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~hen a rate limitation exists at the surface for impurity diffusion in semiconductors, the appropriate
boundary condition is equivalent to the radiation boundary condition for the conductance of heat in solids.
'@he intentional introduction of an additional external rate limitation allows the measurement of partition
coefBcients. Solutions to the diffusion equation are summarized and the resulting impurity distributions
are discussed.

INTRODUCTION

HE di6usion of impurities in single crystal
semiconductor materials has been the subject of

many investigations. '-' In most cases, the impurity
was introduced at the surface from a suitable external
phase. It was commonly assumed that the concentration
of the diBusant in the semiconductor at the surface
(hereinafter referred to as surface concentration) is in
instantaneous equilibrium with the external phase, so
that for an external phase constant in time, the distri-
butions are described by erfc or erf~ distributions or
linear combinations of both. These distributions are
solutions to Pick's Second Law, which is the di8erential
equation describing a dii8usion process for which the
diBusion constant is independent of concentration.

For the special case of outward difFusion of impurities
from a doped crystal into vacuum, an instantaneous
equilibrium would lead to zero surface concentration
at all times. To test if this condition applies, an n-type
germanium crystal was grown doped with gallium and
arsenic such that the concentration of arsenic was twice
that of gallium. Samples of this crystal were heated in

a high vacuum at a temperature of 850'C. With
instantaneous equilibrium, the samples should develop
a p skin immediately since the diffusion constant of
gallium is two orders of magnitude smaHer than the
diffusion constant of arsenic. ' ' However, .only after
several hours of heating could a p skin be observed.
This can be interpreted as evidence that the rate of

transport of arsenic across the solid-vacuum interface
is limited by some process at the germanium surface

which may be considered as a potential barrier which

the impurity atoms must surmount to leave the crystal.
A similar rate limitation was described by Barrers for

the ammonia-analcite system and by Drickamer and
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r erfx= — exp( —p)dh erfcx=1 —erfx.
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co-workers'" for liquid-liquid interfaces. The appro-
priate boundary condition is equivalent to the radiation
boundary condition encountered in heat conduction
problems. A theoretical analysis given here considers a
rate limitation at the surface and also an additional
rate limitation due to the external system. Experi-
mental results will be reported in a subsequent paper.

J'k, =sv/4. (3)

Under the same conditions for which 4, and s are
independent of concentration, E will be independent
of concentration.

o L. H. Tung and H. G. Drickamer, J. Chem. Phys. 20, 6 (1952).IJ. H. Sinfelt and H. G. Drickamer, J. Chem. Phys. 23, i09S
(1955)."Reiss, Fuller, and Morin, Bell System Tech. J.35, 535 (1956).

BOUNDARY CONDITION WITH RATE LIMITATION

It is useful to de6ne a partition coeKcient

ko=E,/Eo,

where Ã, is the concentration of impurity in the solid
in equilibrium with the density Ã, in the gaseous phase.
The partition coeKcient will be independent of concen-
trations if the gaseous phase can be treated as an ideal
gas which is composed of atoms, and if the densities
are low enough so that the semiconductor remains
intrinsic. " Both conditions are generally fulfilled for
the range of concentrations and temperatures over
which ddfusions of group III and group V elements
are carried out.

An atom colliding with the surface has a certain
probability s of entering the solid phase. The quantity
s is commonly referred to as the sticking coefficient,
and it can be expected that s is independent of concen-
tration for the low densities of impurities usually
encountered in semiconductors. The number of atoms
entering the solid per cm' per sec equals 1V s o/ 04where
8 is the average thermal velocity of the atoms.

At equilibrium, the Row into the solid will be balanced
by a Qow out, and one can write:

X,E=Xosv/4,

which delnes a rate constant E. From (1) and (2),
it follows that
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Generally, the concentration in the solid will be a
function of the depth x and the time t and will be
written as N(x, t). If the surface concentration N(0, t)
divers from the equilibrium concentration E, the Qow
out of the crystal will be N(O, t)K; thus, a net flow
across the surface results. This net Qow must produce
a diffusion flow ( DB—N(x, t)/Bx) =s within the solid,
where D is the diffusion constant. Thus, one obtains
the boundary condition,

tN, —N(0, t))K= L
—DON(x, t)/Bx).=p, (4)

TO VACUUM PUMP
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N.=Noko Fiko/L. —— (6)

If, however, the crystal has a surface concentration
smaller than E„aQow F3 into it results. The density
in the box will then be changed to some other value
Fg QEg since now F2+Fy. Due to tlm diffusion plo-
cesses, F3 and thus E,' will be time dependent. If the
time constant V/L is short, compared to the rate of
change of Fs, one can neglect a term equal to VBNo'/Bt
and one obtains

Fr F2+FR.

The boundary condition for this case becomes:

(7)

[No'ko —N(0, t))K= $ DON(x, t)/Bx) —s. (8)

The time-dependent quantity E,' can be eliminated by
using Eq. (6), Eq. (7), Fs= N, L, and Fs/A = $ DON/—
Bx) =s, where A designates the surface area of the

"H. S. Carslaw and J. C. Jaeger, Coldgottom of Heat tN Sottds
(Clarendon Press, Oxford, 1948).

which is equivalent to the radiation boundary condition
encountered in the theory of heat conduction. " This
boundary condition was applied to the systems men-
tioned previously.

The rate constant E describes the rate limitation at
the surface of the solid. The material entering or
leaving the surface tends to change the density 1V, in
the gaseous phase so that the condition of a constant
external phase is only fulfilled H the density E, is
maintained by some external Qow. An additional
external rate limitation would make S, time-dependent.
It will be shown that the intentional introduction of
such an external rate limitation enables the determi-
nation of k, .

As an idealized arrangement, consider a sample in a
container of volume t/ which is connected to a vacuum
pump through a Row resistance with a resulting purnp-
ing speed L (Fig. 1), and let a constant flow Fi of vapor
enter the box. If there is no sink for the vapor inside
the box, a Qow F2, equal to F~, leaves the box in the
steady state. The density in the box under these
conditions is

No Fi/L. ——

A crystal whose impurity concentration is F,=E,k,
would be in equilibrium with the vapor in the box.

I

SAMPLE
SOURCE PRODUCiNG
CONSTANT 'FLOW, F)

FiG. 1. External rate limitation.

crystal. The boundary condition then becomes:

I. i —
dN(x, t)-

LN, —N(0, t))i iK= D-
(L+koKA ) Bx

This condition is equivalent to (4) with a modified rate
constant

IK'=
] fK.
&L+koKA ) (10)

From an experimental determination of E' for different
I. and A, one can obtain E and k, . The sticking coeK-
cient s follows from Eq. (4).

Case 3.—Zero concentration in the gaseous phase
N, =N.=O. Sheet source of sheet density

¹
initially

SOLUTIONS TO THE DIFFUSION EQUATION

To obtain the distribution of a di6usant in the solid,
the di6usion equation has to be solved subject to the
boundary condition given in Eq. (4). The solutions for
similar heat Qow problems" are applicable with a
proper change in variables. For the diffusion of im-
purities in semiconductors the most important geometry
is the semi-infinite solid. The solutions are more easily
expressed in terms of the following parameters:

y= x/2(Dt):, s= (Dt)'K/D.

The more important solutions are
Case 1.—Constant density in the gaseous phase,

N, =N,/k, . Zero initial concentration in the solid,
Sp=0.

N(y, s)/¹=exp( —y') {exp(y') erfcy
—expL(y+s)s) erfc(y+s)) = f&(y,s). (12)

Case Z.—Zero concentration in the gaseous phase
g,=X,=O. Uniform initial concentration Xp in the
solid.
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in the surface of the solid.

N (y,s) (orDt) &/Ne ——exp (—y') {1—s.'s exp L (y+ s)')
Xerfc(y+s)) = fs(y, s). (14)

A graph of the solution to Case 1 can be found in
reference 12, p. 54." Two asymptotic forms of the
solution are:

limf&(y, s) = erfcy, which corresponds to a
z~oo

constant surface concentration N„(15)

limf&(y, s) =2s erfcgdp, which corresponds to a
z~o el y

constant flux N,E across the surface. (16)

The second asymptotic solution is a slightly steeper
distribution than the erfc-distribution. The surface coD-

centration of such a distribution is N(0, s) =N.2s/gw.
The asymptotic forms of the solution to Case 3 are the
Gaussian distribution exp( —y') and zero corresponding
to s very small and very large, respectively.

An important quantity for a diffused surface layer
is the total amount, N, per cm' diffused into the solid.
This requires the integration of the distribution. The
integrals have the form":

Case 1:

N(t) = N (x,t)dx

t
1 1

=N.2(Dt)'( ——L1—exp(s') ««sj I

&g~ 2s i

one can deduce the surface concentration N(0) from
the layer thickness and the total sheet density N in
the diGused distribution, which is related to the sheet
resistivity of the layer. For diffusion with rate limitation
at the surface, the shape of the distribution varies
between the two asymptotic functions (15) and (16).
For these distributions, Fig. 2 gives N(0)/Nb as a
function of N/aNb where a is the thickness of the
conversion layer.

fl.ow leaving the solid pEq
(19)

diffusion flow towards the surface ED)

This expression can be interpreted as the ratio between
a probability pe that an atom leaves the solid from a
surface site and the probability p for a jump inside

to'

DISCUSSION

With a rate limitation at the surface, a 6nite Qow

N(0)E leaves the surface. This Row should be compared
with the Row of atoms arriving at the surface from
inside the solid. In the one-dimensional kinetic theory
of diGusion, "the total number of atoms migrating in a
given direction is expressed in the general form N(g)Xp,
where )I, is the average jump distance and p the proba-
bility that an atom jumps in the given direction per
unit time. In these terms the diGusion constant takes
the form D=X'p, which allows one to express p without
considering the detailed theory of the particular diGu-
sion mechanism. The Qow of atoms migrating in a given
direction, therefore, can be written as N(x)D/X; and
one obtains for the ratio:

=N, 2 (Dt)&Pg(s).

Case 3:
(17)

io4

N(t) = N(x, t)dh=Ne exp(s') erfcs=NeFs(s). (18)

Case 2 describes a diGusion-out process. The total
amount diffused out as a function of time is given by
the integral for Case 1, in which lV, is replaced by iVO.

N(o)
"b

10

EVALUATION OF DIFFUSED LAYERS

If a conductivity-determining impurity is diGused

into a semiconductor of opposite conductivity type,
a p-e junction occurs where the concentration of the
diffused material equals the concentration of the body-
doping 37q. Owing to diffusion out, E~ tends to decrease
towards the surface. If, however, the ratio between E~
and the surface concentration N(0) of the diffusant is
sufBciently small, E& is unchanged at the junction.

If the impurity distribution in the layer is known,

10

)0 10
N

Nb 0

10

Fzo. 2. Evaluation of surface concentrations.

10

"The functions f~(y,s), fs(y,s), t~(s), and Fs(s) were tabulated.
Copies are available on request.

"See, for example, R. M. Barrer, Trans. Faraday Soc. 37, 590
(1941).
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the lattice. The rate constant E takes the form

E=po). (20)

It is reasonable to assume that an impurity jumps
only from one site to a nearest neighbor site for the
diffusion of group III and group V elements in group
IV semiconductors. The average jump distance is then
slightly di8erent in the various crystal directions. For
germanium, 'A=1,5)&10 ' cm is an average figure.

From the experiments Inentioned in the beginning, it
follows that po/p is of the order 10 ' for arsenic in
germanium. More specific experimental results will be
reported in a subsequent paper.
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The existing quantitative treatment by Williams of the Seitz
model for the KCl:Tl luminescent system has been extended to
include a prediction of the oscillator strengths of the 1960 A and
24"/5 A absorption lines. These f values are simply related to those
of the associated free-ion transitions. In the course of the com-
putations it is found that the best available Tl+ wave functions
are inaccurate for the free ion and are therefore not of great value
for the KC1:Tl center. Free-ion oscillator strengths are (a) com-

puted with these functions and are (b) estimated by analysis
of experimental spectra; the results of both methods, when
modiaed for KC1:Tl, are in poor agreement with experimental f
values in the solid. A review and critique are given for the present
Williams dynamical treatment of the Seitz-Williams model, and

it is concluded that a sensitive test for the model would be its
successful prediction of the ratio of these (1960 A and 2475 A)
oscillator strengths in KCl:Tl; the observed values are from three
to five times as large as the predicted value. We conclude that the
KCl:Tl problem is not as well understood as it has been believed,
since the existing quantitative theory (a) is subject to considerable
arbitrariness in the construction of excited-state configurati. onal
coordinate curves, (b) appears to be in fortuitous agreement with
experiment insofar as its quantitative predictions depend on
thallous ion wave functions, and (c) does not, in our simple ex-
tension, predict the observed ratio of oscillator strength corre-
sponding to the electronic transitions assumed responsible for the
behavior of the center.

I. INTRODUCTION

'HE task of an absolute theory of solid state
luminescence is by no means a small one. We

should expect to obtain from it a quantitative descrip-
tion of a luminescent system suKciently complete that
absorption and emission could be attributed to specific
electronic processes, and that transition probabilities,
quantum yields, line shapes, and energy levels could be
accurately computed from the wave functions of the
system. The semiclassical Franck-Condon principle may
be called upon to reduce the initial complexity of such a
problem, and Lax' has considered its application to
crystalline systems. Under this principle, which is
applicable to many systems in which the Born-Oppen-
heimer approximation holds, the detailed computation
of an absorption or emission spectrum separates into
three parts: (1) the total energy change Es(x)—E,(x)
of the system when an electronic transition a—+b occurs
at a nuclear configuration described by a set of coordi-
nates x, (2) the matrix elements Ho, '(x) of all radiative
and nonradiative perturbing Hamiltonians, and (3) the
statistical distribution, P, (x), of the initial nuclear

$ This research was supported in part by the U. S. Air Force
through the Air Force Once of Scientific Research of the Air
Research and Development Command.

*National Science Foundation Predoctoral Fellow 1955-56.
r M. Lax, J. Chem. Phys. 20, 1752 (1952).

states X,(x). In spite of the large number of possibly
relevant coordinates in x, it has been found that a small
number of them, sometimes only one, can be used to
explain the behavior of some of the simpler inorganic
phosphors. ' '

In the one serious attempt to treat this problem, or
at least part of it, for a speci6c case, Williams' has
considered the system KCl: Tl, on the basis of the elec-
tronic energy level scheme proposed by Seitz. ' He has
obtained functions Eq and E, corresponding to the 'P&

and 'Sp free thallous ion states, which, when combined
with the distribution function appropriate to the as-
sociated vibrational mode, predict fairly well the posi-
tions' and temperature dependence of the widths' of
the 2475 A absorption and 3050A emission lines of
KC1:Tl. Thus parts (1) and (3) of the problem (see
above) have been considered. (A configuration coordi-
nate curve linking the 1960 A absorption and 4780 A
emission of this center with the Py —Sp free Tl+
transition has also been developed' by 6tting the ex-
perimental spectra. See, however, Sec. IV.)

It seemed important to extend Williams' theoretical

~ F. Seitz, J. Chem. Phys. 6, 150 (1938).
e F. E. Williams, J. Chem. Phys. 19, 457 (1951).
e C. C. Klick, Phys. Rev. 85, 154 (1952).
e F. E. Williams and M. H. Hebb, Phys. Rev. 84, 1181 (1951).
e P. D. Johnson, J. Chem. Phys. 22, 1145 (1954).


