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Analytical Representation of Hartree Potentials and Electron Scattering

WILI.IAM J. HYATT*

Uliversity of Alabama, Ursiversity, Alabama

(Received June 6, 1955; revised manuscript received April 2, 1956)

Analytical fits to the Hartree curves of 19 neutral atoms are presented. These are in the form of either.
Wentzel potentials, for lighter elements, or a series of Wentzel-like terms, for heavier elements. Applications
to the scattering of electrons by atoms are briefly discussed. Among the principal results is an iteration
method @which yields expressions, in terms of tabulated integrals, for the radial eigenfunctions for a particle
scattered by a Wentzel potential.

.50

.20

.10

.05

iq
cL

.02

.0) X
'He

.OQ5 ~ F~
~W
~ Hg0' ——Thomas-Ft rmi@xl

.001 i 2 4 5
x=u&Z~ria.

Fro. 1. Screening factors, Z„/Z, as a function of the variable
x=1.13Z&r/av, for selected atomic numbers.
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INTRODUCTION

HE collision of electrons with atoms is, properly
speaking, a many-body problem. As such, it is

not easily amenable to exact treatment and recourse to
approximation methods is necessary. Regardless of the
strength (or weakness) inherent in any approximation
used, the results of calculating quantities of interest in
scattering applications will be affected, to some extent,
by the interaction potential employed. It is, therefore,
clearly desirable to have as accurate an analytical ap-
proximation to the atomic potential as possible. Of the
potential functions proposed, the Hartree potential
corresponds to the best approximation of the atomic
wave function which can be achieved by regarding it as
a product of the one-electron wave functions chosen so
as to minimize the value of the total energy, neglecting
spin-orbit terms. The purposes of this note are these:
(1) to furnish accurate analytical approximations to the
Hartree potentials; (2) to discuss brieRy some applica-

tions in electron scattering utilizing the expressions we
And for the potentials.

The energy domain discussed is nonrelativistic.

REPRESENTATION OF THE HARTREE
POTENTIALS

The interaction potential, based on the Hartree
scheme, may be written

The Coulomb potential of the nucleus is modified by the
factor Z„/Z, representing the screening effect of the
orbital electrons on the nucleus. The function Zv/Z
satisles the conditions Z„/Z~1 as r—+0; Zv/Z~ as
r—+~. Tabulated numerical values of the quantity
Zv/Z exist for a number of atoms and ions. ' ' We wish to
represent them analytically. To do this, semilogarithmic
plots of Z„/Z as a function of x=1.13Z&r/ap, the
Thomas-Fermi variable, are useful. Here, and through-
out, the quantity av is the Bohr radius of hydrogen.
Figure 1 shows a plot of Z v/Z versus x for a few elements,
with the Thomas-Fermi screening factor, C (x), included
for comparison. There is, as seen, a diGerence between
the Thomas-Fermi and. Hartree representations which
becomes large as the atomic number Z decreases. This
reflects a breakdown of the statistical model of the atom
on which the Thomas-Fermi potential is based. For the
Hartree functions, the Zv/Z curves deviate but little
from linearity in several cases. This means that they can
be fit, when a linear plot exists, with one term of the
form Z„/Z=e s*, where fp is a constant to be deter-
mined. The potential will then be a Wentzel type. For
heavier elements, Ruark' first proposed the repre-
sentation

Z„/Z=g„c„e—' *.

c =1, but otherwise, the c„and the b„are adjust-
able. We have found that by making some of the c„
negative, it is possible to account for the localization of
charge due to electron shells; this is manifested by
slight sinuosities in the Z„/Z curves.

Table I contains the results of 6tting 19 Hartree
curves of neutral atoms, ranging in atomic number from

A. J. Freeman, Phys. Rev. 91, 1410 (1953).
~ D. R. Hartree, Reports on Progress in Physics (The Physical

Society, London, 1946), Vol. 11, p. 113.' A. E. Ruark, Phys. Rev. 57, 62 (1940).
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Z= 2 to Z= 80 by either one-term Kentzel potentials or
series of the form of Eq. (2). The Thomas-Fermi
function is given by a representation due to Moliere. 4

The series for the Hartree curves are accurate, generally,
to within about 5% out to a distance at which Z~/Z
has fallen to a value of about 0.01. Some are con-
siderably more accurate. The potentials for A and Kr
contain a polarization correction after the fashion of
Holtzmark. s

For ions, a series of the form

Z„/Z= Mrs/Z+((Z&e)/Zj{p b cue b&'—), (3)

where n is the numerical value of the charge on the
atomic ion, yields accurate results.

APPLICATION'S

angular momentum of the particle. One then assumes
that the effect of the potential is to produce a phase
shift which is found mathematically as a shift in the
index of the Bessel function characterizing the free
particle solution. Thus, one takes w to be of the form

w (r) =I„+i~a„(kr).

The boundary conditions satis6ed by this function are

w„(0)=0; limw„(r) sin(br+Is/2+des/2).

Since the latter condition is characteristic of the
asymptotic form of the wave function in scattering
problems, the phase shifts produced by the potential
may be related to the d,e through the equation

If one now substitutes the analytical 6ts to the
potentials into a erst Born approximation, there results
for the scattering cross section I(8)

5„=—
m Drs/2.

The des are now fixed by requiring that

(6)

I(8)= (2rNZe'/Ii')'(P „c„/(IC'y d„'))' (4)

where E= (2ps sin-', 8)/Ii, and d„=b„(1.13Z&as '). In
these formulas, ps is the initial momentum of the elec-
tron, and 8 is the angle of scattering in the center-of-
mass coordinate system. It has been found that when
potentials containing polarization corrections are used
in (4), the agreement between calculated and observed
cross sections is, as expected, better at small scattering
angles than cross sections found by neglecting polariza-
tion entirely. For the remainder of the cross sections we
have computed using (4), the errors are those inherent
in the Born approximation. That is, the Born approxi-
mation yields a monotonically decreasing cross section
for all incident electron velocities and all atomic num-
bers. The strong backscattering and diGraction patterns
sometimes observed experimentally cannot be predicted
by the Born approximation. '

%hen the Born approximation is no longer useful,
phase shift methods are usually employed to find accu-
rate values for the scattering cross section. The use of
the potentials in ending phase shifts is illustrated below,
using a variational principle due to Pais. ' The method is
unsuited for the determination of zero-order phase
shifts. The Pais principle can be formulated in the
following way. If, in the radial wave equation Lm„=0,
with L the operator

d' e(rs+1)
I.= +O' — —U(r)—

r2

one makes the assumption that U(r)«N(v+1)/r', then
the potential may be treated as a perturbation on the

4 G. Moliere, Z. Naturforsch. 2a, 133 (1947).
s J. Holtsmark, Z. Physik 55, 437 (1929);66, 49 (1930).' For an excellent review of electron scattering, see the review

article by J. H. McMillen, Revs. Modern Phys. 11, 84 (1939).
r A. Pais, Proc. Cambridge Phil. Soc. 42, 45 (1946).

w„Iw„dr=0.
0

(7)

a~(a~+-2~+ 1) mZe'
2 «Q +a (1+d~'/2&') (8)

2hz+ 2e+1

TanLE I. Exponential fits of Z„/Z and of the Thomas-Fermi 4(a) .

Element Z~/Z (one term) Zp/Z (series of terms) a

He
Se
e
N
0
F
Ne
A

K
Ca
Cr
Fe
Zn
Ge
As
Sr
Kr

e-1.60m

e—0.95'

eM.919m

eM.907m

eM.978m

eM.731m

1 25e-1.758' Q 25e-3.845m

e-0.574~ P 48e-1.081~+,0 48e-3.06~

1 25'.828m p 44e-1.41m+0 f9e-4.29m

1 20e-0.904' 0 32e-1.438+0 f2e-9.65m

1 25'.99ls Q 35e—1.63m+0 fpe-18.3e

[0 g4e&.566m 0 24&-1.056@+040e-3.25s7s

0.659e~'r4~+0.341e~ rr' (Ruarkb)
0.224e~'"4~+0.68e~.76"+P.196e~ 8"
p 20'.195$+Q 56'.770Ã+Q 24e-3.08$

eM.731Ã Q 20e-1.268+0 20e-3,70$

Q 25'.3358+0 56'.828m+0 19e—3.76m

P 22'.3194+Q 78e-1.081Ã

P 22e-o.263a+P 78e-1.165m

0.295e~ 387~+0.705e 1 295~

0.360e~'66~+0.640e '43~

L0.335e~'~~+0.60e '83~+0.065e r'7'
0.415e~'78~+0.51e '48~+0.075e 7~

Q.f9e~.2'6~+0.72e J'70~+0.09e '5~

Q f9'.257m+0 56e~.vv9at+0 25e-3.16m

0.35e~'~+0.55e '2~+0.1e 6~

a The expressions in sqnare brackets contain a po1ari7ation correction
(reference S).

b See reference 3,

If (5) is placed into (7), the result is, for potentials given

by Eq. (2),
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TABLE n. Phase shifts in helium. order,

16

340

B1
B2

B2

B3

B1
B2

B3

B2

0.067
0.0069

0.1139
0.0130

0.170
0.042
0.0101

0.249
0.0896
0.0396

0.272
0.1389

Phase Approximation
Voltage (radians) Pais

Exact
McDougall

0.070
0.0065

0.186
0.0411

0.272
0.0946

0.308
0.1524

Approximation
Born

0,042
0.0045

0.148
0.0329

0.224
0.0769

0.274
0.1379

ws(r) =sin(kr+8s)+ (X/4k) $—2 cos(kr+8s) Er(«)
+f(ts,r)+ f(ts, r)]
+OP/8k') (exp L—i(kr —8o)]Lg (n, ts,r) —

g (ts,n,r)]
+expL —i(kr+6s)]Lg(p, ,ts*,r) —

s (Et(«))']
+expL+i(k» —5o)Xg(t *~r) —g(~,t *r)]
+exp/i (kr+ be) ]$—

g (ts*,ts,r)
+ s (Et(«))']) (1o)

The notation is as follows. Et(x)= J;"(e '/t)dt, the
exponential integral; f(ts,r) = ,' expL —i—(kr—&o)]Et(tsr);
f(ts*,r) =—', expLi(kr —ho)]Et(ts*r), with n the quantity
appearing in the Wentzel potential exponent, p, =o.—2ik,
and ts*=n+2ik Aty.pical quantity g is given by

where the Q„+a„are Legendre polynomials of the second
kind. Equation (8) is a transcendental one in the mrs.

Application of (8) to the case of scattering of electrons

by He for incident electron energies in the voltage range
16&V&340 yields phase shifts which are significantly
better that Born phases. Comparison is made with the
exact work of McDougall. ' At the higher energies, the
Pais and Born calculations are equivalent. Table II
presents the results.

To deal with the question of zero-order phase shifts,
where the Pais principle cannot be applied, it is possible
to use other variational principles which are related to
the Pais method. However, the author is at present
engaged in attempting to solve the radial wave equation
for a Kentzel potential by means of converting it and
its boundary conditions into an integral equation and
solving by iteration. To date, it has been possible to
extract the following facts. For particles of zero angular
momentum, an integral equation equivalent to the radial
wave equation and its boundary conditions is

wo(r) =sin(kr+6o)+k ' U(&)we(&) sink(P —r)d(. (9)J„

The highest order approximation to the eigenfunction
thus far found is the second; the eigenfunction is, to this

' J. McDougall, Proc. Roy. Soc. (London) A156, 549 (1952).

( 1)n 1 (p m

-E l'&br)+2 ~br, ~)l —
i

.
st!st Ep i

In this expression Etf" (yr)= J~„"(Et(t)/t)dt, and is
tabulated by Kourganoff. s The function I'(yr, rs) is the
usual incomplete I' function.

On application of the boundary condition wo(0) = 0 to
Eq. (10), one is led to a fairly simple expression for the
phase shift. Unfortunately, this expression is little
better than the Born approximation. For that reason, it
will be discussed no further. However, inspection of (10)
reveals a symmetry that promises hope that further
iterations can be quickly made if only one term can be
reduced to known integrals. It is hoped that a more
complete account of the latter part of this discussion
will be ready shortly.

The potentials developed in this paper have been
applied to a consideration of finding atomic form factors,
to a discussion of multiple scattering, and to the
question of corrections for inelastic scattering and
scattering in solids. These are discussed in the author' s
thesis" and will not be covered here.

The author wishes to extend his thanks to Dr.
Arthur E. Ruark for pointing out the usefulness of the
potentials shown and for many discussions.

e V. Kourganoff, Basic Methods tn Transfer Problems (Clarendon
Press, Oxford, 1952).

"W. J. Hyatt, thesis, University of Alabama, 1955 (unpub-
lished).


