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Leigh's calculation of the elastic shear constants of aluminum are extended to include crystals of lower
symmetry, and the results are used to interpret the constants of pure magnesium and dilute magnesium
alloys. The requirement that pure magnesium be in equilibrium with respect to shears that change the c/a
ratio of this hexagonal crystal is consistent only with the assumption that electron overlap has already
occurred across the Brillouin zone faces perpendicular to the c axis, a result which is at variance with the
usual assumptions for this metal. Assuming c overlap and one other type of electron overlap in the pure
metal, it is found that the total number of overlap electrons (or, equivalently, the number of holes) is
1.70&(10"per cm', i.e. 2% of the valence electron density. The overlap which appears at an electron/atom
ratio of 2.01 is assumed to be an overlap in the equatorial plane of Brillouin zone; this overlap produces an
abrupt change in one of the shear constants as the electron/atom ratio is increased beyond 2.01, a behavior oi
the type predicted by Leigh for aluminum-zinc alloys. The abrupt change in the constant is characteristic of
T=0'K, however; at room temperature, the predicted efI'ect is much more gradual and is found to agree
with the experimental results.

1. INTRODUCTION

OR the monovalent metals it is generally assumed
that there are two important contributions to the

elastic shear-strain energy of the crystal: (1) a purely
electrostatic term representing the difference of electro-
static energy of the ion cores in the strained and un-
strained geometry, and (2) a term arising from change
in the short-range repulsive interaction of the ion
cores. For metals of higher valency, an additional term
derives from the change in Fermi energy, caused by
movements of the Brillouin zone planes as the metal is
sheared. Leigh' has proposed a method for calculating
these changes in Fermi energy in a cubic metal, and has
used his results to obtain the shear constants of tri-
valent aluminum.

Another metal of great theoretical interest is mag-
nesium. Magnesium has the close-packed hexagonal
structure, is divalent, and therefore has just enough
electrons to 6ll the second Brillouin zone. But mag-
nesium is a metal; hence, it has holes in the second zone
and an equal number of electron overlaps into higher
zones. Electronic specific-heat and magnetic-suscepti-
bility data give the combined density of states (at the
Fermi surface) of these overlaps and holes, but not the
total number of either. The elastic constants of mag-
nesium have been measured by several authors, ' 4 and,
recently, the elastic constants of magnesium alloys of
electron-atom ratio in the range 1.996—2.020 have been
measured by Long and Smith. 4 One purpose of the
present paper is to extend Leigh's theory of the elastic
shear constants to include metals of lower symmetry,
in particular to those with the close-packed hexagonal

* Work supported in part by the OfIIce of Naval Research, in
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Carbide and Carbon Corporation).' R. S. Leigh, Phil Mag. 42, 139 (1951).

2 E. Goens and E. Schmid, Physik. Z. 37, 385 (1936).
' P. W. Bridgman, Proc. Am. Acad. Arts Sci. 67, 29 (1932).
'T. R. Long and Charles S. Smith, Acta Metallurgica {to be

published).

structure. Although the lower symmetry of magnesium
complicates the calculation of Fermi energy slightly, it
provides an additional relationship from which one
can infer something about the number of overlap
electrons and holes. The requirement that the metal
be in equilibrium with respect to shears which change
the c/a ratio of the metal allows one to determine
uniquely the number of overlaps and holes provided
only one type of overlap and one type of hole are
present in the band structure of the metal. Magnesium
apparently has two types of overlap and one type of
hole, so that the equilibrium requirement does not
determine these uniquely; but merely provides a rela-
tionship between them.

In addition to his work on pure aluminum, Leigh
predicted a rather interesting behavior in one of the
shear constants, —', (crt —crs), of aluminum+divalent
metal as a function of composition of the alloy. This
behavior consists of an abrupt decrease in the constant
as the electron/atom ratio is increased beyond the
point where a new electron overlap is initiated across
one or more of the Brillouin zone faces. Unfortunately,
this part of Leigh's theory has not been subjected to
experimental verification because of the severe experi-
mental difficulties involved in obtained single crystals
of the proper composition and structure. In magnesium,
however, both lattice parameter measurements' and
transport phenomena investigations' of the dilute alloys
have indicated the initiation of new zone overlaps at
about 2.01 electrons per atom; hence, it appeared that
Leigh's theory could be tested with this alloy system.
The essentially negative results found by Long and
Smith4 led the present authors to reexamine Leigh's
theory. The measurements were made at room tem-

perature, and Leigh's theory is strictly applicable at
absolute zero. Extension of Leigh's results to room

s W. Hume-Rothery and G. V. Raynor, The Strnctnre of 3fetals
and Alloys (The Institute of Metals, London, 1954), pp. 166-167.

e A. r. Schindler and E.I. Salkovitz, Phys. Rev. 91, 1320 (1953).
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temperature shows that the predicted change in shear
constant is much more gradual as one goes through the
critical electron-atom ratio; and, indeed, the predicted
curve agrees with the experimental values. This topic
will be discussed in more detail in Sec. 6.

2. ELASTIC STRAIN ENERGY OF MAGNESIUM

Magnesium is a close-packed hexagonal metal with
nearly ideal c/u ratio (c/a=1.6237). There are five
independent elastic constants, and the strain energy of
the crystal is usually written

W= Wp+ Jell(c +op )+pcppc +clpe.c„
+Cia(8 8 +8„8)+pc44(71 +72 )+s(cll clp) Yp (1)

where e,. e„, e, are normal strains, and the y's are
changes in angles between the principal axes of the
crystal. Three of the elastic constants may be taken as
pure shears, and it is convenient to define the follow-

ing set:
C= cli+cip+2csp 4cls) C = p (cll cip) ) c44.

C corresponds to a strain which changes the c/u ratio
at constant volume, leaving the symmetry of the crystal
unchanged; C' corresponds to a shear which changes the
angle between any pair of orthogonal axes in the basal
plane of the crystal, leaving the c axis unaGected;
and c44 corresponds to a shear which tilts the c axis
with respect to the basal plane.

For convenience in calculating contributions to the
strain energy of the solid under the appropriate shear,
it is expedient to write the lattice vectors in terms of
a strain parameter: $, ii, or e. For C, the direct and
reciprocal lattice vectors may be written

ai = a$&(1,0,0),
ap ——ag&( ——,', v3/2, 0),
o,p ——cg&(0,0,+')
b, = (2ir/g&a) (1,1/%3,0),
bs (2ir/&&a) ——(0,2/&3, 0), (2)
b p (2pr/P&c) (0,0,&)——;

and the shear constant C is then given by

C= (9/2) (d'W/dP)p (3)

where the subscript 0 indicates that the derivative is
computed at zero strain, viz. , )=1.

For C' and c44, only the direct lattice vectors will be
given:

ai =ai)I(1,0,0),
a,=ag'*(--', , vS/2g, 0),
ap

——c(0,0,1),
with

C' = (d'W/dpi') p,

ai ——a(1,0,e),

a,=a(—-'„V3/2, —-', e)

gp ——c(0,0,1),

with
c44 = (d'W/de') p.

Zero strain corresponds to q=1 and &=0.
Since the crystal is under no external stress at zero

strain, we have as the condition for equilibrium

(dW/dx) p
——0, (6)

where x stands for one of the strain parameters, $, ii, or e.
As mentioned in Sec. I, it is customary to think of

each shear constant as composed of three parts: (1) an
electrostatic term, (2) a term due to the interpenetra-
tion of the ion cores, and (3) the Fermi term Th.e ion
cores in magnesium are rather small, and direct calcula-
tion by Huntingtonv has indicated that the core-
interpretation term contributes at most a few percent
to each shear constant. We shall, therefore, make very
little error if we neglect this contribution completely.
Now, Raimes' has shown that the k=0 wave function
in magnesium is very Rat near the boundary of the
Wigner-Seitz cellular polyhedron; hence, this level does
not make an appreciable contribution to the Fermi
term. In other words, the Fermi term arises from
electrons of k/0, whose energy changes in first approxi-
mation are the energy changes experienced by free
electrons at equivalent points in the BriHouin zone.

Following Leigh' we break up the Fermi term
(subscript Ii) into two parts, a full-zone contribution
(superscript I), and an overlap-hole contribution
(superscript II), which are subsequently treated inde-
pendently. The full-zone calculation treats the Brillouin
zone as fully occupied, allowing for energy changes
through the movement of Brillouin zone planes; the
overlap-hole contribution, on the other hand, provides
for displacement of the Fermi surface during the dis-
tortion and the simultaneous transfer of electrons from
certain overlap positions to others.

The decomposition of an elastic constant into several
parts is not unique unless the corresponding parts of
the first derivative, (dW/dh)p, are each zero separately.
In other words, if the total strain energy is written as
Wi+Wp, and if (dWi/d&) p and (dWs/dx) p are not each
zero, then (d'Wi/dx') p does not necessarily equal
(d W i/dy )p, where y is a strain parameter corresponding
to the inverse shear to that which x corresponds. Hence,
the decomposition is characteristic of one of the group
of strains which give the desired elastic constant.
Despite this shortcoming, the decomposition is still a
useful concept and leads to no diKculty as long as
Eq. (6) is obeyed by the total strain energy.

3. COULOMB TERM

The electrostatic or Coulomb contributions to the
three elastic shear constants of magnesium have been
computed by Huntington' by means of the Ewald

'i H. II. Huntington, Phys. Rev. 57, 60 (1940).
s S. Raimes, Phil. Mag. 41, 568 (1950).
9H. 3. Huntington (private communication). The resuIts.

quoted in reference 7 are in error by a factor of taro.
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4. FERMI TERM

Magnesium, being divalent and having two atoms
per unit cell, requires a consideration of the first and
second Brillouin zones of the hexagonal lattice; for
simplicity this combination will be referred to as the
Brillouin zone (B.Z.) of magnesium. The B.Z. is shown
in Fig. 1(a), while the double-sized hexagonal prism,
Fig. 1(b), which is obtained by translating various
segments of 1(a) through vectors of the reciprocal
lattice, is included for ease of visualization. If the one-
electron energies were accurately known as a function
of k, either of the zones 1(a) or 1(b) would be a proper
one to use. We wish to use the nearly-free electron
approximation, however; hence, it is necessary that
the B.Z. be as nearly spherical as possible. This limits
us to the 6rst choice, Fig. 1(a). It is an interesting fact
that the "free-electron energy" of zone 1(a) at the
ideal c/a ratio is only one percent greater than that of
a sphere of equal volume.

The positions of the holes in the B.Z. are rather easy
to pick out; they are marked by the symbol H in Fig.
1(a).The hole at the most distant part of the equatorial
section of the zone and the hole at the corner of the
top face of the zone are, in fact, part of the same hole,
as is seen more clearly in Fig. 1(b) where these two
segments of the B.Z. have been brought into coin-
cidence. The holes make up six complete spheroids.

The electron overlap positions are more speculative

TAaLE I. Maximum electrostatic contribution to the
three elastic shear constants of magnesium.

Constant

C
g (Cll C12)

&44

Max. electrostatic term
(dynes/cm2)

2.55 X10'~
0.297X ].012

O-i.62 X10'2

"C. Zener, Acta Cryst. 3, 346 (1950).
"H. B.Huntington, Phys. Rev. 91, 1092 (1953).

method on the assumption that the doubly-charged
ion cores move in an electron sea of uniform density.
These results, which are given in Table I, represent in
fact the maximum Coulomb contributions. Leigh' has
shown that a nonuniform electron density can reduce
this term by as much as 25%, and relaxation effects,
which have been predicted by several authors' ~ '
should reduce it even farther. We believe that the
combined eGect of nonuniform electron density and
relaxation will be such as to reduce each value in Table I
to about one-half the value given there.

The first derivatives of the Coulomb energy,

(d8'o, „]/dr))e and (dido, „~/de)s,

are identically zero. (dWo y/d$)p is zero at the ideal
c/u ratio; at other values of c/a the derivative may be
approximated by (2/9)C&, „&6), where Co,„& is the
Coulomb contribution to C.

(b)

FIG. 1. (a) The Brillouin zone of magnesium, showing the posi-
tions of electron overlap and holes. (b) The double-sized prism
zone obtained by translating some of the segments in (a) through
a vector of the reciprocal lattice.

since there are a number of possibilities; on the nearly-
free electron model we would pick out three different
cases: (1) 8 overlap, across the faces perpendicular
to the c axis, (2) F overlap across the slant faces, and
(3) Q overlap (in the equatorial plane). As is seen
from the figure, 8 overlap consists of just one pair,
or one complete spheroid, I' overlap six spheroids,
and Q overlaps two spheroids. It is generally assumed
that both F and Q overlaps occur in pure magnesium,
whereas the 8 overlap first occurs in magnesium alloys
at an electron-atom ratio greater than 2.01, the reason
for this assumption being that abrupt changes are
observed' in c lattice parameter ~ersgs composition
but not in the u parameter. The results of the present
paper, however, do not support this assumption. As will
be seen in Sec. 6, it must be assumed the 8 overlap has
already occurred in pure magnesium in order that the
metal be in equilibrium with respect to the shear which
changes the c/a ratio.

Full Zone Contribution

By dividing the B.Z. into tetrahedra as proposed by
Leigh, ' the full zone contributions to each of the shear
constants may be calculated. One such tetrahedron
is shown in Fig. 2, the lengths p, q, and r being mutually
orthogonal. As suggested by Leigh, the one-electron
energy is approximated by

E(k) =ne(A /2') I
k' )(P'(le,—/P)'i'

+q (k„/q)'~" +r'(k /)I, )'I")j, (7)

where k„k„, k, are measured along p, q, and r, re-

spectively, ) is a parameter between 0 and 1.0, and no

is the inverse effective-mass ratio (m/m*) for the
bottom of the band. The contribution to the Fermi
energy by each tetrahedron is then

(WF') «——(rr &/4z') (h'/2ms) (pqr/10)
&& [Fp'+Gq'+Hr'), (8)

where
F= 1—QP/(2+3'A),

G=0.5—SX'/(2+ %.) (1+)%,),
H = (1/6) —5) 4/(2+3) ) (1+X)(2+X).
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FrG. 2. View of part of the Brillouin zone, showing one of the
tetrahedra used to compute the full-zone energy.

the Fermi surface as a whole, electrons will transfer
from certain overlap (or hole) positions to others as
the metal is sheared. We use the same notation as
Leigh, the subscript i denoting the type of overlap (or
hole), j the number of pairs of each type, and E;;
the energy of the origin of each overlap (or hole).
P&;(E—E;;) is the density of states per unit energy
range in each pair of type i, and e;; the total number of
carriers in each pair. e;; is positive if it refers to an
overlap, and negative if it refers to a hole.

The total number of overlaps minus the total number
of holes is a constant, independent of the state of shear
of the crystal; mathematically,

Since P, g, and r are functions of the strain parameter,
the contribution to the elastic constant may be ob-
tained by differentiation. It was found that both the
first and second derivatives of the full zone energy are
fairly insensitive to the value of X, particularly if Qo

and A are varied simultaneously in such a way that
the width of the band is unchanged. The actual values
used in the following section are those for X=O.

For calculating C, seven different tetrahedra (one
taken negatively) were required, whereas for C'

eighteen different ones were needed. The full zone con-
tribution to c44, which distorts the crystal into an even
lower symmetry, was not computed. (dWF'/d$)p is
not zero; at the ideal c/u ratio it is —18np)&10P ergs
cm ' for magnesium. The other two first derivatives
are identically zero at all c/a ratios.

By dividing the Fermi term into two parts, the con-
tribution of each hole is handled in two distinct ways:
in the full zone term the energy of the foal/ hole is
computed along with the energy of the rest of the zone;
in the overlap-hole term the energy of the foal/ hole is
subtracted away. It is important that these two methods
be consistent with each other in order that no spurious
contribution to the elastic constants creep into the cal-
culation. We should like to point out that Leigh's ex-
pression (7) is consistent with inverted spherical energy
surfaces for the holes, as long as the holes are not too
large and ) not too small. This is easily demonstrated:
the hole will appear in the corner of the tetrahedron
where k is a maximum; hence, we may develop k about
this maximum value (k, =p —~„etc.). Substituting in

(7), we find that the linear term in ip vanishes, and
from the quadratic term the effective mass of the hole
is found to be mX/L2np(1 —X)7. But the results of the
full-zone contribution are not very dependent on );
thus, any effective mass is consistent with the full-zone
calculation.

Overlap-Hole Contribution

It will be assumed that the energy surfaces of each
overlap region, or hole, move rigidly with the B.Z. face
as the metal is sheared. Since each overlap, or hole, is
"filled" to the Fermi level l which is characteristic of

e= P;,n;, = constant, (9)
where for pure magnesium the constant is sero, for
alloys with the same structure the constant depends
uniquely on the electron-atom ratio. Hence, both

(dry/dx)p=0, and (d'e/dx')p ——0, (10)

where x is one of the strain parameters: g, ~I, or p.
Now each e;; is related to N, (E E;;) by th—e

expression

lV, (pi) dpi,

&pN;(cp)dpi, (13)

then the overlap-hole contribution to the Fermi
energy is

Wp"=Q;, W, ,

By straightforward diGerentiation, it is found that

(dWp"/dx)p ——P;, n;, (dE;~/dx) p,

which is not zero for 'the case x= $; and

(ig'WF"/dx') p
——P; n,; (d'E "/dx')

+2' N'(I f—E' I )L(~l/dx)" —(dE'~/dx) o'7, (16)

the last summation diGering from Ieigh's result only
by inclusion of the term (df/dx)p' Both (df./dp)p and
(dl'/dp)p are identically zero. (df/dP)p' is not zero;
hence, it may partially cancel the contribution of the
(dE,;/dP)p' in hexagonal metals. In magnesium, how-

where the + sign refers to overlaps, the —to holes.
Combining (9) and (11) with the first expression in
(10), we obtain for the shift in Fermi level:

(dl/&*) o= I Z';N, (lr-E';I)?'
XP;,N, (I l —E;; I) (dE;;/dx) p. (12)

If we denote the partial energies by 8';;:
~ l g—Esp'I

W;;= W EN;(ip)dpi
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ever, we find the term, (df'/d$)p, rather small. The
summations in (14)-(16) are over both overlaps and
holes. It is emphasized again that e;; is negative when
applied to holes.

In order to obtain numerical results for (15) and (16),
it is assumed that during the shear the energies 8;;
change in the same way as would free-electron energies
at the same point in the B.Z. ; in other words, the first
and second derivatives of E,, are assumed proportional
to E;;, the constant of proportionality being determined
uniquely by the geometry of the B.Z. The results are
summarized in Table II for the case of ideal c/a ratio
9/~= (g/3)'j

TABLE II. First and second derivatives of the various overlap
and hole energies in magnesium with respect to the three shear
parameters.

No, of
Type spheroids

(dE,;/dx) p

—0.2276 Ep —(16/41) Ep—0.2276 Ep —(16/41) Ep—0.2276 Ep (32/41) Ep—(2/3) Eo 0
(4/3) Eg 0—0.0206 EII 0.0743 EII—0.0206 E~ —0.1486 E~

(d'E; /dse) p

0.9648 Ep (48/41) Ep
0.9648 EI 0
(1o/9) Eo (3/2) Eo

(4/9) Es
1.3609 EII 1.2933 E~
1.3609 EII 0.8959 E~

0.7169 EI—0.7169 EI
0
0
0
0
0

(18/41) Ep
(18/41) Ep

0
2 EQ

0.8360 EII
1.4056 E~

S. TEMPERATURE EFFECTS

The previous section represents a straightforward
extension of I eigh's theory to crystals of lower than
cubic symmetry; it is strictly applicable at absolute
zero. At higher temperatures the overlaps and holes
are not simply "filled" to the Fermi level f, but there
is a tailing off which extends to large values of

I
E E;; I

. —
We expect this temperature eGect to be small as long
as

I f E;;
I

is la—rge compared to kT for each overlap and
hole. This is not the case, however, for all of the over-
laps under consideration, particularly for that one which
is initiated in dilute magnesium alloys at an electron-
atom ratio of 2.01. Using the experimental value of
the density of states (see section 6), it is found that the
Fermi level in magnesium alloys is raised by 2.8&10 "
Xerg f -'skT at room temperature) per 0.01 increase in
the electron-atom ratio. Thus, it is necessary to
extend the results of the last section to 6nite tempera-
tures in order that the behavior of the elastic constants
as a function of alloy composition may be predicted.

If we assume spheroidal energy surfaces, so that
/t7;(ro) =K;ro', then (11) is replaced by

rp"= +E (kT)&F1(u) (17)

W;; =E;,~,,+X;(kT)"F,*(u). (19)

Using the new quantities, and proceeding as in Sec. 4,
we obtain for the contribution to the elastic constant
in place of (16):

(d'WF"/dx') p
——P, (d'Wg, ./dx') p

where
(2o)

(d W '/dx )p=ss''(d E ldx )p

+ (d I ~" I /~~) L(~f/dx) o' (&E—;;/dx) o'0

+L(E —f)(~l "I/& )+-'
X I (d f'/dxs) p (& E '—'/&x )pg

+L(E;;-f)(d;;/d. )
+,'(dI ss;; I/dp-) j(dgldx dE,r/Cx) p—'

p—=kTu. In deriving (20), we have added the term:
fg;,—(d'ps;, /dx')p, which equals zero, just as we did

in deriving (16).
The results for zero temperature are adequate for

treating pure magnesium, and also for the alloys with
the exception of the overlap initiated at 2.01 electrons/
atom. Hence, in working out the numerical results of
the next section, Eq. (16) was used exclusively, except
for this one type of. overlap for which P; ( ipw/d x) p

was computed according to (20).

0. COMPARISON WITH EXPERIMENT

In order to obtain numerical values for the shear
constants from the theory developed in the previous
sections, it is necessary to 6x a number of parameters,
such as the E;;, effective masses, etc. All of the param-
eters appearing in the equations for the elastic constants
may be determined, or estimated, by independent
means, with the exception of one unknown (the number
of electrons in F overlap positions in pure Mg), which
must be obtained from the actual elastic-constant data.
The following parameters were determined by the
method indicated in parentheses: (a) up and all of the
E;, (soft x-ray spectrum), (b) total density of states
at the Fermi level in pure Mg (electronic specific heat),
(c) effective mass of electrons in overlap regions (Hall-
eGect measurements, or nearly-free electron theory),

rp A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, 1953},second edition.

rP J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London)
A237, 67 (1938).

where the + and — refer, as before, to overlap
and hole, respectively, u=(f E—,,)/IeT for overlaps,
u=(E;, f)—lleT for holes, and F„ is the Fermi-Dirac
integral

F„(u)=
~p exp(y —u)+1

The properties of these integrals are discussed in a
number of places, " and tabulated values have been
given by McDougall and Stoner. " Equation (13) for
the energy of each overlap (or hole) is replaced by
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Equation (22) provides a relationship between st~ and

p, but in practice, it essentially determines e& since p
is of the order of one.

Measurements of the electronic speci6c heat"" give
the total density of states per unit energy range at the
Fermi level in pure Mg, i.e., P;;X;(t E,;—), equal to
15.3&(1033 erg ' cm '. Essentially the same number is
obtained from the magnetic susceptibility. "Now each
of the overlaps is small, so we may approximate the
effective mass from nearly-free-electron theory:

Fn. 3. Behavior of the shear constant C=cII+c12+2c33—4c13
as a function of electron-atom ratio in dilute magnesium alloys.
The circles represent experimental determinations from alloys
with silver, indium, or tin.

and (d) the number of electrons in 8 overlap positions
)from the equations of equilibrium, Eq. (6)]. The
Coulomb contribution has already been fixed at 0.50
times the value in Table I.

From measurements of the soft x-ray emission spec-
trum" Mg I.3, the width of the full band in magnesium
has been estimated to be 6.2 ev. Since the number of
overlaps and holes is rather small, all of the values, E;,,
lie fairly close to this number. The actual values used,
E~=EI=5.75 ev, EII=6.5 ev, cannot be very much
in error. But EII is the high point in the B.Z. ; hence,
the value EII=6.5 ev may be used to calculate no. On
the assumption of free electronlike behavior right to
the boundary of the B.Z. , no ——0.73; but for E(k) curves
of the form (7) with ) NO, no is larger. We have chosen
0,0=0.85.

As mentioned in Sec. 2, the, crystal must be in
equilibrium with respect to the various shears, and in
particular, Eq. (6) must hold. Two of the first deriva-
tives, those with respect to g and e, vanish identically,
but the condition that (dW/dP)o ——0 must be imposed.
At the ideal c/a ratio (dWo, „i/d$)o ——0, and (dWFi/d$)o
= —15.3&&10' erg cm '; at the observed c/a ratio
of magnesium, there is an additional contribution
(Coulomb plus full-zone) =+2.7&& 10' ergs cm '. Hence
(dWs "/d$)o, given by (15), is

(dWs /dg)o= 12.6X 10' ergs/cm . (21)

The interesting result is that the number in (21) is
positive; hence, overlaps or holes with a positive
e,;(dE;;/df)o must dominate. A glance at Table II
shows us that 8 overlaps must be present in pure
magnesium, a result which is at variance with the usual
assumptions for this metal. We cannot 6t all of the
elastic-constant data, however, with only 8-type over-
laps. For the second type we have chosen I' overlaps.
If p denotes the ratio of total P-type electrons per unit
volume to total 8-type electrons per unit volume
(stir), then from (15) and (21):
st &((4/3)E&—0.2276pEp+0. 0206(1+P)E&j

= 12.6&(10' ergs/cm'. (22)
'4 H. W. 3.Skinner, Trans. Roy. Soc. (London) A239, 95 (1940).

TABLE III. Quantities used in Eq. (16) to determine
the elastic constants. '

Quantity

g~ jap
~H
EL'p

Coulomb factor~
Sg
6'
6n~
Eg6'
6$~
(m*/m)o, (m*/m)i
(m'/m)tr

Value

5.75 ev
6.5 ev
0.85
0.45
1.10X102' cm 3

0.60X10"cm '
1.70X10~' cm 3

1.46X10~ erg 'cm 3

3.95X103' erg ' cm 3

9 94X10"erg ' cm
0.55
0.98

a n& is the number associated with one of the six spheroids of this type.
b The value 0.45, instead of O.S, gave improved agreement with all of the

experimental data; hence, this multiplicative factor was used.

"C. Kittel, Isttrodlctiott to Sollt State Physics (John Wiley
and Sons, Inc. , New York, 1953), p. 233."P.L. Smith, Phil. Mag. 46, '744 (1955).

"See reference 12, p. 157.
's M. Trlifaj, Czechoslav. J. Phys. I, 110 (1952).
t The values of Es, Eo, and Err as given in Table III are only

approximate in that they have not been carried to the limit of
self-consistency with other parameters in the table. It is evident
from the values of e~ and nr. that Ep is several tenths ev larger
than Eg.

(srt*/sit) = (I+4E,/AE) —
& (23)

where E, is the energy at the midpoint of the gap and
hE is the gap width. Using the results of Trlifaj's
calculation's for magnesium, we estimate (sit*/sit) for
the 8 overlap to be 0.40. We can estimate (hatt*/m), „„t„
in yet another way, from the conductivity and Hall
coefficient' of the pure metal. Now the total number of
overlap electrons is of the order of 10"cm ' (see
Table III),f so that in order for the Hall coefficient to
be as small as it is, there must be almost complete
cancellation between the overlap and hole terms.
Characterizing the overlaps with the mobility I& and
the holes with e2, then N~=N2. If we assume that the
relaxation time ~ is the same for overlaps and holes,
then m~*= m2*. Combining this result with Eq.
(22) using an approximate value for p, we obtain
(sts*/sit), „&,o=0.7. The two methods are about equally
reliable; hence, about the best we can do is to take a
simple average of the two values, namely, (srt*/srt), „&,o
=0.55.

The value of p is still undetermined. Choosing it in
such a way as to obtain the best fit to the elastic
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TABLE IV. Contributions to the elastic shear constants of
pure magnesium in units of 10"dynes/cm'.

Coulomb term
Full zone term
Overlap-hole term

Total
Experiment'

1.148
1.194—1.116

1.226
1.226

$ (CII C12)

0.135
0.163—0.130

0.168
0.168

a See references 2—4.

Just as in the aluminum case, we find also in mag-
nesium a negative contribution from the overlap-hole
term, arising primarily from the second summation
in (16). The overlap-hole term in C is due primarily
to 8 overlaps, in C' is due primarily to P-type overlaps.
On the other hand, the hexagonal metals, zinc and
cadmium, with larger c/a ratios, presumedly do not
have 8-type overlaps; hence, the overlap-hole term
in C would be quite small. We believe this is the expla-
nation for the fact that C' is so much larger relative
to C in these metals.

The change in the e;; due to alloying produces a
corresponding change in the contribution (15) to the
first derivative with respect to P. This change must be
compensated by a change in both (dWs'/d$)s and

constant data, p=0.55. Equation (22) then gives
sg=1.10X102~ cm 3.

The contributions to the elastic shear constants, C
and C', of pure magnesium are given in Table IV,
whereas the changes in C, C', and c44 per 0.01 increase
in the electron-atom ratio (on the assumption that no
new overlap types are initiated) are presented in
Table V. The value of c44 in pure Mg could not be
compared because, as mentioned in Sec. 4, the full-zone
contribution to this constant was not determined.
The full-zone term does not change with alloying,
however; hence, the dependence of c44 on electron-atom
ratio is readily computed.

d overlap-hole
6 Coulomb

Total
Experiment'

0.0052
0.0112

0.0164
(see Fig. 3)

c'
—0.00145

0.00135

—0.0001—0.0008
~0.0008

C44

—0.00295
0.00074

—0.00221—0.0015
~0.0006

a See reference 4.

(dWo, „i/dP)s, implying a change in c/u. Unfortunately,
this predicted change in c/u cannot be compared
directly with experiment, since there are also changes
in volume and associated changes in the E;; due to
alloying, and these volume changes are much larger
than the changes in c/a.

Finally we must comment about the new type of
overlap initiated at an electron-atom ratio of 2.01.
Since we require both 8- and I'-type overlaps in the
pure metal, the new overlap must be of Q type. Now,
the important contribution from a new overlap
to the elastic constant is from the first derivative
term, and a glance at Table II shows that C' and
c44 will be una6ected. The shear constant C, on the
other hand, will show an abrupt decrease of the type
predicted by Leigh. This abrupt decrease, superposed
on the rising trend given in Table V, and plotted in
Fig. 3, is characteristic of the behavior at absolute zero;
the room temperature curve, obtained by using Eq. (20)
for the Q type overlaps, evaluating the derivatives
from the McDougall and Stoner tables, "is much more
gradual and appears to agree rather well with the
experimental data.

It seems that a repetition of the measurements of
Long and Smith' at lower temperatures might be in

order. The scatter in their data appears to be small

enough that the break in the curve ought to be quite
apparent even at liquid nitrogen temperatures.

TABLE V. Change in the shear constants of dilute magnesium
alloys per 0.01 increase of the electron-atom ratio (in units of
10"dynes/cm') .


