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tion in' by a factor of two, the variation of p withe at
constant pd cannot be considered any more important
than the state of the cathode in determining absolute
values of the second Townsend coeScient. It is in-
teresting to note that even though the measured values
of p in hydrogen depend on d, the Townsend condition
for breakdown holds at any separation providing the
value of y inserted into the condition is measured at
the corresponding value of d.

For both gases, the value of e " at breakdown is of
the order of 10', and at 2% overvoltage is only of the
order of 2)&10'. In the present work total multiplica-

tions of 10' (due to first and second ionization coeffi-
cients acting simultaneously) have been measured
below breakdown. To attain this multiplication of 10'
by a primary ionization process alone would require an
overvoltage of about ten percent. In formative time lag
work, two percent overvoltage in these gases has been
shown to lead to a spark within a fraction of a micro-
second. ' ' Hence, it is concluded that a secondary
mechanism is necessary not only to describe pre-
breakdown currents but is also necessary to describe
the buildup process preceding a spark up to over-
voltages of the order of 10j~ in these gases.
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A simple expression is deduced for the Lerenkov radiation caused by magnetic and electric dipoles. The
effect is very small. In the visible spectrum for a fast neutron, the energy loss per unit path per unit fre-
quency range is about 10 ~' times that of a fast electron. The expression for the energy loss does not contain
explicitly the mass of the moving particle. Consequently, this method cannot be used to try to detect whether
or not the neutrino has any trace of a magnetic moment.

' 'N this note we shall discuss the radiation caused by
~ ~ neutral particles endowed with a magnetic moment,
which move through matter. As in the discussion of
Cerenkov radiation, we shall be interested in the case
when the velocity of the particle is constant, and
exceeds that of light in the medium. Though it turns
out that the effect is too small to be observed, we think
the results are of interest. '

In Sec. II we give a rather intuitive derivation of the
energy radiated per unit path length. In Sec. III we
derive this expression from Maxwell's equations. In
Sec. IV we give a brief numerical estimate.

If an electron moves with the constant velocity
e) c/rt, through a medium of index of refraction rt, the
energy lost per unit path length by radiation with
frequency between co and co+dto will be given by':

(e'/rt') (0'rt' —1)(~/e)d~/e (&=e/c) (1)
*This work was supported by the U. S. Atomic Energy Com-

mission.
'After completion of this work, my attention has been called

to a paper by V. L. Ginsburg, J. Phys. (U.S.S.R.) 2, 441 (1940).
In this article the author quotes the results of his calculations (by
a different method) concerning this effect. His results are identical
with ours for a dipole if the dipole axis is parallel to the direction
of motion, but dier from ours if the axis is normal to it. Though
Ginsburg does not give details, one suspects an error, since
according to his expression the radiated energy would be propor-
tional to the dipole moment and not to its square.

s See, e.g., L. Schiff, Qnantnm Mechanics (McGraw-Hill Book
Company, Inc., ¹wYork, 1949), p. 265.

We pose now the question: Can one derive from Eq.
(1) by some simple intuitive manipulation the energy
loss per unit path length for an electric dipole moving
under similar conditions? (If one is able to do this for
an electric dipole, one can do it immediately for a
magnetic dipole as well. ) The answer is yes.

For, observe first that (1) contains the time average
of the Poynting vector, integrated over a surface. The
Poynting vector in turn contains products of the field
strengths. Now we can obtain the field of a dipole by
taking the space derivatives of the field of a charge
and multiply it by, say, q, the separation of the charge
in the dipole. Now, in the expression for the field of the
charge each coordinate will appear, for dimensional

reasons, multiplied by a characteristic length s. Hence
each operation on the 6eld will bring in a factor q/s.
Since the whole physical situation is stationary, (q/s)
will be a constant, and will not be inQuenced by the
time averaging. Thus we expect that (1), containing the
products of fields, will acquire a factor (tI/s)'. Also, if the
dipole is directed normal to the direction of motion,
we expect the field to have an angular dependence cosy
and sintt (p being an angle in a plane normal to the
direction of motion). The squares of this factor, aver-

aged, will bring in another factor —,'. Let us find now s,
the characteristic length. We expect that this will be the
distance the electron has to travel (as seen by the
electron) to emit a wave of frequency to. The time to
emit one wave of frequency co is 1/co; however, for the
electron this duration will change into 1/t to(P'tts —1)&J
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(the factor (P'ns —1)1 taking the place of the usual
Lorentz factor in this case).' Consequently, the distance
traveled by the electron (as seen by it) while emitting
a wave of frequency cv, will be v/Lo~(P'n' —1)ij. This is
our characteristic length s. Putting the pieces together,
we may conjecture that the energy loss per unit path
length will be given by something like

is (b/n)'(p'n —1)'(co/s) s(da&/s), (2)

b being the electric dipole moment of the moving
dipole.

Then, for a mp, gnetic dipole of strength g we get
immediately

ea '= ——
2c 4~

BQ

chico

(t—z/e)

Bp

obtained for the Cerenkov electron. Moreover, by a
suitable interchange of the electric and magnetic field
components, we shall get the field of the magnetic
dipole as well.

The relevant 6eld components in cylindrical coor-
dinates for a Cerenkov electron are given as'

ie t" |' 18;= —e~" (~ zoo)—
(

—1 I~ad~&
2cs~ „EP'n' )

sg'(0'n' —1)'(~/~)'(d~/~) (3) Pn) 1; a= —its&" (p/s), ra) 0;
The factor (1/n)' is missing; since, while the effective-
ness of the electric dipole moment is decreased by the
electric polarization of the medium (expressed by the
factor 1/n'), there is no magnetic polarization which
would decrease the magnetic dipole moment.

If the moving particle has but a magnetic moment
at rest, it will acquire an electric one as well (normal
to the magnetic dipole), just as a purely magnetic Geld
receives some electric components if it is viewed from a
moving frame of reference. We suppose now that both
dipole moments are normal to the direction of motion.
Under such conditions the electric fields due to each
dipole will be mutually orthogonal, and so will be the
magnetic fields. If this be the case, the fields due to each
moment will not interfere and the total energy loss
will be simply the sum of the energy losses suGered by
the field of each moment. Adding (2) and (3), we obtain
finally

r (Psns —1)st gs+ (b/n)q(~/s)s(doi/s) (4)

In the next section, we shall show that this expression
is actually exact.

We want to find solutions of Maxwell's equations
representing the field of a moving particle which has
only a magnetic moment if at rest. We assume that the
particle moves in the positive s direction with a constant
speed s) c/n, in a medium of index of refraction n. Its
magnetic and electric moments (the latter induced by
the motion) should point along the positive x and y axes,
respectively. (We know from the Dirac theory of the
electron that this is true for the expectation values of
the electric and magnetic moments of a fast electron. )

We shall restrict our interest to those components of
the fields which will be needed for the calculation of
the energy loss due to radiation. As mentioned in Sec.
II, we shall do that by differentiating the solutions

3This can be seen in many different ways. Compare, for
example, the s component of the electric field in empty space due
to a charge moving with uniform velocity v along the s axis, with
that of a charge moving in the same way inside matter, if e&c/n.
The first is proportional to (1—P') (vt —s)/E', where R2= (s—vt)2—(y'+g')(P' —1); while the second is proportional to (Psss —1)
)& (sf s)/R", where R's = (s——vt)' —(y'+ x ) (Pal' —1).

a= ills"'(p/s), ce (0;
s=co/(P'n'-1) i.

Ho(') Ho&') are Hankel functions.
If we have an electric dipole along the +y axis, the

relevant 6eld components will be

BEb'= —
q

ice

2c2J „
( 1 ) &oy cia

e4) lt—z/vl
~ EP'n' ) p Bp

—=—(ib/2c')P(y); (6)

BHy qe
Ky = —

q
8$ 2c 4

g B28
e'"~' '~"i— Cku= (b/2c)Q(y).

P BP

Here 6= qe is the electric dipole moment of the movieg
dipole.

If we have a magnetic dipole pointing in the +x
direction, we obtain the relevant 6eld quantities by
performing the substitution

8 "=—K '/n X "=n8 '

where in 8,', BC„' we exchange e with np (p being the
pole strength in electromagnetic units), and x with y.
(This is an obvious generalization of the well-known
transformation E'—+H; II'~—E, valid in empty
space. ) If n is a function of ro we should think of per-
forming this substitution for each Fourier component,
which would bring the factors e inside the integral sign.
Since we take, for simplicity, n constant, we may leave
the n's where they are.

The substitution gives

~."=-(q/2c)Q(x),

K,~= —(in'q/2c) P (x);

g= qp being the dipole moment of the mosing magnetic
dipole.

The complete field components, as far as they are
needed for the computation of the energy losses, will
be given by the superposition of (6) and (8). The

41. Tamm, J. Sci. (U.S.S.R.) 1, 409 (1939).
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amount of energy, dS', radiated per path length d/ is
given by

dW=dlp d4p S,df.
p 4~

5„the p component of the Poynting vector, is

S,= (c/4v)(B, X.—h.X„)
=(c/4v. )(8, 3C, —8,'R~')

= ( '/16 ")L 'Z( )Q(*)+ (sP/ )Z( )Q( )3. (10)

Performing the necessary substitution and integrating
over q, we get

dW= —(ipii'/16c')(1 P—'n, ')(g'+n 'fi')R dt (11)

where E. is given by the following string of expressions,
each following rather obviously from the other:

latter is the magnitude of the magnetic moment if the
particle is at rest and is equal to g in this case):

&=pg= pgo

This gives our fundamental expression for the energy
loss per unit path length, per unit frequency range:

(C'W/did~) = -', (1—1/P'rP)'(1+P'/I') go'kd'(e/c)' (15.)

Observe that the term (P/e)' contains the effect of the
electric dipole induced by the motion. This will be of
about the order —,'for fast particles in water. This shows
that although the eGect of the electric dipole is smaller
than that of the magnetic one, it cannot be neglected.

For completeness we give also the energy losses for a
magnetic dipole which moves in the direction of its
moment. Under such conditions the electric moment is
zero and we obtain

( d' W/dl da&) =-', (P'e' —1)g'(cv/v)'(1/v).
~00 00 po0

g= dm I Ao' dte'("+""
00

klu(co') 8'u(ko)
)(' ~

—i (ru+cu') z/v~~

Bp Bp

r
" 8u( —o)) 8'u(a))

27l' kd= — CN

Bp Bp

(12)

Here g is the magnitude of the moving magnetic dipole
pointing in the direction of motion.

However, we can see from the transformation for-
mulas of the polarization tensor (of which g is a com-
ponent) that for large velocities g will tend to zero if
the magnetic moment is finite in the rest frame. This is
readily understood if we realize that in this situation
the separation between the poles goes to zero on
account of the I orentz contraction.

y" t'kI'u((o) Bu(—cu)= —2v
40 ( Bp Bp

8'u( —u)) Bu(~) q
i
Mcco.

ap' ap )

R= (Si/pe')e'(1 —p-'e —') (o'Cko

and for dS',

dW/dl= '(P'e' 1)'(-g'+fi'/—rP))t (&o/v)'Cko/v

0

This expression is divergent since we have assumed
no dispersion, which makes possible the radiation of
arbitrarily high frequencies. We can now introduce a
cuto8, say the Compton wavelength of the particle, or
we can discuss the energy loss per unit frequency range,
simply leaving oG the integral sign. If we do this, we
recover Eq. (4).

If the dipoles are normal to each other and normal
to the direction of propagation, as we have assumed,
one has the following relation between g, b, and go (the

Substitute" now from (5) the corresponding values
for a. Then, making use of the recurrence formulas for
Hankel functions, and finally of their asymptotic
expansions. This gives, for E,

Instead of evaluating expression (15) as it stands, let
us take the ratio of (15) and (1).This will immediately
show us the magnitude of the eGect, and will also give
some indication why it is so small. Furthermore, let us
express go in nuclear magnetons, and put k0 Ec/2v,
where R is the Rydberg constant. The required ratio is

i284(1 1/P's'—) (1/P'm') (n1/3II)'(e'/ca)'

where m is the rest mass of an electron, and M is the
rest mass of a proton (entering through the nuclear
magneton). As we see, the very serious and unfavorable
factors are the last two. The fine structure constant
raised to the fourth power gives about 2)&10 ', while
the mass ratios squared will give a factor about 2)&10 ~.

Neglecting factors of order unity (if P 1), we finally
get for the ratio about 10 ".The expression is inde-
pendent of the mass of the moving particle. Thus, even
if a neutrino would have a small magnetic moment (it
cannot have a large one, since then we would have
observed it already), this method could not be used to
detect it.

I wish to express my thanks to Dr. V. I . Telegdi for
his helpful comments.


