HALOGEN BAND IN NacCl

overlap between neighboring 3p orbitals are included,
the band width is decreased by an estimated 309,. It is
emphasized that the estimation procedure does not
account completely for overlap since the effects of non-
orthogonality to core states have not been considered.
The interaction between the 3s and 3p bands was esti-
mated in the approximation that the Bloch sums are
assumed orthonormal. Its effect on the width of the 3p
band is relatively small, of order 5%,. The interaction is
zero for some of the eigensolutions by reasons of sym-
metry. Finally, the inclusion of second-nearest neighbors

in the two-center approximation produces an effect of
order 10%,. ’

IV. CONCLUSION

The analysis results in a lower bound of 1.0 ev for
the width of the halogen band in NaCl to within about
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309%. Owing to the extreme nature of the assumed
model of a pseudo-argon lattice, the actual value of the
width is believed to lie much closer to Shockley’s
result, which probably represents an upper bound since,
as has been mentioned, his calculation is based upon
Cl~ orbitals determined without exchange.
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A method is developed for obtaining directly from group-theoretical and topological considerations a
consistent set of critical points belonging to a given secular equation. The treatment includes a detailed
discussion of nonanalytic behavior near degeneracies. Comparison with many specific calculations shows
that the minimal set so obtained is often the set actually present in the case of short-range forces. The
contributions of nonanalytic critical points to the frequency distribution are analyzed. Behavior near
critical points is made the basis of a scheme for calculating the main features of frequency distributions from
the corresponding minimal sets. An approximate frequency distribution is calculated for aluminum. Possible

applications to energy bands are discussed.

INTRODUCTION

HE elastic frequency distribution of a crystal,
which determines many of the thermodynamic
and optical properties of the crystal, may be defined as
g(v), where g(v) is the fractional number of frequencies
between » and v»+dv. The frequency distribution is
given by the usual Born-von Kdrmén theory of crystal
dynamics, which treats the lattice as a set of coupled
harmonic oscillators. The resulting secular equation is
generally too involved to make it practicable to obtain
the frequency distribution in closed form; it has proved
necessary to resort to various approximate methods.
Many investigators have obtained approximate fre-
quency distributions by taking finite samples of the
elastic vibrations throughout the Brillouin zone.! The
objection to this method is that one must take a large
*Based on a thesis submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the Physics
Department of the University of Chicago.
1 Now at Bell Telephone Laboratories, Murray Hill, New

Jersey.
1 See reference 1 of L. Van Hove, Phys. Rev. 89, 1189 (1953).

sample to obtain good results, which makes the method
quite laborious. Some time ago Houston? and Montroll®
proposed analytic methods of approximation which met
with fair success. Recently interest in analytic approxi-
mations has revived as a result of papers by Montroll,*
Smollett,5 and Van Hove.® Montroll succeeded in
making an exact calculation of the frequency distribu-
tion of a special square lattice, and he obtained a
distribution containing logarithmic singularities. Smol-
lett showed that such singularities would arise whenever
the frequency surfaces in % space had analytic saddle
points. Van Hove then demonstrated, by using a
topological existence theorem due to Morse,” that
certain critical points (c.p., points at which V»=0)

2 W. V. Houston, Revs. Modern Phys. 20, 161 (1948).

3 E. W. Montroll, J. Chem. Phys. 10, 219 (1942).

4E. W. Montroll, J. Chem. Phys. 15, 575 (1947).

8 M. Smollett, Proc. Phys. Soc. (London) A65, 109 (1952).

6 L. Van Hove, Phys. Rev. 89, 1189 (1953).

7M. Morse, Functional Topology and Abstract Variational
Theory, Memorial Sciences Mathematiques (Gauthier-Villars,
Paris, 1938), Fascicule 92.
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must exist generally, together with the consequent
analytic singularities in the frequency distribution.

Van Hove’s results predict the existence of some c.p.
If one knew all the c.p., then an interpolation scheme,
such as the moment-singularity method proposed by
Lax and Lebowitz® and by Rosenstock,? might suffice to
give a good approximation to the distribution. Rosen-
stock? has tried to obtain most of the c.p. for a given
secular equation by drawing frequency contours on all
the symmetry planes. The drawing of contours is a
laborious procedure. Accordingly, we address ourselves
in this paper to the problem of determining the most
complete statement that can be made about c.p. from
general mathematical considerations alone.

In Secs. I, II, and III we present the mathematical
tools required. in our solution of this problem. We start
with the observation that the power of group theory for
the location of c.p. required by symmetry alone!® has
not yet been exploited for lattice vibrations. In Sec. I
we give a brief description of these group-theoretical
techniques. Having located the c.p. required by sym-
metry, one can make little further progress until these
c.p- have been classified. In Sec. II we present perturba-
tion techniques and schematic representations suitable
for such classification. We emphasize particularly the
existence and classification of nonanalytic behavior
near c.p. We then observe that Morse’s results actually
contain more detailed and powerful topological relations
than those used by Van Hove. Moreover, although
applied by Morse explicitly only to analytic functions,
his general topological methods permit us to derive
similar relations for nonanalytic functions. Because of
the highly mathematical character of the arguments
involved, we have relegated an outline of the proofs of
the necessary theorems to the appendix. Section ITI,
on the other hand, contains a description of these
theorems which in itself should be sufficient for an
understanding of their use. In particular we discuss
there the topological classifications of all c.p. discussed
in Sec. II.

We present in Sec. IV an explicit method for con-
structing the so-called minimal set of c.p. and in Sec. V
use this method to construct these sets in a number of
examples. In Sec. VI we discuss the contribution of non-
analytic c.p. to the frequency distribution. Finally, in
Sec. VII the contributions of c.p. are made the basis
of a scheme for approximating the frequency distribu-
tion. We summarize the method and give a brief dis-
cussion of possible applications to energy bands in
Sec. VIII. ‘

Before we proceed to the actual solution of the
problem, let us review the results of the Born-von
Kérmén theory. If there are IV unit cells in the lattice

8 M. Lax and J. L. Lebowitz, Phys. Rev. 96, 594 (1954).

9 H. B. Rosenstock, Phys. Rev. 97, 290 (1955).

10 See the considerations of G. Dresselhaus, Phys. Rev. 100,
580 (1955), and R. Parmenter, Phys. Rev. 100, 573 (1955), on
energy bands in the zincblende structure.
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labeled by » and #’, with Z atoms per unit cell, labeled
by «, 8, and the space has / dimensions, the NIZ equa-
tions of motion may be written

X q(m)
ag

M

Mo

=ﬁZ, Dop(n,n") [ x5(n") —x5(n) ].

If we assume

b
Xo(n)= Re[ s,,\/N exp[i(k-n— 27rvt)]], (2)

then the translational symmetry of the lattice enables
us to reduce Egs. (1) to an /Z-dimensional secular
equation for »2. Here b represents the complex amplitude
of the wave, e, is a polarization vector, and k is the
wave vector of the vibration. The /Z-dimensional
matrix M (k), whose eigenvalues »%(k) provide the IZ
branches of the frequency surfaces, has the symmetry
and periodicity of the reciprocal lattice. Independent
vibrations are obtained by restricting k to the first
Brillouin zone (B.Z.) of the reciprocal lattice. By using
the uniform spacing of k over one zone, it is now easy
to show that the normalized frequency distribution!!
G(v?) is given by
as

Vo
G(Vz) = f )
ZL J 56y | Vi

where V) is the volume of the crystal cell and S(»?) is
the surface in the first zone for which »2(k)=w»2. The
importance of the c.p. at which V»?=0 is evident. We
now turn to the methods with which we locate the c.p.
necessitated by symmetry considerations alone.

3

I. GROUP THEORY

The group theory of functions derived from a secular
equation having the symmetry and periodicity of the
reciprocal lattice has been formulated implicitly by
Bouckaert, Smoluchowski, and Wigner'? in their dis-
cussion of energy bands. We shall use their terminology
and their abbreviations for the symmetry elements of
the B.Z. One of their results is that a solution having
wave vector k must transform as a small representation
of k, that is, as an irreducible representation of the
group of k. Our solutions (2) are labeled by k and the
polarization set {e.}. Consequently the set {e.} must
transform as a small representation. In particular, for
one atom per unit cell, we deal with those small repre-
sentations transforming as one or more components of a
vector. One may identify the small representations
immediately from their character tables; the latter are
given for the cubic lattices in reference 12.

We now consider the behavior of »?(k) in the neigh-

11 We calculate G(»2) since »? is the eigenvalue of the secular
equation. One obtains g(») by observing that g(v)=2G(2).

( 12 B)ouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
1936).
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borhood of ko. Let #;(ko), 7=1, -+, %, be a set of
n-fold degenerate solutions (1<#<Z!l) belonging to the
representation T', of the group of ko. Then to second
degree in £=k— ko, the v;2(k) are the eigenvalues of
Wii(§)=vuo®ij+ (| £ Vir?| ) +3 (5| EE: Waver?| )

> (ilf'Vsz\m)(mlE'Vkﬂlj)‘

4
m e

The matrix W is obtained from second-order degenerate

perturbation theory.’® The index m labels modes not

belonging to the original set j and vi?=»;2(ko), /=1

or m. We shall call the point k¢ an ordinary c.p. if

(ilivky2'])=07 ’I:,j=1, R (5)

The operator Vi»? transforms like a vector. It will
generate a representation of the group of k which,
when reduced, will be found to contain a set of small
representations I's. In the absence of screw axes and
glide planes, the I's will be those small representations
labeled by components of vectors.* In any case all the
matrix elements will vanish unless one of the direct
products I',XTsXT, contains the unit representation.
The second order terms include an operator transform-
ing like the trace of a tensor. The diagonal matrix ele-
ments of this term will not vanish except for special
choices of the force constants. Therefore terms to second
order suffice to characterize the frequency surfaces in
small neighborhoods.

At a general point in the zone, the group of ko con-
tains only the identity. The only small representation
of the group of ko is the one-dimensional unit repre-
sentation ; there is only accidental degeneracy. Further,
we have (i|£-Vi?|i)>£0 except by accident, for
I'aXTgXT, is the unit representation. Thus c.p. are not
required to occur at arbitrary ko by symmetry condi-
tions. Finally, inspection of Eq. (4) shows that »*(k) is
analytic about nondegenerate points.

At points of higher symmetry, representations of
higher dimensionality may occur. A systematic test at
all symmetry points of the condition that I'eXTgX T,
does not contain the unit yields all ordinary c.p.
required by symmetry. Further, it yields those points
for which some components of the gradient vanish. In
applying the topological considerations one may regard
these points as potential c.p. Finally, when #>1, the
v2(¥) are solutions of a secular equation and hence are
analytic only by accident. We must therefore distinguish
two kinds of ordinary c.p., the analytic and the fluted
(the fluted points being produced by degeneracies at
symmetry points).

There are IZ branches of the frequency surfaces in
k space. The topological considerations to be developed
are applicable only to single branches forming closed

13 P, Q. Léwdin, J. Chem. Phys. 19, 1396 (1951).

14 For the case of screw axes and ghde planes, see G. Dresselhaus,
thesis, University of California, 1955 (unpublished).
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Fic. 1. Frequency surfaces near a
crossover point ko.

manifolds. Difficulty in identifying suitable separate
branches can arise only at those points of degeneracy
where branches cross. This situation is illustrated by the
solid lines in Fig. 1. One way to label branches in
the vicinity of crossover points, which we shall call the
ordered labeling, defines the sth branch at k to be the
one of frequency ».;2(k) where ¢ < j implies »;2(k) < v 2 (k).
This definition of branches suffers from the difficulty
that it can introduce generalized nonanalytic c.p.
at crossover points. We call such points singular c.p.
and define them as points where one or more com-
ponents of the gradient change sign discontinuously
while the remaining components vanish. The topo-
logical characterization of c.p. given in the appendix
requires that such points be considered c.p.!® Ordinary
c.p. produce infinities in the frequency distribution, or
in its first derivative, for /=2 or 3, respectively, but
singular c.p. produce at most discontinuities in the first
derivative of the frequency distribution. As an example
of a singular c.p. introduced by the ordered labeling,
we note that the branch (1)-(3) in Fig. 1 might have a
generalized minimum at k.

Crossover points can occur where degeneracy is
necessitated by symmetry but where all components of
the gradient are not required to vanish. At symmetry
points where several one-dimensional representations
exist, accidental degeneracies of the kind pictured in
Fig. 1 also can occur.!® The group-theoretical considera-
tions described above enable one to locate the singular
c.p. required by symmetry and to locate within a family
of “accidental” crossovers the singular c.p.

It might be thought that it would be more convenient
to label the branches in Fig. 1 by (1)-(4) and (2)-(3) so
as to avoid introducing singular c.p. However, such a
labeling is inconvenient for several reasons. The most
important of these is that the degeneracy at ko is re-
moved as soon as one leaves the symmetry plane, as is
indicated by the dotted lines in Fig. 1. Therefore the
alternate labeling would make the surfaces discon-
tinuous. Henceforth we will always define our branches
according to the ordered labeling.

II. BEHAVIOR NEAR C.P.

We now turn our attention to a study of the detailed
behavior of »2(k) in the neighborhood of ordinary and
singular c.p. If the c.p. is analytic, we may expand

15 Qur definition of a generalized c.p. differs from Van Hove’s
(reference 6) because he includes what we have called fluted
points among his generalized c.p.

16 Accidental degeneracies have been discussed in detail by
C. Herring, Phys. Rev. 52, 365 (1937).
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»%(k) to second degree in £=k— ko. In the normal form,
the expansion becomes:

4

i=j+1

vi=y— i bt (6)
i=1

Here 7 is the index of the form; the topological features
of an analytic c.p. are completely specified by its index.

No such expansions are available for the fluted points.
The geometrical classification which we shall now intro-
duce does not require the existence of such expansions.
It is based on the number of separate sectors in the
neighborhood of the c.p. in which »2>»¢? or »2<w¢’
A sector is an angle, or solid angle, taken with the c.p.
as apex, within which »2—»,? is everywhere of the same
sign. If »*> 0%, we have a positive sector; whereas if
v2<w¢?, we have a negative sector.

The following procedure is a graphic way of counting
the numbers of positive and negative sectors. In polar
coordinates we have »2(§) —vo?=\(§, 0, - - -). Consider &
fixed and sufficiently small that the perturbation expan-
sion in Eq. (5) is valid. Let A=0 for all angles be repre-
sented by a reference circle or sphere. For fixed angle let
values of A be plotted radially, positive values outside
and negative values inside the reference surface. The
radial scale is chosen in any convenient manner. The
numbers (P,N) of positive and negative sectors around
ko may now be read off directly from this sketch.

Let us consider as an example the simplest case,
a two-fold degeneracy in two dimensions. We simplify
the discussion by assuming here, and throughout the
paper, that a center of inversion is present. Since the
secular equation must then have the full symmetry of
the square, it may be written in the form

bEPFct —N A&y
= lcij‘~)\5@'j§ =0
atty

CE2HDbES—A
in the neighborhood of the c.p. with b, ¢, and d as
general parameters. In Fig. 2 we plot two cases; the
) lines are solid, the reference circle dotted, and all the
positive sectors are shaded.
In Fig. 2(a) the case —¢>b5>0 and d=0 leads to de-
generate saddle points, while in 2(b) the case —¢>5>0

U]

(a) . (b)

F16. 2. \ lines about a two-fold degenerate c.p. in two dimensions.
(a) Degenerate saddle points. (b) Fluted points.
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and —¢— b>d produces fluted points. Each of the saddle
points in 2(a) has sector numbers (2, 2), but the outer
A line in 2(b) has the numbers (4,4) while the inner
has (0,1). Evidently the (4,4) point is intrinsically
fluted, for the only analytic combinations in two dimen-
sions are (1,0), (2,2), and (0,1). On the other hand,
it is not surprising that the inner line is topologically
equivalent to an analytic maximum and that it makes
a similar contribution to the frequency distribution.

We can obtain all possible fluted points in two dimen-
sions by observing that each sector is bounded on the
reference circle by the intersections of the X line with
the reference circle, points where A=0. The angles for
which A=0 for any mode are obtained by setting
l¢ijl =0 and are independent of £ Let us therefore
define the line = |¢;;|. Every sector of the reference
circle bounded by the points A=0 for a single mode will
then occur among the set of sectors bounded by the
points A’=0 on the A’ line. Thus we need only determine
the possible sectors of the A’ line. The most general
form of N is r(£4+&4) 458282 since it is a fourth
degree polynomial having the symmetry of the square.
In each sector the \’ line must have a radial maximum
or minimum. Thus one can locate all possible sectors
by finding the solutions to 6\ =0 subject to 6¢=0. The
only solutions are found to be the (10) and (11) direc-
tions. The combinations of sectors in these directions
having the symmetry of the square are analytic, warped
minima or maxima, and the (4, 4) combination which is
illustrated in Fig. 2(b). Thus we have found all fluted
points in two dimensions.

We can generalize these ideas to three dimensions by
considering a A surface and its accompanying reference
sphere. Consider the two-fold degeneracies first. If the
eigenvectors of the two modes lie in a plane of sym-
metry of the zone, their frequency contours behave in
that plane much as do those of the twofold degeneracies
in two dimensions. Normal to the plane the behavior is
analytic, since in the secular determinant there are no
cross terms between the coordinates in the plane and
that normal to the plane. Thus, as will be shown later,
nothing new is introduced from the topological stand-
point. If the eigenvectors do not lie in a plane of sym-
metry, a separate analysis of the sectors on the reference
sphere should be made in each case.

A three-fold degeneracy involves three equivalent
modes, and since inversion is present, the secular equa-
tion must possess cubic symmetry. Thus it must have
the form [Di,-—)\a,-,-{ =0, with D;;= bE2+c(£2+ 52 and
D,;=d¢&:£;. The possible sectors of the A\ surfaces may
now be determined in the same way as in the two-
dimensional case, with the appropriate modifications of
terminology : e.g., the sectors are now bounded on the
reference sphere by closed lines. The result is that
separate sectors are possible only in the directions
A:={100), Z;=(110), A;=(111) and along a general
direction for which ;= §;. Here the subscript ¢ empha-
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sizes that we are dealing with directions in ¢ space
away from the c.p. in question. The fluted points
resulting from the various combinations of these sectors
are listed in the next section.

Singular c.p. can also be classified according to their
sector numbers. As Van Hove remarks,5!® the only
singular c.p. for /=2 are generalized maxima and
minima ; thus we need only analyze singular points for
l=3. Consider first the singular c.p. arising from acci-
dental degeneracies. According to Herring,' accidental
degeneracies can occur at isolated points in the zone or
along closed curves. A simple example is a closed curve
of contact C which lies in a symmetry plane. Then the
relative maxima and minima along C produce singular
c.p., as was first noticed by Van Hove. Herring shows
that the components of V»? do not vanish at these
points except along C. Thus for the lower or upper
branch, respectively, the M\ surface will be entirely
inside or outside the reference sphere except near the
two directions where C intersects the reference sphere.
Here the A surface may change sign. In tabular form,
the results for the sector numbers are

Lower branch

2,1
(UBY)

Upper branch
1,0
(1,2

Near an isolated point of contact, Herring has also
shown that the first-order terms will vanish only in one
direction. Thus the sector numbers in the table repre-
sent all the possibilities that can occur for both kinds
of accidental degeneracy.

More complicated behavior can occur at the singular
points necessitated by symmetry. This is because sym-
metry may often require that V,»? vanish in a plane.
In this case fluted behavior is possible in this plane, so
that it is also possible to obtain the combinations
(1,4) or (4,1) which we call F, or F, points, respec-
tively.

This completes the discussion of the sector numbers
of all c.p. that will occur without special choices of the
force constants.

III. TOPOLOGICAL RESULTS

If we analyze the c.p. required by symmetry accord-
ing to the methods of the last section, we obtain in each
branch a set of points which we call the symmetry
set 8. The important idea in Morse’s topological work?
is that the existence of some c.p. necessitates the
existence of others. Morse finds that the total numbers
of the different kinds of c.p. are related. The symmetry
set generally does not satisfy these relations. The
smallest set satisfying these relations and containing
the symmetry set is called the minimal set 9. The chief
purpose of this paper is to devise a method for con-
structing the minimal set.

The topological relations can be stated quite simply
for a branch containing only analytic c.p. In two dimen-
sions let p; denote an analytic c.p. of index j and #;

Minimum along C
Maximum along C
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denote the total number of these in the manifold. Then
the following relations hold:

%021,

nl_"0> 1, (Mz)

nz—%1+no=0.

Similarly, in three dimensions let P; denote an analytic
c.p. of index j and NV ; denote the total number of these.
Then the relations that must hold are:

No21,

Ni—No22,
Ne—Ni+No2 1,
N3—No+N1—No=0.

In both cases the equality sign in the last relation
makes it the most useful one for constructing the
minimal set. A much weaker set (M’) of inequalities
only can be obtained from these equations by adding
consecutive relations. Neither set can be applied to
most branches because many degenerate c.p. will be
intrinsically nonanalytic. Van Hove® has already applied
the relations (M’) to branches containing only analytic
c.p. and c.p. topologically equivalent to them. In the
Appendix we prove by Morse’s general methods that
the relations (M) can be used in the presence of the
fluted and singular c.p. that occur in our problem. In
doing so, each nonanalytic point may be assigned an
index ; and a topological weight ¢2>1.17 By definition,
¢ is the number of times a c.p. of index 7 is to be counted
in computing the numbers #; or N; which enter the
relations (M,). For example, the point in two dimen-
sions with sector numbers (4, 4) has j=1 and ¢=3; it
is to be counted as three saddle points in the rela-
tions (M2).

We can assign the index j and the number ¢ to the
given nonanalytic point once we know the sector hum-
bers (P,N) described in the last section. The topological
methods for doing this are presented in the appendix;
here we shall only give the results in terms of a few
rules.

(M)

1. If the sector numbers are (1,0) or (0,1), then
g=1 and j=O0 or I, respectively. That is, a warped
minimum or maximum is topologically equivalent to
an analytic minimum or maximum, respectively.

2. In two dimensions, an (#,2) point has j=1 and
g=n—1.

3. In three dimensions, usually only one of P or IV
will be greater than 1. In the former case j=2 and
g=P—1, and in the latter case j=1 and ¢g=N—1. In
general a point must be counted botk as a j=1 point
with g1=N—1 and as a j=2 point with go=P—1.
These rules cover all possibilities that can occur for
general choices of the force constants.

17 Van Hove’s generalized c.p. are obtained in the special case
g=1.
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A convenient notation is obtained by writing the
index j as a subscript to the symbol for the non-
analytic point. Thus the (4, 4) point in two dimensions
is called an f; point. All other c.p. occurring in two
dimensions, both fluted and singular, are equivalent
to p;’s. Henceforth we use the symbols p; and P; for
all c.p. topologically equivalent to analytic c.p. of
index j. We have completed the task of listing ¢ and j
in two dimensions; we now do the same for three
dimensions.

We begin with ordinary c.p. where complications will
arise only at degeneracies necessitated by symmetry.
At a twofold degeneracy lying in a plane of symmetry,
the possibilities are determined by the behavior in the
plane. If the behavior in the plane is that of a p; point,
only a P point can result. But if we have an f; point
in the plane, an F; or F, point of weight 3 will result.
Other twofold degeneracies can be handled by our
general methods. The possibilities arising from a three-
fold degeneracy are somewhat more involved. To
classify such points, we recall the statement made at
the end of the last section to the effect that possible
sectors can occur only in the directions Ag, 2y, A¢, and
a general direction in the £=¢; plane. The situation
for a cubic element 0<z<y<x of the reference sphere
is illustrated in Fig. 3. The situations arising when
three or four of the possible sectors have the same sign
and hence coalesce are easy to treat. When the signs
along the four special directions indicate the possibility
of two positive and two negative sectors, one must
distinguish two cases, each of which is illustrated in
Fig. 3. In Fig. 3(a) the possible sector in the §&=¢;
plane, which we label the G; sector, lies between A; and
Ag. In Fig. 3(b), on the other hand, the G; sector lies
between A; and 2;. The case of two positive and two
negative will arise only when alternant sectors in the
sequence (AGAZA); or (AAGZA); have opposite sign.
Further, the two sectors of the same sign as the central
area, C, must coalesce.

From these arguments all possibilities for ordinary
c.p. arising from a threefold degeneracy have been
obtained; they are listed in Table I. The left column
contains the symbol T'; for the point, the first five
columns give the ‘“‘sign” of the \ surface in the five
important directions, the next column gives the sector
numbers (P,N), and the last column gives the topo-
logical weight ¢. To use the results of Table I for a
particular c.p., one notices that the secular equation
factors in the A; = and A; directions, so that the
information required by the first three columns is

F1c. 3. Sectors
around a threefold
degenerate point.

S
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easily obtained. That required in the next two is usually
best obtained graphically.

The situation is much simpler for the singular points.
If they are necessitated by symmetry, then ¢=3 at
most (at the F; or F, points discussed in Sec. IT). If
they arise from accidental degeneracies, we know from
Sec. IT that they have sector numbers (1,0), (0, 1),
(2,1), 0r (1, 2), so that g=1 in each case. By combining
this fact with the result obtained earlier that ordinary
points will have ¢>1 only at symmetry points, we
obtain the important conclusion that all c.p. not in
the symmetry set have g=1. This result simplifies the
problem of constructing the minimal set, which is
what we discuss next.

IV. CONSTRUCTION OF THE MINIMAL SET

Using the rules given in the last section, we can now
see if the symmetry set satisfies Morse’s relations. If it
does, then the symmetry set § is the minimal set
IM(8$=9M); if it does not, then we must search for the
additional c.p. in 9. We shall indicate explicitly how
this is done in three dimensions. Let us define the
multiplicity of a point in the B.Z. as the number of
points symmetrically equivalent to it. Then the extra
c.p. may be classified in order of decreasing symmetry
or increasing multiplicity according to whether they
occur in (i) symmetry lines, (ii) symmetry planes, or
(iii) general points of the zone. We shall now show how
the Morse relations can be used to locate extra c.p. in
each category. From the results of the last section, we
know that the extra c.p. all have ¢g=1, which simplifies
our task considerably.

A c.p. will have nonvanishing probability of occurring
on a symmetry line only if symmetry requires the
normal components of Vi»? to vanish. A c.p. will then
occur if »? has a maximum or a minimum along the
line. The one-dimensional form (M) of Morse’s equa-
tions is that the number of maxima and minima are
equal; further, maxima and minima must alternate
alone a line. In this way we obtain all c.p. required on

TaBLE I. Possible intrinsically fluted c.p. arising
from a threefold degeneracy.

T; Az D Ag Gt Ct (P,N) q
o - + + + + (1,6) )
82 + - - - - (6, 1) 5
a1 + - + + + (1,12) 11
a2 - + - — - (12, 1) 1
M + + - + + (1,8) 7
Az e - @D 7
S 4+ o+ o+ - 4+ (L 23
Ss - - - + - (24,1) 23
4, + - - +  + (1,200 19
A2 - + + - - (20,1) 19
B, - =+ - + + (1,14) 13
B, + - + - - (14,1 13
o - + + - + (1,30) 29
C. + - i (30,1) 29
D, + - + - + (1,36) 35
D, - + - + - (36,1) 35
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symmetry lines by the one-dimensional topological re-
lations (My).

The remaining points of 9 which occur in symmetry
planes can usually be located by using only the relations
(M,). In so doing, we must be careful to consider
enough zones so that the symmetry plane is periodic.
For example, in the f.c.c. lattice the plane k,=0 is
periodic only if one considers the first two B.Z. The
relations (M,) may require c.p. along the symmetry
lines in the plane which were not required by the one-
dimensional relations.

Next, the c.p. of 9 occurring at general points in
the zone may be located by using the relations (M3).
As before, these relations may require new c.p. in the
elements of higher symmetry previously studied.

In both the two- and three-dimensional analyses, the
multiplicities of symmetry elements can be used as a
guide in locating additional c.p. For example, if one
requires four saddle points in a cubic (100) plane, one
locates them along the (010) or (011) directions. These
in turn must be made consistent with the previous
solution of M along the symmetry line. If one location
requires further c.p. while the other does not, the latter
is chosen.

Finally, we must search explicitly for singular points
arising from accidental degeneracies. Some of these can
be found by observing that two symmetry points are
often connected by a symmetry line and that along this
line each solution of the secular equation will belong to
a small representation. For each small representation,
the frequency must be a smooth function of wave
number along this line.’® From the analysis of the
symmetry set, the ordering in frequency of the repre-
sentations is known near the two symmetry points.
If the ordering of two representations near one sym-
metry point is reversed near the other point, there must
be a crossover, or accidental degeneracy, along the
symmetry line. In branches defined by the ordered
labeling, such crossovers can give rise to singular c.p.
This happens if the discontinuities in slope along and
normal to the symmetry line occur with a reversal in
sign. The same arguments can be used to locate singular
c.p. on closed curves of contact lying in symmetry
planes. An example of such c.p. is given in the next
section.

We have now constructed the minimal set. This set
contains the symmetry set, the singular points due to
crossovers required by the symmetry set, and the
smallest number of additional c.p. consistent with the
Morse relations (M) for all ¢. Let us designate by

Fi16. 4. A schematic dis-
persion curve illustrating
kinks.
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M (#9M) the smallest set properly containing 9 and
consistent with the requirements of symmetry and
connectivity. The extra c.p. in 9’ which do not occur
in 9 must have high multiplicity and simultaneously
be consistent with all the Morse relations. Therefore
we expect 9N to be considerably larger than 9, which
suggests that 91T may often exhaust all the c.p. present
in a given branch. We can obtain a stronger criterion
for the completeness of the minimal set from the follow-
ing more detailed considerations of the nature of the
extra c.p.

The situation in one dimension is illustrated by the
dispersion curve of Fig. 4. The solid curve is a typical
dispersion curve for short-range forces. The minima at
0 and 7/2 are obtained as part of the symmetry set
and the maximum at K is a consequence of these
minima. If there had been a kink in the dispersion curve,
as indicated by the dotted portion in the figure, there
would have been an additional pair of c.p. at K;
and K. Such kinks can always be added to the minimal
set and a set satisfying the relations (M) will still be
obtained. More explicitly, a kink consists of two c.p. in
the same symmetry element of the zone. If the sym-
metry element is an /4-dimensional manifold, the two
c.p. must have adjacent indexes j and j-+1 when con-
sidered in %, #+1, - -+ dimensions. For example, if the
symmetry element is a line, one extra c.p. must be a
maximum and the other a minimum along the line.
The line will lie in a symmetry plane, and in the plane
the pair must have indexes j/ and j'41. Finally, for
/=3 the points must have three-dimensional indexes
7" and 7”+1. It is now clear that such kinks will be
produced only by terms in the secular equation that
vary rapidly with &, and these arise only from long-
range forces.

The above reasoning breaks down if there are cross-
overs caused by accidental degeneracies. In effect, these
produce kinks, as can be seen in Fig. 6 of the next
section. However, we assume that in constructing the
minimal set we have located all accidental degeneracies
and have included in 9% the c.p. arising from the
corresponding kinks.

It is also possible that the true set of c.p., 7, does
not contain 9, i.e., that some of the c.p. that we have
added to 8 to form 9 are not in 7. This can be checked
directly from the secular equation. In such a case 91T can
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be modified to obtain a set 91, consistent with 7. Then
the arguments advanced above regarding completeness
should still be valid for 917;. Calculations in such cases
may be quite complicated, however, and we restrict
ourselves in this paper to examples where T9IN.

We conclude that a consistent minimal set is usually
exhaustive for the case of short-range forces only.
These plausibility arguments are reinforced by the
results of a number of calculations, some examples of
which are presented in the next section.

V. EXAMPLES OF THE MINIMAL SET

We now present a few examples to illustrate the
method for constructing the minimal set. The simplest
one is Montroll’s square lattice with central first and
second neighbor forces.* Group theory shows that both
branches must have c.p. at the origin T', at the corner R,
and at the centers of the sides X. Moreover, I' and R
are twofold degenerate. The symmetry set for the
lower branch with Montroll’s parameter 7<1/2 con-
sists of a fluted minimum at T'; py’s at X, and a fluted
maximum at R. Since these c.p. already satisfy the
relations (M3) in this case the minimal set is identical
with the symmetry set. In the upper branch there are
two cases, depending on whether r>1/5 or 7<1/5.
For 7<1/5 the upper branch has a fluted minimum at T,
po’s at X, and an f; at R. Again the minimal set is
identical with the symmetry set. Finally, for 1/2>7
>1/5, the upper branch has fluted minima at T and R,
and po’s at X. In this case, which is illustrated in
Fig. 5, the minimal set is obtained from the symmetry
set by the addition of p:’s along the four diagonals from
T to R. In all cases the minimal sets include all the
c.p. found by Montroll.

We now analyze the more complicated case of the
simple cubic lattice. The symmetry points labeled by
I', R, M, and X® must be ordinary c.p. in all three
modes; I' and R are threefold degenerate, M and X are
twofold degenerate and lie in planes of symmetry. We
use Blackman’s? secular equation in which 7 measures
the ratio of second to first neighbor forces. We study
the c.p. for 0<7<[2(10)}*—57/6~0.221 and present
the results in Table IT. The first three lines concern
0<7<1/10. In this case the symmetry sets form
minimal sets in all three modes. For 1/10<7<1/7 the
A1 point in the high mode becomes a P, point. From
Morse’s equations we see immediately that this implies
the appearance of a P; point along A. Similarly as 7
increases further one may say that further changes in
the symmetry sets produce new c.p. along the sym-
metry elements of the zone. The nature and location
of these c.p. can usually be deduced immediately from
the three-dimensional form of Morse’s equations. In
some cases it is necessary to find points in planes of
symmetry, e.g., the plane k,=0 (which we call an s;
plane) or k;=k; (which we call an sy plane). This is

18 We use the notation of reference 12 for the cubic lattices,
» M, Blackman, Repts. Progr. Phys. 8, 11 (1941),
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easily done by utilizing the two-dimensional form of
Morse’s formulas in the way which we discussed
earlier. The results agree with those of Rosenstock,
who calculated frequency contours up to 7=0.221.

This example illustrates the general principle that
forces of longer range produce more c.p. Thus for 7
small, and hence essentially only first neighbor forces,
the symmetry set contains all the c.p. As 7 increases,
the second neighbor forces introduce more c.p. The
important point is that the minimal set still contains
all the additional c.p. introduced by these forces. We
may expect that as forces of still longer range become
significant, this will no longer be the case. Kinks and
consequently c.p. not in the minimal set may then occur.
Furthermore in this case for 7>[2(10)¥—57]/6 the
actual set 7 of c.p. in the high mode no longer contains
the minimal set for that mode.? This occurs because
the P; point along A spontaneously becomes a P; point
at 7=[2(10)¥*—57/6 without an accompanying change
in the symmetry set. At the same time additional p,
points are introduced into the sir planes. Even with the
aid of the Morse relations we now find the situation
sufficiently more involved that we restrict ourselves to
r<[2(10)}—5]/6.

The final example is f.c.c. aluminum, using Walker’s
secular equation.?! Several aspects are now important
that were not present in the first two examples. The
first is that there is a twofold degeneracy at L which
does not lie in a plane of symmetry. The general be-
havior of frequency surfaces at L in f.c.c. lattices can
be taken from the work of Dresselhaus.!* In general
the expressions are complicated, but for one atom per
unit cell they simplify to analytic expressions. The next
point is that there must be a crossover along 2. This

TaBLE II. Critical points in the simple cubic lattice, using
central first and second neighbor forces. The parameter 7 is a
measure of the ratio of second-neighbor forces to first-neighbor
forces.

Branch T R X M A S z
0<7<1/10
High Py M P; F,
Middle Py & Py Py
Low Pn Pa Pl P2
1/10<r<1/7
ngh Po .Po P3 F2 P1
Middle Py b Py P
Low Py, P; P P
1/7<7<1/5
High Py Py Py Fy Py
Middle Py M P1 Py P,
Low Py Py P P
1/5<7<(24/10—-5)/6
ngh Py Py Ps Py P, P,
Middle Py M Py P; P,

Low Py P3 P P

21 am greatly indebted to Dr. Rosenstock for directing my
attention to this case.
2 C, B, Walker, Phys. Rev, 103, 558 (1956),
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can be deduced by noticing that Z is continued beyond
K=2ra"'(1/2, 1/2, 0) into S which ends at X. Thus
the high (longitudinal) mode along = becomes the
middle (transverse) mode at X, so that there must be
a crossover somewhere along £—S. Actually the cross-
over must occur along a curve of contact in the sy plane.
The curves for the middle and high modes along X are
sketched in Fig. 6, and detailed frequency contours
showing the curve of contact in the s plane are given
in Walker’s paper. This accidental degeneracy produces
a singular maximum in the middle mode and a singular
P, in the high mode along = at the point marked ; in
the sketch. The second aspect is that symmetry requires
that the high and middle modes be degenerate at
W=2mra"'(1,1/2,0) but with 9»*/9k,50. The middle
mode has an f; point in the k.k. symmetry plane at W;
consequently W is a singular F, point for that mode.
The high mode has a fluted po in the symmetry plane,
so that there is a singular P, in the high branch at W.
The minimal sets for each branch, including the singular
points produced by the kink along =, are presented in

TasLE III. Critical points in the frequency surfaces of aluminum,
using Walker’s secular equation.

Branch T L X w z SsI sII z z
High Py P3 P3 Py Pr Py P P
Middle Py P, P, F, P
Low Py P F, Py

Table ITI. Comparison with Walker’s results shows
that the minimal sets are exhaustive for all branches.

VI. FREQUENCY DISTRIBUTIONS NEAR C.P.

Having located the c.p., we proceed to assess the
singular contributions of their neighborhoods in k space
to the frequency distribution G(»?). We denote the
lowest order singular contribution of each c.p. by AG*
for »*>ve? and AG~ for »><w¢% The AG’s of analytic
c.p. have already been evaluated by Van Hove,® so
that we need consider only the fluted points and the
singular points. Both kinds of c.p. generally have such
involved frequency surfaces that the resulting integrals
cannot be evaluated in closed form. We shall present
simple approximations that should be adequate for most
purposes.

The first step is to put Eq. (3) in a simpler form.
If v®’=ve®>+¢(n, - - -, n1) then it is easy to show?? that
the contribution to the frequency distribution of the
neighborhood of the c.p. is given by

Vo W(ni, -« m)dm- - -dnia ®)
Zl S 1 aqﬁ/am |
-, m) Is the appropriate weighting func-

Here W(p, --

2R. Courant, Differential and Integral Calculus II (Inter-
science Publishers, Inc., New York, 1936).
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Fic. 6. Sketch of dispersion
curves in the high and middle
branches along == (110) direc-
tion in aluminum.

: ol 5
[¢) ko Ky (%%’a,o)

tion that makes W(ny, « -+, n)dn1- - -dni_1=dS,* and n,
is determined implicitly by ¢ (p1, - - -, 71) =»2—»? on S.

The simplest example to consider is a minimum in
two dimensions. If the minimum is analytic, we have

(€= V2— Voz, §= k—ko)
e=bg 2+ cg,2=1r2(b cos®0+c sin%). 9)

By using the second half of (9) in (8) with ;=60 and
ne=r, we find that AG-=0 and AGt=7V,/ZI(bc)} in
agreement with Van Hove’s results. We observe that a
circular minimum with e=ar? would give the same
result if a= (bc)?. Thus a is the geometric mean between
the extreme values & and ¢. On the other hand, if one
sets b>¢>0 and d+c>d in Eq. (7), both surfaces have
fluted minima at ko,. We may approximate the outer
A line, which has extreme values b and (b+4c¢+d)/2,
by a circle of radius ao=[8(b+c+d)/2]% and the
inner line, of extreme values ¢ and (b+c—d)/2, by
a;=[c(b+c—d)/27]%. The accuracy of this approxima-
tion can be checked in two cases. If d=b—¢, both
curves become circles and the approximation is exact.
If d=0, we have two noninteracting analytic minima
which can be treated exactly, or viewed as a limiting
case of upper and lower fluted minima. Then the frac-
tional error in the total jump for both surfaces com-
puted from ‘the approximations e, and @; turns out to
be 1— (2bc)*(b*+c?) (b+c)~%, which is about 0.08 for
b=2c. Mean radii may also be used to compute approxi-
mate jump decreases in the frequency distribution
arising from maxima.

The only remaining fluted point for /=2 is the f;
point which can be obtained by choosing —¢>b>0-and
b+c+d<0 in Eq. (7). The frequency contours of the
higher surface, which is an f; point, are shown in Fig. 7.
We shall calculate AG* as an example of the approxi-
mations that can be employed. Because of symmetry,
we need consider only the upper halves of the hyperbolas
»?2>pe? in the first octant. We see, from solving the
secular equation, that these curves are given by

b+c b—c\?
€= —2—(512+$22)+[ (—‘2“) (67— &7)*

| +aner|, a0
and G is given by

8rVy L aé&
GO = f 5 (1)
(/0112 | O€/ ks
2 H. Margenau and G. Murphy, The Mathematics of Physics

and Chemistry (D. Van Nostrand Company, Inc., New York,
1943), p. 190.
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— sy
-———V> Vo

F16. 7. Frequency contours of an f; point.

The singularity in G is produced by the tips of the
hyperbolas so that the upper limit L need not be
specified. Near the tips £<§; so that, to second order
in &, Eq. (10) becomes

d2
(:'_\_’b$12+ (6+——) Ezz. (12)
b—c¢
We observe that (12), which is exact in the terms that
produce the chief singularity in G(»?), could have been
obtained more simply from second-order perturbation
theory. This remark will be of use when we come to the
three-dimensional fluted c.p. For the f; point we have

A

AGt=———1n
Zat

V2
—1

Vo

with at={—b[c+d?/ (b—c)]}*. By performing a unitary
transformation to the diagonal axes £=d£,, we can
derive a similar formula for AG—, with a~=21(b+c¢+d)?
X[b+c—d+2(b—c)%/d]h

At a singular minimum we will have e= f(§)r. Then
AG—=0 and

Vo % rdf Vo ¥ df
AGt=— f —=e{———f ], (14)
22 J, (O 2Z Yy f2(0)
so that a singular minimum produces a discontinuous
increase in G’ (»?).

In three dimensions there are more possibilities to
consider. We begin by listing in Table IV the singular
terms that each kind of c.p. may be expected to con-
tribute to the distribution G(»%?). We note that the
saddle points have a behavior that is qualitatively
different from that of the maxima and minima. From
the table, we see that only ordinary points and singular
maxima and minima having one discontinuous com-
ponent of Vi»? can produce discontinuities in G’ (»%).
Thus we need analyze in detail only these points.
Before doing so, we outline the arguments used to

PHILLIPS

obtain the results of Table IV. The first and fourth
lines are obtained immediately if one assumes e~7?
or r, respectively. The second line follows if one observes
that the reference sphere can be divided into two zones.
Designate by the equator the intersection of the plane
in which V;»?2=0 with the reference sphere. Then the
first zone, in which e~7? is an equatorial band of
width ~¢ while the second zone is the rest of the
sphere, for which e~7. The second zone contributes
terms ~ €2, which may be neglected in comparison with
the contribution of the first zone, which is proportional
to e¥X et=e. A similar argument gives the result of the
third line, since the zone where e~7? then occupies a
solid angle ~e¢, so that its contribution is ~e!X e= ¢k
The results of the last four lines are obtained by direct
calculation.

Let us now consider ordinary c.p. in detail. Van
Hove® has already indicated that fluted points as well
as analytic points will contribute singular terms ~ ¢,
and has calculated the contributions of analytic points
explicitly. The contributions of the remaining points
can be approximated by the techniques used for /=2.
Thus, we approximate warped spheres of fluted maxima
and minima by spheres of mean radius 4. If the mini-
mum or maximum is twofold degenerate, the frequency
contours are given by

e=af(0)p*+ gz (15)

Here z is the coordinate normal to the symmetry plane
and ¢ is the mean radius in the symmetry plane ob-
tained by the methods discussed earlier. The radius of
the equivalent sphere is given by A3=a%. On the
other hand, if the minimum or maximum arises from a
threefold degeneracy, so that it has cubic symmetry,
we can take A*=qafBy. Here «, 8, and v are the radii in
the (100), (110), and (111) directions, respectively,
easily obtained from the secular equation for these
directions. The validity of this approximation has been
checked in two ways for the special case b=2c and d=0
in the secular equation. The first way was to fit the
values a, 8, v to a combination of cubic harmonics, and
then do the integral numerically, using elliptic integrals.
The result agreed to within the limits of error with

Tasie IV. Singularities contributed to G(»?) by various c.p.

No. of discontinuous

Designation of c.p. components of V k»? AG

Maxima and minima
Ordinary
Singular (symmetry)
Singular (curve of contact)
Singular (isolated contact)

W= O
o
(A

Saddle points
Ordinary 0 €t
Singular, ¥ »?#0 along
1,2,3

axes of hyperboloids
axes of hyperboloids) €' lne

Singular 1(L
Singular 2 (L axes of hyperboloids) !
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that given by the approximate radius 4. The second
way used the fact that for d=0 we have three inter-
penetrating ellipsoids, so that the total AG for all three
surfaces can be evaluated exactly. The fractional error
of the approximate formula in this case was 0.10.
Fluted saddle points can be treated by perturbation
techniques similar to those used for the f; point.
Consider for example a §; point, whose frequency sur-
faces for »?>~y,? are shown in Fig. 8. The contribution
of the cup-like surfaces for »*<we% which are shown in
Fig. 8(a), can be evaluated by observing that the
singular contribution again comes from the tip of the
cup. Because of symmetry, we need only consider the
cup along the positive £; axis. Then for the region of
interest, £,24 £32<< 12, so from second order perturbation
theory
d2
e~bE*+ (C+;—") (&2 £57),
—c

(16)

where ¢>—b>0 assures that we have a §; point. As
before, the perturbation expansion is exact in the term
that produces the leading singularity in G(»?). In this
case,
.6
AG=(»Y)=—
Zla}

a2 2

(vo2—v)}; = —b(c—l—b—-—

—C

7I'V()

, (17)

where the factor 6 occurs instead of Van Hove’s 2 for
an analytic point, as there are now 6 cups instead of 2.
For »2> »,?, these perturbation methods no longer apply.
Although we have not been able to calculate the result
explicitly, we believe that the connected, tipless sur-
faces for »*>w¢® should make similar contributions
whether they are analytic hyperboloids of one sheet or
the fluted surfaces of Fig. 8(b).? Since the connected
analytic surfaces do not contribute a singularity to
G(»?), we shall assume that the same result holds for
the connected surfaces of the §; point for »?> % All
other fluted saddle points may be treated similarly, so
that this completes the analysis of the AG’s of all
ordinary c.p.

We consider now singular maxima and minima for

(@) (b)

F1c. 8. Frequency surfaces near a §; point.
(@) 2 Sve?; () ¥R we.

24 Van Hove has arrived at a similar conclusion regarding the
similarity of the AG’s arising from analytic and fluted c.p.
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which V»?=0 in a plane of symmetry, while there is a
crossover normal to the plane. Suppose, e.g., the point
is a fluted minimum in the plane and a singular mini-
mum along the normal to the plane, which we take to
be the &; axis. Then if the mean radius in the plane is @,
we may approximate the frequency surfaces by two
expressions (which are needed because of the cross-
over; a, g, h>0):

ef—\l'apsz) +g£37
":{apzf(a) - h£37
We still have AG==0, and a direct calculation gives

wVoyl 1
o=
Zla\g h

£>0

18
£<0. )

(19)

This completes our quantitative analysis of the major
singularities in G(»?) produced by nonanalytic c.p.

VII. APPROXIMATE CALCULATIONS OF THE
FREQUENCY DISTRIBUTION

It can be shown from Eq. (3) that only c.p. con-
tribute singularities to the frequency distribution. Thus
it may be hoped that a knowledge of these singularities,
together with appropriate smooth curves connecting
them, will be enough to give a good approximation to
the exact distribution. The moment-singularity method
developed by Lax and Lebowitz® is a refinement of this
idea. They proposed that the strengths of the singu-
larities, together with the coefficients of a first few
Legendre polynomials, be left as disposable parameters.
The parameters are then determined from a correspond-
ing number of moments of the distribution. By using a
method due to Montroll, one can calculate the latter
without solving the secular equation.

The moment-singularity method was applied specifi-
cally to two-dimensional lattices which have infinite
singularities in their distributions. We shall develop a
somewhat different procedure for sketching G(v?) for a
three-dimensional lattice. Our expressions for the fre-
quency distribution near each singularity give us the
shape of the distribution there but not its magnitude.
It is laborious to calculate the higher moments of the
distribution; therefore we reduce the number of mo-
ments to be calculated by computing the shape of the
distribution near each important c.p. by the methods
of the last section. Then we will obtain a good approxi-
mation to the total distribution if we can estimate the
heights of the chief peaks. The simplest procedure is to
leave the height of the main peak in each branch
undetermined, and to add enough linear and quadratic
terms to the expansions about each singularity to match
smoothly the distributions at intermediate points. The
constant in each branch is then determined by normal-
ization. The natural generalization of this scheme, in
the spirit of the moment-singularity method, is to
leave the magnitudes of #; points in the jth branch to



1274 JAMES C..

1 1 1 1

o 1 1 L
o 0.1 0.2 0.3 0.4 0.5 0.6

v IN10'3 CPS

0.7 0.8

F16. 9. The frequency distribution of aluminum, using Walker’s
secular equation. The histogram was obtained by Walker from
a sampling of 2791 points in 1/48th of the zone. The smooth
curve was obtained by the interpolation scheme described in
the text.

be determined. The normalization conditions then
leave only #;—1 undetermined parameters in the jth
branch. These can be obtained by computing the first
> i=i! (n;j—1) moments of the distribution and solving
the resulting simultaneous equations.

We have employed this method to calculate the fre-
quency distribution of aluminum from Walker’s* secu-
lar equation. Only the simplest form of the method,
with the heights of the main peaks determined by
normalization, was used. The result for the total distri-
bution is shown in Fig. 9, together with the histogram
obtained by Walker from the solution of the secular
equation at 2791 points in 1/48th of the zone. Com-
parison with Walker’s separate histograms for each
branch showed that the heights of the main peaks of
the lower and middle branches were obtained with
about a 109, error. This was not surprising, since
both branches had broad maxima, so that the normal-
ization condition could be expected to determine the
height with some degree of accuracy. Moreover, the
linear and quadratic terms which were added to these
branches to produce smooth curves were small com-
pared to the terms due to the singularities. On the
other hand, there is a very narrow peak in the high
branch. The height of this peak will be hard to deter-
mine by any moment method since the moments are
not sensitive to a shift of part of the distribution to
the wings of the peak. In our case, for example, our
estimate of the height of the narrow peak is about 509,
too large. It might be thought that this error could be
greatly reduced by including fourth order terms about
the maximum in the high mode, thus increasing the
magnitude of the right wing of the peak. The improve-
ment is slight, however, owing to the slow convergence
of the higher terms, which in turn is a consequence of
the distortions producing the narrow peak. Thus, in
such cases if one wants a more exact distribution, one
must simply calculate the frequency surfaces for the
critical ‘frequencies on each edge of the peak and
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estimate the volume of % space between the surfaces:
Since only two surfaces are required, the additional
labor should not be great.

One may conclude from this calculation that if only
broad peaks are present in a distribution, the distri-
bution can be sketched with about 109, accuracy by a
simple interpolation between singularities.

VIII. CONCLUDING REMARKS

We now summarize the results of the paper. We have
shown that by analyzing the matrix elements of V»?
by group theory, one can find all c.p. that must occur
because of symmetry. The degeneracies required by
symmetry at these c.p. are obtained at the same time.
Possible accidental degeneracies can also be inferred
from the analysis of symmetry points. Next we gave a
detailed analysis of possible frequency surfaces near
degeneracies and showed how the sector numbers could
be used to classify topologically the fluted and singular
c.p. which can arise. For each branch all c.p. necessi-
tated by symmetry can be analyzed in this way, and
we have called the resulting set of c.p. the symmetry
set § belonging to the branch in question. We next
showed that by using the Morse relations (M) one can
extend § to a larger set 91, which we have called the
minimal set. M is the smallest set of c.p. which is
completely consistent with connectivity requirements
as well as symmetry requirements, and includes the
singular points arising from the cross-overs obtained
earlier. Arguments were advanced for the completeness
of 9N under certain circumstances. Several examples
were given in which the 9’s belonging to particular
secular equations were constructed. Most of the minimal
sets so constructed agreed with those derived from
detailed frequency contours. :

We next showed how to estimate the singular contri-
butions to the frequency’ distribution G(»?) of the
neighborhoods of fluted and singular c.p. The frequency
distribution of each branch could then be approximated
by a smooth curve having the appropriate singularities.
A sample calculation showed that the method could be
expected to give good results for real three-dimensional
lattices.

We may conclude that it is easy to construct the
minimal set, that its construction. yields information
about frequency surfaces throughout the zone from a
detailed analysis about symmetry points alone, and
that the minimal set forms a suitable basis for approxi-
mation to the frequency distribution.

It should be noted that the methods developed in this
paper are quite general and can be applied to any system
of functions derived as solutions of a secular equation
defined on a Brillouin zone. In particular, with minor
modifications, the method for constructing the minimal
set can be carried over immediately to the energy bands
of the Bloch theory of electrons in crystal lattices.
The minimal set should be particularly useful in the
calculation of complicated energy bands, since it can
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be constructed once the secular equation is known only
in the neighborhood of each symmetry point.

The modifications that would be required for energy
bands depend mainly on the fact that each band need
no longer belong to a vector representation. One conse-
quence of this is that fourfold degeneracies can occur.
These can be analyzed by the same methods that we
have applied to twofold and threefold degeneracies.

We have seen that the minimal set can be constructed
from the symmetry set. The latter in turn is obtained
once one knows both the order of energy values at the
points of the symmetry set and the curvatures in each
branch at these points. These values can be obtained
from effective mass data and from detailed calculations
such as those based on orthogonalized plane waves.
Each minimal set will determine the qualitative shape
of the energy surfaces for that particular branch, its
extrema, and the qualitative shape of the energy
spectrum of the band. Moreover, from our calculations
on the simple cubic lattice, it is clear that a whole
range of the parameters may correspond to the same
minimal set. Thus in some cases one need only estimate
the parameters, or only determine the signs of the
curvatures at symmetry points, to obtain the extrema
of the bands.

These arguments based on the minimal set should be
compared with the interpolation scheme for construct-
ing energy bands proposed by Slater and Koster.?
They suggested that a tight-binding approximation
would be suitable in many cases, but that instead of
computing the required matrix elements, one should
regard them as disposable parameters, to be determined
from more exact values at the symmetry points. One
would introduce as many parameters as could be
determined from the available data, and decide which
parameters were significant by physical arguments.
The method of Slater and Koster establishes a secular
equation with fewer data than are required to specify
the actual symmetry set and hence the minimal set.
Once the secular equation is established, however, its
energy contours, extrema, and energy distribution can
be studied by our methods as-well as by the sampling
techniques used by Slater and Koster.

If there are enough data available, the symmetry set
can be restricted to a few possibilities. The correspond-
ing minimal sets can be constructed and the common
features analyzed. A given interpolation scheme will
correspond to one of these sets. Thus one can see how
representative this scheme is of the various possibilities
consistent with the data.

Finally, we should discuss the completeness of
minimal sets for energy bands. If one makes a tight-
binding approximation and assumes that only nearer
neighbors contribute significantly to the matrix ele-
ments, the arguments made earlier in connection with
short-range forces should suffice. Additional complica-

25 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1948 (1954).
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tions could arise from a large number of bands closely
spaced in energy. This could produce many kinks, and
the singular points arising from accidental degeneracies
might be hard to classify. On the other hand, if the
bands are well separated, one can use the f-sum rule
to argue that the large curvatures necessary for kinks
will probably not occur.?6 More restrictive statements
might be obtained as a result of a detailed application
of these methods to various energy bands.
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Professor C. B. Walker of the Institute for the Study
of Metals, Eugene Blount, Professor G. F. Dresselhaus,
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APPENDIX

It was stated in Sec. IIT that the Morse relations,
when properly interpreted, are valid in the presence of
fluted and singular c.p. We now derive this result by
the methods of Morse.” A detailed description of these
methods can be found in the book by Seifert and
Threlfall.?” We use an outline of their presentation as
an introduction to our discussion.

We begin by defining some of the elementary notions
of algebraic topology. Let  be a topological domain,
l.e., a set of points with a metric such that every point
has a well-defined neighborhood. Further, let @ be
closed, that is, have no boundaries. Because of the
periodic boundary conditions, our Brillouin zones are
such domains. They are topologically equivalent to
I-dimensional toroids. For example, a square with
opposite sides identified may be deformed into a
doughnut.

We now introduce the concept of the topological
connectivity of a manifold. Define a & chain ¥* as a
k-dimensional subset of . A closed % chain is called an
absolute % cycle. If an absolute % cycle 8* bounds &
(k+1) chain ¥*+! of Q, 8% is said to be homologous to
zero, 8¥~0. Two chains ¥* and §* are homologous in
case their sum is homologous to zero (if one chain is
deformable into another, it is homologous to it). The 7
absolute cycles 3+, -+, 3,* are homologously inde-
pendent in case, with ¢,=0 or 1, 3_,_i" €,8,F~0 implies
e,=0. The kth connectivity number R* of Q is defined
as the maximal number of homologously independent
absolute % cycles of Q. For a two-dimensional torus, the

26 T am indebted to Dr. C. Herring for this observation.

27 H. Seifert and W. Threlfall, Variationsrechnung Im Grossen,
Hamburger Mathematische Einzelschriften (B. G. Teubner,
Leipzig und Berlin, 1938), Vol. 24. I am indebted to Professor
E. H. Spanier for bringing this book to my attention.
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nonzero connectivity numbers are
R'=1, R!'=2, R?=1,
while for a three-dimensional torus the nonzero ones are
R°=1, R'=3, R?=3, R3=1.

Morse succeeded in constructing similar connectivity
characterizations for neighborhoods of separate c.p. To
do so, one must consider parts of cycles, and in con-
sidering each neighborhood ‘‘discard” the rest of the
manifold. This can be done in the following way.
If ZCHCQ, we say that a chain contained in H is
homologous to zero “mod Z” if it lies entirely in Z.
For the chains g* and ¥* g¥~Y* mod Z is equivalent to
*+y*~0 mod Z, since addition of chains is taken
mod 2. A chain 3* of H is called closed mod Z or a rela-
tive cycle mod Z if its boundary is ~0 mod Z. Thus,
a relative k cycle on H mod Z is a k chain lying in H
with its boundary in Z. We can now define linear
independence of relative cycles. It is understood that
a relative cycle 3* mod Z is homologous to zero mod Z
when it is homologous to a chain g¥*! of Z. If 3/, - - -, 3"
are s relative k cycles, they are homologously inde-
pendent mod Z in case (e,=1 or 0) 2_,—1° €3,°~0
implies e;= - - =¢=0.

Now suppose J is a continuous function on Q. If « is
an arbitrary value of J, we denote the set of all points
of @ for which J<a by {J<ea}. Let g be a point of @
and J(g) =a. We shall call all the relative & cycles in the
set {J <a}-+g mod{J <a} the relative £ cycles, or just
k cycles, belonging to the point g. The “mod{J <a}”
device used here is the way that we succeed in “throwing
away”’ all but a neighborhood of g in determining the
cycles belonging to g. Now we define the maximal num-
ber m*=m*(g) of homologously independent & cycles
belonging to g to be the kth-type number of the point g.
The type numbers of most points of @ are all zero.
More generally, the type numbers characterize the
topological features of each point. In fact, we now
define a c.p. as a point not all of whose type numbers
are zero. We show that this definition contains the
definition given in Sec. I in terms of components of the
gradient. In our manifolds, VJ is continuous at all
except crossover points. Consider a point g where one
component of the gradient is continuous and not zero.
Then the relative cycles belonging to g end at g.
However, they can all be deformed to below the level
a=J(g) by slipping them down along the slope of J
through g. Thus they are all homologous to zero, and
all the type numbers of g are zero. Thus g will be a c.p.
only if all components of the gradient which are con-
tinuous at g also vanish there. On the other hand, if a
component is discontinuous, it must change sign at g,
or else the same deformation could still be effected.
Hence g can be a c.p. only if one or the other condition
holds for all three components of the gradient. Thus the
analytical definition of c.p. given in Sec. I is indeed
contained in our topological definition.
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As an example, we shall determine the type numbers
of the saddle point of the function J=x2—y? occurring
at the origin. Clearly m°=0, since a point on {J <0}
+(0,0) is deformable into a point on {J<0}. Also
m?=0, since if an area on {J <0} (0,0) contains the
origin, the origin is a part of its boundary, and so it is
not a relative two-cycle mod{J <0}; while if it does
not contain (0,0), then it lies entirely in {J <0}, and
so is homologous to zero mod{J <0}. A relative 1 cycle
which is not deformable to {J <0} must pass through
the origin, with its end points (boundaries) on opposite
sides of the origin (see Fig. 10). All such 1 cycles are
deformable into one another, so that there is exactly
one homologously independent relative 1 cycle and
ml=1.

We may also consider the #-fold fluted point?8 (the
ordinary saddle point of Fig. 10 is the special case

y
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J<0
Frc. 10. An analytic
saddle point in two dimen-
) X sions.

7

n=2). This contains # sectors where J <0. Here as
before m°=m?=0, but now m!'=rn—1. Each nonzero
one cycle must have its end points lying in two different
sectors. If we label a cycle by sectors in which its end
points are located, then every nonzero cycle may be
expressed as a linear combination of the % cycles
1,2), (2,3), -+, (n,1). However, the sum of these
cycles is zero, since they bound the two chain which is
the neighborhood of the origin. Thus one cycle must be
removed, so that m'=n—1. A similar argument for
the multiple three-dimensional saddle points shows
that if the sector numbers are (r,1) or (1,s), the non-
zero type numbers are m?=r—1 or m!=s—1, respec-
tively. For example, if the sector numbers are (1,s),
the only nontrivial cycles are the one cycles ending in
separate sectors, and only s—1 of these are homolo-
gously independent, or nonbounding. If the sector
numbers are (r,1), the result is obtained by applying
the same argument to the function —J. A more detailed
argument can be given to justify the more general
result for the (7,s) points quoted in rule 3 of Sec. III.
Consider now a nonzero relative & cycle 3* associated
with a critical point g; again let = J (g), and denote the
boundaries of 3*, which lie in {J <a}, by Rdz*. If Ro*
is homologous to zero on {J <a}, it bounds a relative
k cycle u* lying entirely below a. Thus 3*+u*=8* is an

28 See p. 39 of reference 7.
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absolute k cycle, and we say that the relative cycle 3*
is completable below a to an absolute cycle.

We are now ready to state, and outline the proof of,
the form of Morse’s formulas appropriate to our
problem. Let J have only a finite number of critical
points on £, and let the sum of the type numbers of
each critical point be finite. If we denote the sum of the

kth type numbers of all critical points by N, then the -

following equations hold between the N* and the con-
nectivity numbers R* of Q: :

N°2 R,
Nl_NO?RI_RO’
(M)

1 1
-21 (=1DiNi= 21 (—1)°R:
Note that in the last relation it is the equality that
holds. For now let B be a parameter that increases con-
tinually from the minimum of J to its maximum. The
connectivity numbers of {J<p} will change only when
B is a critical value a. Let J(g)=ca and 3* be a relative
cycle associated with g. If 3* is completable below «, the
addition of g to {J <a} will increase the kth connectivity
number of {J <a} by one, so that we may call a com-
pletable relative % cycle an “increasing” one. If 3* is
not completable, the absolute (#—1) cycle Rd3*, which
is not homologous to zero on {J <a}, becomes so by
the addition of g. Thus the (¥—1)th connectivity
number of {J <a} is decreased by one by the addition
of g, and 3* may be said to be a “decreasing” cycle. If we
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denote the total number of independent ‘‘increasing”
relative & cycles by N.* and the total of the decreasing
ones similarly by NV_*, we have, when 8 has attained its
maximum,
Rb=N k— N_F+1 (20)
but also
NEt= N *-}-N_* (21)

and N_°=N_W1=0(, since there are no decreasing O
cycles, and there are no (J+1) cycles at all. Subtracting
(20) from (21) gives

N"—R’“"—‘N_k—}—N_""'l, (22)
N'—R=N_"+N_'=N_120. (23)

The rest of Morse’s formulas are derived in a similar
way; the equality holds in the last equation because
N_l+l_—_0.

The equations (M;) which we have just stated were
obtained by Morse for any manifold for which all sums
of type numbers V¥ were finite. For our manifolds we
have shown that this is the case. In addition, we have
shown that the type numbers m* of each c.p. in our
manifolds usually have the form m*=gd, so that is is
sufficient to know ¢ and j for such c.p. Moreover, in
the Morse relations (M) the sum of the type numbers
N* can be replaced by the total number of c.p. of index
k, Nk, where the ath c.p. is to be counted gu: times in
computing Ni. Then, using the connectivity numbers
stated earlier, we obtain the form of the Morse equa-
tions stated in Sec. ITI. Thus, to make a topological
analysis of our manifolds it was only necessary to
evaluate the type numbers of the critical points that
arise.



