problem of propagation

in a {100)plane and has explicitly solved for velocities along a
L100j and L110) direction. The approach otfered in the present
paper does not restrict solutions to special high-symmetry direc-
tions because of the implementation of a reduced transformation
scheme that greatly minimizes the algebra.

~ R. Stoneley, Proc. Roy. Soc. (London) 232, 447 (1955).
'W. G. Cady, Peezoelectrtcsty (McGraw-Hill Book Company,

Inc., New York, 1946), p. 69.

&(cosX,X„'cos(X„Xo')cos(X„X,'), (3)

with the c,& written in four-index style and the A„,' "
and A,„"'reduced to two indices via 11—+1, 22—+2,
33—+3, 12—+6, 13~5, 23—&4. If we expand (3) only for
terms having all indices 3„„"'identical, then w'e readily
secure fi(8); obtaining fz(8) and fz(8) by direct ex-

~ See Appendix for true tensor form which is always sym-
metrical. The unsymmetrical forms above are due to reduced
notation for the original 9X9 tensor.
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pansion is tedious, particularly where only two of the
indices 213, 23, p, q are repeated.

If we invoke the isotropy condition c44=-', (cll clu)
for which the c;I,

' reduce to certain c;~, then

Cju Cju Clifl+Clufu+2 (Cll C12)fu

Cll(f1+ 2f3)+C12(f2 2f3) (4)

Now c;~ in the original tensor has four possible values,
each of which defines a different set of fu and fu functions
in terms of the known function fl. Table II summarizes
the situation.

In order to determine fu and fu and thus the cju'
relations, we tabulate the expression for fl in Table III,
which combined with Table II, gives us the following
results:

Tensor components for (100) plane

cll —cll(cos'8+sin'8)+2 (clu+2c44) sin'8 cos'8,

c]2' =2 (cll —2c44) sin'8 cos'8+clu (sin'8+cos'8),

Cls —(Cll Clu 2C44) S1118 COS8(SIII 8—COS 8),
, (5)

cuu —cll (cos'8+sin'8)+2 (clu+2c44) sin'8 cos'8 =cll,
I

C26 =—Ci6
&

c66 4(cll c12) sin'8 cos'8+c44(1 —8 sin'8 cos'8).

Tensor components for (110) plane

CII C12 CI2 0 0 0
C12 Cll C12 0 0 0
C12 C12 Cll 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

cubic reference
frame

(100)

Cl I C12 CI2 0
C12 Cl 1 C12

C12 C12 Cll 0
0 0 0 c44
0 0 0 0

c16 c26 0 0

0 2cl6'
0 2c26'
0 0
0 0

c44 0
0 c66'

(110)

Cl1 C12 Cia 0
C12 C22 C33 0
c13 c23 c3~ 0
0 0 0 c44'
0 0 0 2c3~'

C16 C26 C36 0

0 2cl6'
0 2c26'
0 2cg6'

2c36' 0
csg' 0
0 c66'

and the direction of damping s are taken as n and m,
respectively; for Rayleigh waves v=0. Thus for Hooke's
law we find

BN BM'

Cll +Clu I 2 us
Bx Bs

BN Bw (BN But'j$
0'2= c» +clu 2 C44~ +

Bx Bz (Bs BS )
Bs Bzo BQ

0 t.=C12 +Cll q Try C16

Bx Bs 8$

TABLE I. Transformed tensors for the stiffness coefBcients in the
(100) and (110) planes.

For the equation of equilibriumCll Cll(u sin'8+cos'8)+ (c»+2C44)

X (-', sin48+2 sin'8 cos'8),

clu' ——3 (-,'cll c44) sin'8 cos'8

+Clu(cos 8+S1118+ 2 S111 8 COS 8),

80.~ 8~~, O'I 87.~, 80., 8'm

+ =P I + =P
Bx 82' BI2 8Ã Bs Bt2

we assume damped wave solutions of the form
c13 (ucll c44) sin'8+clu(1 ——', sin'8),

c16'= (CII—clu —2c44) sin8 cos8(-, sin'8 —cos'8),
I e

—q~e' (t,—~~v)
0

@=0,

m =m e
—&'e'"&'—~~).

c23 (ucll c44) cos 8+clu(1 2 cos 8)q

cuu' ——cll(-,' cos'8+sin'8)+ (clu+2c44)

X (-', cos'8+2 sin'8 cos'8),

The wave equations are(6

c26 (cll clu 2c44) sin8 cos8(-', cos'8 —sin'8),

C33 = 2 (Cll+C12+2C44),

. C36 Lu (Cll C12) C44) S1118 COS8)

c44 = (cll c12) cos'8+c44(1 —2 cos'8),

/
c45 =c36,

c36 (cl1 c») sin'8+c44 (1—2 sin'8),

c66' ——3 (cll—clu) sin'8 cos'8+c44(1 —6 sin'8 cos'8).

SURFACE WAVE SOLUTION FOR THE (100) PLANE

We now specify our primed coordinate as x, y, and 2.
The displacements along the direction of propagation x

82Q 82K 82Q

Cll + (Clu+C44) +C44 = —P46 I,
Bx' 888x Bs

cd 82Q 825)
C44 + (C12+C44) +Cl1 = p46 lcd

Bx Bxt9s Bs

(10)

Cll
C12

2C44
1

1—fl
1 fl—fl

fl

2 (1—f~}—2f1
2 (4 —fl)—2f1

TABLE II. The angular functions f2 and f3 as related to
fl for c;I,=cll, cl2, —',c44, and 0,
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U=U+U =(U e "'+U 'e 02')e'"(' *Iv)

(14)
W=WI+W2= (Wpe 21 +Wp e 0 )e "iCiI

(110)(100)

TA&LE III. The angular function f1 for the twenty-one c;& and the composite wave solutions
that appear in the transformed tensor for propagation in the
(100) and (1j0) planes.

/
C11

I
C12

/
C13

I
C14

I
C16

/
C16

I
C22

I
C23

/
C24

/
C25

/
C26

/
C33

I
C34

/
C35

/
C36

C44
I

C46
/

C46
I

Css
I

Ce6
I

Cee

cos'8+sin48
2 sin28 cos'8

0
0
0

sing cosg(sin'8 —cos'8)
CoS'8+Sin'8= C11'

0
0
0

sing cosg(cos 8—sin'8) =—c~p'

1
0
0
0
0
0
0
0
0

2 sin 8 cos 8=c12

—,
' sin'8+cos'8
$ sin'8 cos'8
& sin'8

0
0

sing cosg(-', sin'8 —cos'8)
-', cos'8+sin'8
2 cos8

0
0

sing cosg(—,
' cos28 —sin 8)

1

0
0

—,
' sin8 cos8
-', cos'8= c23'

& sing cos8=c36'
0

2 Sin 8=C13
0

$ sin28 cos 8=C12',

we arrive at

—C»(iQ&/V) (Up+ Up ) Cll(qlWO+q2WO )
(15)

(U.q-+U'q) (/-V)( o+ o') =o.

e eliminate zoo and mo' by observing that Uo and
mo and Uo' and mo' are related as indicated in the
secular Eq. (11), i.e.,

Up (c»+c44) (io)ql/ V)

wp po) —(0) /V )cll +c44ql

with a similar expression for Up'/wp', q2 replacing ql.
Hence we find that

1211UO+4112U0 0y +21U0+4222UO 0y (1~a)
which from (9) yield the secular equation

with

I C44q
——cll +ppp

V' )
2Mq

(C12+C44)
V

=0. (11) io)/V

0) ( cll ) (pp)' (0)'/V') CII—'+C44ql' ~
CII= —2CI2—+ I

V (Cls+C44)

$coq
~12 C44

V
cll ) (Po) (o) /V )cll +C44q2

1I»= —ic»—+ I

V (CI2+c44) i~/V )
(17b)

Cllq' ——C44+po)' I

V' )
In general there will be two roots for q (reciprocal of
the penetration depth): ( 1 'l (1t'

~»= —ql+I II
—

I
Pcs' c»'+c44q1—2 —

I I,
Ecls+c44) Eql ( V' ) )q12' 1t

Ss ————
I Slp+—

I

( 1 ) (1( o)

II22 q2+ I II
—

I p~ cll'+c44q2'
I I.

ic12+C44) 4 q2 4 V ) ), X

(4'SI' —$2)p'+ (-2'SIS2+S4)—+ (-',S2' —Ss)—
t//'2 t/2'4

This gives for our second relation involving q and V:
(12a)

(12b)
S4= cllc44(cll +C44)1 Ss= Cllcll C44 . ( }I CllP+ (C12 +C12C44 Cllcll )/V +CIIC44ql /40,

( } =p (c /V) c (q / )

{ }III Clip+ (CI2 +c»c44 —cllcll )/ V'

+C11C44q2 /M )

( } =p (c /V') —c (q'/ ').

Our result for q clearly shows that the penetration
depth varies inversely with the frequency of the elastic
wave. Explicit solution for q requires evaluation of the
Rayleigh wave velocity t/'. Actually we need another
relation between q and V which indeed derives from the
boundary condition, namely, that all stresses associated
with the directional normal to the surface vanish at
the surface, i.e., 0.,=r,=0 at a=0.

Thus from

(18b)

Since the q2/o)2 contain only c;&, V, and p, Eq. (18a)
properly does not really contain 0); insertion of (12a)
into (18a) actually gives the equation for the Rayleigh

(13) wave velocity. Solution for V may best be found by
plotting q1, 22/o)2 vs V and then plotting the left- and

ON O'N OQ O%
c12—+cll =0, —+ =0,

8$ Os O$ OS

where the abbreviations are

Sl cll+C44y S2 C12(C12+2C44) cllcll y Sp cllc44) where
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The two solutions are then

gy 1 p gg 1 p

ss V Cl 1 6) V 2 (C11—C12)

We can see that these results are correct for isotropy
since, for q=p, Eq. (19) yields

Vl ——(c»/p) &) V2=
l

-2, (cll—c»)/p7&, (20)

which are the correct expressions for the body-wave
velocities for longitudinal and transverse modes, re-
spectively. U we had put q=p in (12a) instead, the
body-wave velocities for propagation in some direction
of the (100) plane would result. Indeed,

ol

p'4
S4 S5

V2+ —(j
S3p'Sap

1
vs= l-~s,+(-,'s,2—sg, )~7,Sp'

which reduces to

right-hand members of Eq. (18a) to find the crossover
points.

A check of our central relations (12a) and (18a) is
afforded by noting how these reduce for the isotropic
case. Letting c44 ———,

' (cll—c12), we obtain cll' =cll, whence

c11c44ql, s /ss = 2[2(3c»—cls)p

+Cll(C12 Cll)/V 7&4 (Cll+C12)p.

TABLE IV. The actual 9)&9 stress-strain tensor.

+strain
Stress+XX YY ZZ YZ ZY XZ ZX XY YX

XX A ll"
A112'

ZZ A 1188
F'Z A 1128

ZI" A118»
XZ A ll'8

XI' A 11'2
F'X A 1121

A 2211
22

A 88 A 28 A82 A1811 A8111 A1211 A 11

~ ~ ~

88

~ ~ ~

~ ~ ~

A28 8

~ ~ ~

~ ~ ~

82

~ ~ ~ A 18" ~ ~ ~

81

~ ~ ~ A1P ~ ~ ~

A 2121

(18a), it turns out that the 1/V' term vanishes and
(after multiplying through by V'/p') we get
anticipated sixth degree equation for the Rayleigh
wave velocity, vis.

4(C11 C12) 2 (Cl1 C12) f Cl1 C12 1

ys y4+
l

3 lys
p C„)

(Cll C12) (Cl1 C12—2 l=o.
P ( Cl1 )

Garcia's' solution for propagation along cubic axis is
now obviously incorrect since his equation for the
velocity is only of the fifth degree; in any event, it does
not properly reduce to the well-known isotropic result9

V' 8V4 f 24 16 q f' V22i
+l —

I
—16l 1— l=0, (2~)

Vss y2' ( V22 VI2) E VI2)

pV = 2(C11+C44)~2 (CII C44),

which we get from (24) by making use of (20).
(21)

with the compressional and shear velocities in turn

p~i'= ~», p~2 ~44)

The shear velocity is independent of 0, but for the
compressional wave we observe that the angular
dependence derives from the listed value of cll' in (5).

Continuing now with our isotropy check, we find that
the expressions for (18b) become

SURFACE-WAVE SOLUTION FOR THE (110) PLANE

The following stress-strain relations replace those in

8Q r)W ( r)44
O' =Cll —+Cls, r& =Css

l
—+

c)& 4)s & 4)s 4)x )
BQ r)W ( r)24

o's=c12 —+css, r =css
l + l) (26)

4)$ r)s E c)s r)g )

{ )I 2 (Cll+C12)Q (Cll C12)/V 7r

t'

{ }II=(C»+C12)l
(C11 C12 U )

{ }III= 2 (Cll C12)/V )

{ )Iv= (c»+c12) l

———
(Cll V')

BN Ro
o'~= Cls —+Css

8$ Bs

BN
'r =Cls —+Css

8$

Thus it turns out that in Eqs. (12) and (18) we need
( 3) only replace c» by c»' and c44 by css', and the solutions

for q and V hence come out directly from our (1pp)
plane analysis.

APPENDIX. ACTUAL FORM OF THE STRESS-STRAIN
TENSOR AND THE TRACE INVARIANCE

When we insert these along with (19) into our Eq.

Stoneleys points out that certain materials like aluminum and
copper may not propagate Rayleigh waves, i.e., no real solutions
for V may arise. Substances like rock salt, sylvine, and Ruorspar
have densities and elastic constants favorable for Rayleigh waves. s

Qy observing the actual form of the stress-strain
tensor, we can make use of the trace invariance to

' See, for example, P. Eyerly, Sessesofogy (Prentice-HaU, Inc. ,
New York, 1942), p. 169.



i536 LOU I S GOLD

check the transformations in the (100) and (110)
planes. Schematically, the true appearance of the
tensor is indicated in Table IV.

Since 0-;;=0;; and r;;=a,;) the customary practice
has been to reduce the 9&9 array to 6&6 by combining
or eliminating the rows and columns indicated; use

is made of A23"=A32"=A11"=A11", etc. The con-

ventional cubic array results when A»"=A»22 ——A»"
~11) A 22 A 11 A 33 A 11 ~12 and A 23 A 13

=A12"= ~c44. Combining the equivalent strain terms,
Azsse+Azz" ——c44, etc.

Now the various transformations can be checked by
noting the trace is Tr=3(ctt+c44). The (100) trans-
formation has Tr=2crt'+crr+2c44+cse', whence it is

required that 2c»'+c«' =2c»+c44. Explicitly, it is

found that

2ctt+ c44= ctrL2 (cos'8+ sin'8)+4 sin'8 cos'8)r

+ctz(4 srn'8 cos'8 —4 sin'8 cos'8)s

+c44$8 sin'8 cos'8+1 —8 sin'8 cos'8]e,

and L ]t——2, [ ]s=0, L ]s=1 as required. Next, for
the (110) transformation, Tr= c]t +cps +css +c44 +css'
+cee', with the result

Tr=ctr{z(sin'8+cos'8+2 sin'8 cos'8)
+-',+ (sin'8+cos'8) }t+cts{z sin'8+-,' cos'8

+4 sinz8 cos'8+ z
—(cos'8+ sin'8) —3 sin'8 cos'8}z

+c44{sin48+ cos'8+ 8 sins8 cos'8+ 1+2
—2 (cos'8+ sin'8)+ 1—6 sin'8 cos'8}e.

Again, as required, { }r——3, { }s——0, { }s——3.
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Diffusion in Ordered and Disordered Copper-Zincs'

A. B. KUPER, ) D. LAzARrrs, J. R. MANNING Arm C. T. ToMrzrrxA$
Departraeat of Physics, Urtieersity of I//inois, Urbama, I//irtois

(Received July 23, 1956)

The diffusivities of Cu", Zn", and Sb"4 in single crystals of 47—48 atomic percent zinc copper-zinc (beta
brass) have been measured over the temperature range 265—817'C, by using sectioning techniques. The
diffusion coefficients show a striking dependence on the degree of long-range order at temperatures below
the critical temperature (468'C). A slight dependence of the diffusion coe%cient on short-range order is
noted above the critical temperature. The diffusion coefficients obey an Arrhenius equation only in the fully
disordered phase, with temperature dependences given by Do„=0.011 exp( —22 000/RT) cm'/sec; Dz,
=0.0035 exp( —18 800/RT) cm'/sec; Dab=0.08 exp( —23 500/RT) cm'/sec. The variation of the diffusion
coefficients with temperature in the ordered phase is considered in terms of a simple elastic model. Excellent
agreement is obtained by using the measured elastic constants and assuming that the energy for motion of
the imperfection is simply related to the smallest (110) shear modulus. In the disordered phase Sb diffuses
faster than Zn or Cu, while in the ordered phase Sb diGuses at the same rate as Zn, which is faster than Qu.
This result is shown to be inconsistent with an interchange, interstitial, or nearest-neighbor vacancy mecha-
nism for diRusion. The result is consistent with an interstitialcy mechanism.

1. INTRODUCTION

t &}IFFUSION in solid materials is generally believed
to result from the presence of point imperfections

naturally present in the crystal lattice. In recent years,
a considerable number of investigations' of diffusion

phenomena in simple lattices have substantiated this
mechanism, and in particular have provided firm

evidence for the existence of vacant lattice sites, or
vacancies, in solids.

Since most of the radioactive tracer diffusion experi-
ments in metals have been concerned with simple

*This paper is based largely on a thesis submitted by A. 3.
Kuper in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at the University of Illinois. This research
was supported in part by the U. S. Atomic Energy Commission.

$ Present address: Higgins Metallurgy Program, James
Forrestal Research Center, Princeton University, Princeton, New
Jersey.

t Present address: Institute for the Study of Metals, The
University of Chicago, Chicago, Illinois.

i E.g., see F. Seitz, in Phase Transformgkions in Solids (John
Wiley and Sons, Inc. , New York, 1951),p. 77 8'.

monovalent elements, there still exists a considerable
shortage of information on the role of imperfections in
alloy systems. Many of the most interesting properties
of alloys result from the possibility of achieving varying
degrees of order among the constituents. The e8ects of
order on the lattice are most strikingly illustrated by
systems such as CuZn, Cu3Au, CuAu, CoPt, etc. , which
exhibit order-disorder, or "superlattice" transitions. '
Of the known superlattice systems, CuZn, or beta brass,
has provided a particularly rich field for investigation,
since the alloy equilibrates rapidly and the degree of
order may be varied from nearly complete order to
complete randomness, over a relatively small tempera-
ture range, without any discontinuous change in
crystal structure. '

The present availability of radioisotopes of high

H. Lipson, Progress in Metal Physics (Interscience Publishers,
Inc. , New York, 1950), Vol. 2.' F. W. Jones and C. Sykes, Proc. Roy. Soc. (London) 161,440
(1937).


