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In recent years, there has been a revival of interest in the phenomena of scattering at high frequencies.
The simplest problems of this sort, in which the obstacle is either a circular cylinder or a sphere, are
treated here. The treatment is limited to the total scattering cross sections, even though the method is by no
means restricted in this way. The speci6c problems treated here include the scattering of a plane electro-
magnetic wave by a perfectly conducting circular cylinder (two possible polarisations) or a perfectly con-
ducting sphere, the acoustic scattering by a rigid sphere, and the quantum-mechanical scattering by an
impenetrable sphere.

By considering the creeping waves as defined on the universal covering space, the scattering cross sections
of a circular cylinder may be expressed by asymptotic expansions for vanishingly small wavelengths.
Analogous calculations yield the corresponding results for a sphere. It turns out, as expected, that the
resulting expressions are accurate even for fairly large wavelengths. The Qrst six terms of the asymptotic
series are explicitly found in each case.

In conclusion, the application of the method to the determination of the approximate current distribution
on the obstacle is considered brieQy; also some generalizations about the scattering cross section are con-
jectured,

1. INTRODUCTION

N the electromagnetic theory of light, two distinct
~ ~ disciplines are often invoked to find the scattered
Geld. One is the theory developed from the Maxwellian
Geld equations which are supposed to be valid for all
frequencies. The other is the theory of geometrical
optics, valid only for very high frequencies, i.e., for
wavelengths that are short compared with the size of
the obstacle. In this paper, the scattering cross sections
as given by geometrical optics are modihed to extend
their region of validity to lower frequencies for a circular
cylindrical obstacle and a spherical obstacle with
special properties.

In connection with the study of this problem, the
relevant sequence of papers consists of those of Mie,
Debye, White, Rubinow and Wu, and Kear, ' arranged

*Work supported in part by the Once of Naval Research,
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f Gerard Swope Fellow of the General Electric Company. Now
Junior Fellow of the Society of Fellows, Harvard University.' G. Mie, Ann. Physik 25, 377 (1908). P. Debye, Miinchener
dissertation, 1908 (unpublished); Ann. Physiir 30, 57 (1909).
T. T. Ku and S. I. Rubinow, Cruft Laboratory Scientific Report
3, Harvard University, 1955 (unpublished); J. Appl. Phys. (to
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in chronological order. BrieQy, Debye showed that the
scattering cross section of a sphere, as determined from
the Geld equations, indeed approaches the result of
geometrical optics in the limit of very short wave-
lengths; and White succeeded in Gnding the first cor-
rection to the geometrical-optics cross section of a
sphere. In the last two papers listed, the result of White
was essentially rediscovered by different methods,
perhaps with a little addition in mathematical rigor.
Accordingly, when the present investigation was initi-
ated, the state of knowledge was limited to the assertion
that at very high frequencies the diGerence between
the exact scattering cross section of a circular cylinder
or sphere anti the approximation of geometrica1 optics
is asymptotically given by some known constant multi-

plying the two-thirds power of the wavelength. Further-
more, neither the method of White nor that of Rubinow
and Wu can be generalized readily to give higher-order
corrections. The work of Kear actually was not available
until after this investigation was completed; it does
not seem feasible to get these corrections of higher
order through his method either.

In the present treatment, a practical procedure is
developed to Gnd any number of terms of the asymp-
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totic series for the cross sections of a circular cylinder
or a sphere with simple boundary 'conditions. This is
accomplished through a new technique, which is by no
means restricted to the calculation of the scattering
cross sections. However, in this paper the discussion is
limited to the scattering cross sections, except for a
passing remark in the last section about the surface
current. Five terms in the asymptotic series are evalu-
ated explicitly in addition to the leading term provided
by geometrical optics.

The method to be used here is briefly as~,follows.
First, the much-discussed concept of the creeping wave
around an obstacle is reconsidered from the standpoint
of physics, in the sense that it is formulated in accord-
arice with the intuitive concept and then asymptotically
evaluated for high frequencies. In view of the question-
able nature of the usual identification of creeping waves
with the terms of a series, this is interesting for two
reasons. The concept of the creeping wave is extended
to all wavelengths, not necessarily small as compared
with the size of the obstacle. And, even more important,
the asymptotic formula for the creeping wave thus
obtained is essentially different from the usual expres-
sion given, for example, by Franz. ' At least in the case
of the circular cylinder, the asymptotic formula for the
far-zone field is much easier to obtain for the creeping
waves separately. This is probably true for an arbitrary
obstacle. By taking an appropriate sum, it is then easy
to get the asymptotic formula for the forward far-zone
field, and hence that for the total scattering cross
section.

Because of the lack of physical content in some of
the rather tedious mathematical manipulations that are
necessary, the detailed development is not presented
here. Readers interested in the mathematical manipu-
lations are referred to the author's thesis' or to a
technical report, ' which is available for distribution
on request.

2. PRELIMINARIES

In this section, the plan of attack on the problem of
creeping waves is outlined and the simplest problem of
this sort is solved explicitly for later use. In the study
of the diffraction of a plane wave by a conducting
half-plane, Sommerfeld4 used the fictitious two-sheeted
Riemann space' to simulate the effect of the screen.
More recently, Friedlander, in studying the diffraction
of a pulse by a circular cylinder, made important use
of the infinite-sheeted Riemann space covering the

~ W. Franz and K. Depperman, Ann. Physik 10, 361 (1952).'T. T. Wu, thesis, Harvard University, 1956 (unpublished);
Cruft Laboratory Technical Report 232, Harvard University,
1956 (unpublished).

4A. Sommerfeld, Optics (Academic Press, Inc. , New York,
1954), p. 249 ff.

~Not to be confused with Riemannian space in general rela-
tivity. See, for example, B, B.Baker and E. T. Copson, Huygen's
Principle (Clarendon Press, Oxford, 1950), p. 129.

~ F. G. Friedlander, New York University Report EM-64,
1954 (unpublished).

exterior of the cylinder. Since the solution for the
harmonic time-dependent problem can be obtained by
integration once the pulse solution is known, the total
field due to the diGraction of a cylindrical harmonic
wave by a circular cylinder also has a definite meaning
on this artificial Riemann space. Alternatively, this
total field may be found more directly by solving the
reduced wave equation (6+0')/=0 on the Riemann
space instead of the conventional Euclidean space.

This consideration naturally suggests the following
procedure, at least for two-dimensional problems. Con-
sider the diGraction of a known field by a set of non-
intersecting impenetrab1e domains (closed sets). The
appropriate linear field equation —in particular, the
reduced wave equation —is solved not on E, the region
outside of all these impenetrable domains, but on the
universal covering space~ of E. This solution then gives
complete information about the creeping wave structure
of the total field. The term "creeping wave" is used in
this paper to denote a wave creeping around the
obstacle. This is intuitively clear but the precise
formulation is not entirely trivial and is given in the
Appendix. Loosely, the universal covering space of E
may be thought of as the simply-connected many-
sheeted space with the same local structure as E. If
the creeping wave structure is known, that is, the
solution is known on this universal covering space, then
the required solution on E may be found by adding up
the values of the solution on the universal covering
space at the corresponding points. The situation may
be easily visualized in the simplest case where the
space E is doubly connected. In this case, consider a
stack of identical copies of E. Let each of them be slit
along some line and then glue each edge to that of the
next copy in the simplest manner. The resulting simply-
connected space is the required universal covering
space. To get the final answer on E, it is only necessary
to add up the values of the solution at the corresponding
points of the various copies of E. If the space E is of
higher connectivity, then the process of slitting and
gluing will be more complicated, although not funda-
mentally diGerent. Of course the diffracted field on E
may be found by subtracting the incident field from
the total field on E. The diffracted field in general has
no creeping-wave structure by itself, because the inci-
dent field may not be defined on the universal covering
space.

A serious complication arises from the fact that no
radiation condition is known for a space that is not
Euclidean. A good rule to follow is to use Hankel
functions of the first kind, even if the index is not
integral. In the remainder of this section the simplest
nontrivial creeping-wave problem is solved, namely,
the problem of the diGraction of a scalar plane wave by
an infinite straight line or cylinder of zero radius. In
this case, the total field is verified to be actually causal;

7 This deviates somewhat from the standard terminology.
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this indicates that it is admissible to follow the
above rule. This problem is interesting since in the
proposed line of investigation a knowledge of its solution
is a prerequisite to the study of the creeping waves
around a circular cylinder of finite radius. For this
purpose, let a polar coordinate system be set up as in
Fig. 1. The set E consists of the entire Euclidean space
except the origin. This is a doubly-connected region
and it is clear what its universal covering space R is.
Let the polar coordinate be extended onto R in the
obvious manner. The fundamental sheet of R, defined
by —~&0~& x, 0&r & ~, is called Rp and has a natural
one-to-one correspondence with E.

The resulting total 6eld is constructed by taking the
limit of the Green's function for R. For that purpose,
let a unit source-point be at (rp, 0), and the induced
field be G(r,rp, 8). Let r& be the larger one of r and rp,
both positive, and r& the smaller one. Since for v~&0

2i
(A+i') Jr (kr&)EIr &'i (kr~) e+'"' = 5(r—rp) e+'"P

7l ro

it is clear that

INCIDENT

PLANE:

WAVE

FIG. 1. Coordinate system for the scattering by a
cylinder of zero radius.

1
tot(y g t) — f tot (y g)e c7cctdk

2X orat

where

~ F(r,v; t) cosvgdv,

00

F(r v t)= e'"" —J„(kr)e '""dk.
7r oo

The function P may be found by integration as follows:

sheet. For the plane pulse, the field is represented by
tt»' '(r,g; t) = 8(r cosg+ct) The.refore

Z

G(r, rp, 8) =— 'J~„~(kr&)H~„~i'i(kr~)e'"'dv. (2 1) F(r,v; t)

And hence the total 6eld due to the plane wave e '~

is given by

2 (pr ct )—(r' —c't') —l cosv! —+sin-' —
! for r&ct,

z
P"'(r,g) = lim G(y&r p, 8) —IIp&" (krp)

go—poo

=2 J„(kr)e '"r" cosvgdv

This is the desired expression for the creeping waves.
As an application, it may be remarked that the solution
of the problem of di6raction by a wedge of arbitrary
angle may be obtained from (2.2) by summation.

A few things may be done with this result. First,
the various creeping waves may be added together.
Thus, by the Poisson summation formula,

stot(y 8+2r»pr) e c»r coop pine(y g)
—

(2 3)

2 t' r——(c't' —r')-l! sinvtr for r &ct.
(ct+ (c't' —r') & &

Another integration gives, for r) ct,

5 (r cosg+ct) for !8! &m,
P tot(r g ~ t)—

0 otherwise.

Correspondingly, for r &ct,

1 0—m

P» "(r8; t) =—(c't' —r ) &!

& [cosh—'(ct/r) j'+ (8—tr)'

8+tr

[cosh '(ct/r)]'+ (8+pr)')

Note here that since the left- and the right-hand sides
are de6ned on different spaces, they can only be com-
pared through the correspondence between Ro and E
or through the polar coordinate system. Equation (2.3)
is 'a well-known result.

',Secondly, the total field induced by the scattering of
a plane pulse by a line may be found. A subscript k
may be used to indicate the wave number. When k is
replaced by —k, it follows from P»'"'(r, g) =f p' '*(r,8)
that f»'"(r,g)=P»(r8) where * means complex
conjugate. This is satisfied formally for (2.2) provided
the value of J„ is taken on the principal Riemann

These two formulas verify that the 6eld is indeed
causal by definition.

Thirdly, asymptotic formulas for the total 6eld are
found, to be used later. If r—&00 with 8 6xed, there
are three distinct cases depending on the relative
magnitude of 8 and pr. First let !8!)cr. It is found that

a 82—argH "&(kr))0, argIIr"'(ky) &0,
BV BV

8 'lr—argHi" (kr)!, p
——— for v&~0.

Bv 2
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INCIOENT
PLANE
WAVE

f~(8) =
—sri/(8' —tr') for ~8~ Wsr,

i/4sr for [8f =sr.

As a shorthand, let

where, according to (2.4—6),

Fio. 2. Coordinate system for the scattering by a circular cylinder.

Hence if J„ is replaced by —', (H &'&+H "&) in (2.2), the
resulting integrals have no point of stationary phase,
and an integration by parts gives

Pf(8)= P f(8+2~~);

then the scattering cross section 0.&(') is given by
o.D&'& = (4/k) Re+f(tr), (3.4)

where "Re" means "the real part of." Note that
f(8)=f( 8)—

Let ~=ku for simplicity; then
P"(r,8)~ Hp&'& (kr) for

~
8

~
)sr (2.4)

g2 ~2

as kr +op. E—quation (2.3) furnishes the required infor-
mation for all the other cases. Thus, as kr—+00,

f(8) =ft(8)+ lim e '" cosv8dv

H &'&(/()
+-' ' e '"& ')dv . (3.5)

g H„&'& (/()

stot(r 8)~e iver coss+—

and
z

/tot(r ~w)~1e+ikr H (1)(kr)
4m

3. CROSS SECTION OF AN INFINITE
CIRCULAR CYLINDER

8'—sr

Hp"' kr for 8 (sr, 2.5) The second integral in this expression diverges as
A—&~. In this case and a number of other cases, it is
very desirable to give a meaning to divergent integrals
of this variety in order to save the trouble of compli-
cated limiting processes, which tend to obscure the
real issue at hand. For the problems treated here, it is
simplest perhaps to use the Abel summability, i.e.,

In this section, the radiation Geld caused by the
scattering of a plane wave by an infinite circular
cylinder is studied. The polarization is first assumed
to be such that the electric Geld vector is parallel to
the axis of the cylinder. The other polarization is
considered in the next section. Let a polar coordinate
system be set up as in Fig. 2, and the boundary condi-
tion to be used is that P"(a 8) =0, where P"' is defined
on R as before. The simplest procedure here is to use
the total field, given by (2.2), as the incident 6eld lt 'n'.
It then follows directly from the boundary condition
that

0 "(r,8)=8"(r,8)-0 '-(r,8)

in the Abel sense if

f(ss)dos
P, —oo

p, oo

I= lim t f(x)e '& ~dh.
,~J

for 8~&0 and 8/m,

/IA H (2) (/()
—lim A+ dv for 8=sr..2" J „H.('&(/()

(3 6)

In this sense, (3.5) may be rewritten as

H &'&(kr)J (ko) e—
'

/p cos 8d (3 1) . In case 8)sr, the integral may be reduced to a residue

Jp H„(&)(ko) sum by closing the contour of integration by a large
semicircle in the upper half-plane. The result is that

As kr~~, this gives the radiation Geld

I" J,(ka)f"(r,8)—+—2Hp&'& (kr) e '"r cosv8dv. (3.2)
~p H, (')(ka)

Therefore, the far-zone Geld is completely specified by
the function

/" J„(ka)
f(8)= f&(8)+2 ' e '"~cosv8dv, (3.3)

"p H &"(ka)

H «(/()
f(8)=sri Q e '"/( '& lim (v—v;), (3.7)

i v ~v j H (n (/()

where v; is the jth zero of H„('&(i(). This equation is
exactly true. However, as ~—+00, each term in the series
is exponentially small compared with the previous term.
Hence, in the sense of Poincare, ' the asymptotic

See, for example, E. T. Whittaker and G. ¹ Watson, A
Colrse of 3Ioderrt Artalysis (The Macmillan Company, New York,
1943), p. 151.
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expansion for f(8) is completely identical with that of
the 6rst term. The leading terms in the asymptotic
series for v~ are

p3xq '"
»-«+-'e' "I —

I (3.8)

where x is the first zero of Ji/p+J i/p, numerically,
x=2.3834466. Hence the asymptotic expansion of f(8)
is of the form

J,/s(x) (3xq -'"

Jp/p(x) —J p/p(x) E «)
—V3'7re' /'

&&exp) ',3'/'x—"V-/'(0 pr) 7—
Xexp{i/r(/I —pr) $1+-,'(3x/«)p/p7}

&({1+power series in «r/'}. (3.9)

The existence of the exponentially decaying factor in
this formula is the basic reason why the concept of
creeping waves is particularly useful at high frequencies.
From geometrical optics, it is known that «= O(g f(pr))
as f(:—&~. Hence it can be shown that, in the sense of
Poincarh, the functions Pf(pr) and 2f(pr) must have
exactly the same asymptotic series in inverse powers of
I(: as ~~~. This observation is most important in the
determination of the asymptotic series of the scattering
cross section. Physically, it means that, for a circular
cylinder in the high-frequency limit, the scattering
cross section is determined entirely by the grazing rays

in the terminology of geometrical optics; all of the
more complicated creeping waves around the cylinder
contribute nothing. It may be conjectured that this is
true for any impenetrable convex obstacle provided its
boundary curve is inGnitely differentiable.

The remaining part of this section is devoted to the
determination of the asymptotic expansion for f(pr).
From (3.6),

vp 1
t

"pH &'&(/r) /" J,(/r)
f(pr) = +—— dv+ ' dv. (3.10)

2J „~„o&(«) J „, ~„&»(,)

This is true for any vo, which will be chosen later. For
the asymptotic evaluation of (3.10), the formulas of
Cherry' may be used. Without worrying about routine
rigor, it can be seen that f(pr) may be obtained correctly
with appropriate order of magnitude for the error, when
the Cherry formulas are directly used in (3.10). For
this purpose, it is clear that the variable of integration
should be changed from v to the new variable v= vs/'f,

using Cherry's notation. It is thus necessary to express
v in a series involving e. The first six terms in the
expansion for v has been found, the leading term being
I(. The number six is a compromise, for, on the one
hand, the required amount of labor increases rapidly
with the number of terms, and on the other hand, six
terms seem to be sufhcient for all reasonable purposes
at the present time. The main idea is to perform a
perturbation calculation on the series for f'. To get six
terms, one perturbation is enough. The result is

v 1 («) '/' 1 («) '/P |' 1 1 ) /'«) ' t' 281 29 ) («)+ v' — — v'+
I

—
I + "+—«2 (2) 120 & 2) &2800 280) & 2) (9072000 25200 ) E2 &

73769 7361
v5+ v'

I
— + . . . (3.11

(20956320000 23284800 ) L2 )

This can be used in (3.10), with vp chosen such that v(vp) =0, or

vp
——«L1—(1/70)/r-'+. 7.

Consequently, f(pr) is given by

1 /' A, (e """v)dv /" A, (v) dv
f(pr) =— vp+ e" " —dv — e " " —&v {1+0(/r ')},

2 " A;(e" /'v) dv "p A;(e" /'v) dv

where dv/dv is a polynomial in v. If

(3 12)

(3.13)

i.P A .(e
—is w/pv)

~i2~/3 ~ng~
J A .(eipw/pv) 4p

then from (3.11—13)

2f(pr) 1 («q '/' 1 (/r) '/' ( 3 1 ) («p=1+-~
I

—
I + /ifrI —

I
-I 3fs+

2 (2) 60 (2) (2800 280) &2)

A;(v)
~
—i2~/3 ~nd~

A .(eisa/Pv)
(3.14)

281 73769 7361
Alp+ Mp

I M4+ Mr
(2268000 252'00 ) 42) (4191264000 11642400 ) (2)

29

This gives the desired answer when the electric Geld is parallel to the axis of the cylinder.
' T. M. Cherry, Trans. Am. Math. Soc. 68, 224 (1950).

+ . (3.15)
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4. ALTERNATIVE PROCEDURE AND THE SOLUTION
FOR THE OTHER POLARIZATION

Although the procedure presented in the last section
is a natural one, it has the serious limitation of depend-
ing critically on Cherry's formula. If the incident Geld
is polarized such that the magnetic 6eld vector is
parallel to the axis of the cylinder, it is necessary to
have a corresponding formula for the first derivative of
the Bessel function in order to carry through the
analogous calculation. Such a formula probably does
not exist, since the differential equation for Z„'(~) has
an apparent singularity" at ~= v. In any case, it is very
desirable to have an alternative approach and for this
purpose the formulas of Schobe" may be used. With the
formulas of Schobe, the investigation of the case of the
other polarization can be made along the same line,
although it is somewhat more complicated. On the
other hand, there is some uncertainty about the region
in the v, ~ plane where the Schobe formulas are valid.
The check of the answers in the first case shows the
validity of the procedure, although it may be necessary
to use the uniform asymptotic series of Olver" in the
second case in order to be mathematically rigorous.

To apply the Schobe formula, integrals of the
following kind have to be evaluated:

"-~(&)p (~)+Q(~)p '(r)
d$,

~(~)"(~)+Q(~)p.'(~)Jo

where p& and p& are two solutions of the Airy di6erential
equation

(4.1)(d'/d8 —~)"(~)=0,

p'(P) = (d/dg) p(P), and Q(g) is assumed to be small com-
pared with I'($) in some sense. I.et

~(~)=Q(~)/&(~),

p(&) ="(&)/p (r);

then the integral under consideration is

(4.2)

4o

pi'(5)/p~(E) —p2'(5)/p2(k).(~)«+ p(~)&(~) d$.
~o 1+&(~)p.'(~)/" (~)

If I'($) and Qg) are the series given by Schobe, then
a direct algebraic calculation together with an inte-

See, for example, E. L. Ince, OrdirIcry Dig'erential EqlatiorIs
(Longmans Green and Company, London, 1927), p. 406."W. Schobe, Acta Math. 92, 265 (1954).' F. W. J. Diver, Trans. Roy. Soc. (London) A247, 328 (1954).

The second integral here may be written as

t+"-( 1 1 ) (1
] Ry zp+ z)+ ]

-z'+-—-
00 ( 3 12 ) E2 3 ) d$

1, d 1 d
+—R' +—R4 + p'd$.

6 dP 24 d$'

gration by parts yields the following result:

t'" &(k)p (k)+Q(k)p '(5)
d$

I'(~)p. (~)+Q(~)p'(~)

1 /c) ~ 3 (z)
p(~) 1+—~

—
)

30 2) 1400 &2)

281 29+- e+
(1134000 12600) E2 &

73769 7361 q (~&
8+ 8)l-I +

& 2095632000 5821200 ) E2)

1 t'z) ' 1

(

—
I p(0) — p'(o) (4.4)

140 &2) 39200

In particular, analogously to (3.6),

1 p~ H&"'(K)
f(m)= lim .A+— —dv .

2~ " ~ „II"'(~)
(4.6)

By reasoning completely analogous to that in the
beginning of Sec. 3, it is found that, in the sense of
Poincare, the functions Pf(~) and 2f(~) have exactly
the same asymptotic expansion in inverse powers of ~

as ~—+~.
The determination of the asymptotic series for f(7r)

is even more laborious than for f(m) When Schobe. 's

formula is used an evaluation of the following kind of
integral is necessary:

~+" &(5)pi(t)+Q(k) p~'(5)
d$,

&(6)p2(()+Q(k) p2'(5)

where P(f) and Q(g) are again the series given by
Schobe in connection with the formulas for Z„'(~). This
is formally the same as the previous expression, except

Equation (3.15) then follows directly from (3.10), the
formulas of Schobe, and (4.4), with the terms involving
p'(0) cancelled out.

Attention is now directed to the problem of the other
polarization, namely, the determination of the asymp-
totic expansion for the scattering cross section of a
perfectly conducting cylinder with the incident plane
wave polarized such that the magnetic field vector is
parallel to the axis of the cylinder. Let a bar be used
to designate quantities pertaining to this problem as
distinguished from the corresponding quantities for
the problem in the last section. Thus, for example,
P'~'(r, 8)=$'"'(r,8). Since the boundary condition is
(8/Br)P'"(u, 8) =0, it corresponds to (3.3) that

t" J,'(ku)
f(8) = fi(8)+2 e '" cosv8dr (4.5).

~0 II„&'&'(ka)



HIGH —FREQVENCY SCATTERING 1207

that P($) is assumed to be small compared with Q(P). then a similar calculation gives, with the lower limit of
Thus let integration replaced by a small positive e to avoid

p(5) =pi'(5)/p2'(5); (4.7) divergence,

I'+" P(f)p, ($)+Q($)p, '($) t'+" t'+" (1 1 ) |'/i) '/' ( 1 1
p(&)d&+ —

I

—&'—
I I

—
I

+
I

a' —e+
P(()p2($)+Q($)p2'($) ", ~, &60 10! E2) (1400 50 200 ) E2)

611281 1-
(4536000 126000 3000

1679562991 q )/iq
—' ( 73769

(6 $3

2000 ) (2) E10478160000 24948000 1108800

7 p
—/

+ V+ V II
—

I + —p'(&)d~-
120000 16000 ) k2)

1 t'/"'l "' ( 9 1 I (Kl
~
—1 ~

—3

2'00 & 2) (4000 6000 ) E2)

( 1 1 ) (/iq-'/' p'(e)
+I e '+

(30000 80000 ) E2) e 60OO i2) 120000 E2)

( 1 1 ) (/i)
—e/'/'p'(P))"

+I
(360000 240000 ) E2) L $ )

+. (4 8)

The long integral is not further integrated by parts.
The reason will be clear later. If (4.8) is used to evaluate
(4.6), it may be seen that for $ &0, p($) has the form

e'"" [»(e """—5)j —[Ai(e""8)l,
d$ d$

limit &
—+0 in the sense of a I,aurent series expansion.

For example,
1 1

limF
I(e sine) 6

As an analog to (3.14), let

and for $)0, it has the form

—e ""—[Ai(k)j —[Ai(e" "k)3
d$ d$

Hence p'(P) has the same form for )&0 and g)0.
Because of the complexity of (4.8), let the symbol
lim, OF be introduced to mean the 6nite part in the

—[Aih)l
dP1

e
—i2w/3, Pn

e „d$ d
[Ai(ei2m /3()].d$

for ~PO, (4.9)

—[A (~)3
d$1 ( /

' f."l—
M,=l~z -e-" "I y IP—

)
[Ai (ei2w/3g) )

d$ for n&0 (4.1o)

Note that in particular

[A)(e i2w/Sg) j—
~i2n /3 d$

[Ai(ei2w/3g)g
d$

—[Ai($)3
d$

e
—i2sr/3

—[Ai (e"~/'P) j
d$

dP. (4.11)

Finally, substitution of (4.8)—(4.11) in (4.6) gives

2f(m) 1 /'/iq
—'/' ) 1 1

=1+-Mel —
I + I

—M~+—M-2
I I

—
I

/i 2 (2) L60 20 ) (2)

t
3 1 3 yt~q ' ) 28,1

Mg+ — M i — + Me
(2800 100 400 ) E2) &2268000

611 1 1 ) ///i)
—'/'

Mo+ M,+
252000 3000 800 ) E2)

//' 73769 56299 1679
M4- Mi+ M 2

(4191264000 24948000 2217600

7 7 $ (K)
—""

(4.12)
60000 32000 ) E2)
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(5.4)S. SCATTERING BY A SPHERE

In the last two sections, the scattering cross section
of an infinitely long circular cylinder has been obtained
in two cases of physical interest. It is natural, then, to
try to do the same for the sphere. Unfortunately, for
reasons to be given in the Appendix, the present
method of solving creeping wave problems does not
work satisfactorily for three-dimensional obstacles of
finite size. An alternative, and admittedly less satis-
factory, procedure is given in this section for the
determination of the scattering cross section of a sphere.
The main idea is to compare the problem of a sphere
with that of a cylinder. This is another reason why
the scattering cross section of a cylinder has been
considered first.

There are essentially three diGerent problems of
scattering from an impenetrable sphere, depending on
the nature of the incident plane wave. Of the three,
the most important is the quantum-mechanical scat-
tering of a free particle by an impenetrable spherical
core. This approximates some nucleon-nucleon scatter-
ing at very high energy. Mathematically, the solution
of this kind of problem is the determination of a
function satisfying the reduced wave equation with the
Dirichlet boundary condition f(u,8) =0. Secondly, there
is the problem of the acoustic scattering by a rigid
sphere. In this case, the velocity potential satis6es the
Neumann boundary condition (8/Br)f(r, 8) =0 for r =a
Thirdly, there is the problem of the scattering of a
plane electromagnetic wave by a perfectly conducting
sphere. These three problems are now studied in turn.

In the first problem the function of interest is

Then,

t' I'I„(') ((()
~s2~(v—~s) nd p

II„(»((()

(" II (')(i()
~
—42vv(v —$) (n+»dy P (5 5)

o II,('&
(&()

Accordingly, from (5.3), insofar as the asymptotic
series in the sense of Poincare is concerned,

p' II„('-) (&() (." I,(&()

~. „ II„o)(&() ~ o II„")(&()

oo

+ Q l &vgi2n(v —v) nd&v (5 6)
ego 0

The last term may be evaluated as follows:

oo f 00

&v(vi4 vv(v-v) nd &v p ( 1)n+& pe 2vvvndp-
n= —nJ 00

neo n~o 0

(—1)"+' 1
(5 7)

2x'e' 24

This answer may also be obtained from lim[g(n+-,')
—J'&d& j, if the limiting process is understood to be in
the sense of second-order Cesaro summability. Substi-
tution of (5.7) into (5.6) yields(6 i.(~)

Pg Q(2n+1)——
fi (»(&()

(5.1)
(5 8)

This is the desired answer when the magnetic Geld is If Abel summability is used again, then, for e/0, let
parallel to the axis of the cylinder.

where K=ku as before, and j and h(') are spherical
Bessel functions of the first and third kinds, respectively.
The quantity Pj is actually the forward scattering
amplitude. The scattering cross section is related to
Fj by

II '" ((() A' 1
G&

——lim '
& d&+—+—.

J II (» (i()
(5.9)

~n( &= (4~/k') ReP, .
The analogous expression for the cylinder is

e„J„(&()Z—
n-o2 H (')((()

By comparison with (3.3), it can be seen that the
Poisson summation formula should be applied to (5.1)
to yield

2G f &(q
—'&' 8 t'&(~ 4" t' 4

=1+~,
l

—
I +—~,

l

—
I +I(2) 15 ) 2J (175K

23 ) f(() —' ( 64 2 l (&l
—''

420) 42) 470875 1575 2 (2 ~

Equation (5.9) is very similar to (3.6).
If Cherry's formula is used to evaluate G&, the

procedure is straightforward and the result is

I„((()
P —P 2&v (vi2n(v —ij)nd&

n—w
(& II (&()

(5.3)
2944 334

+I ~+ ~ II-I +".
&3274425 363825 ) (2]
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8—
LK &H„(2)(K))

BK A'
G2= lim v d) +—+—, (5.14)

A~(e 2 24
(LK :H—(I) (—K))

BK00 J-'(K)
P2 P(2——e+1)

n=0 h„(l)'(K)
alld

8—[K2H ("(K))
rA BK A' 1

G3g= hm d) +—+—. (5.15)
Am' J 2 24" —

I
K-:H,(') (.))

BK

and that for the electromagnetic case is

~2= 2 (~I+~pl) —1, (5.12)

This is the desired answer for the scattering cross The corresponding G functions are
section of an impenetrable spherical well in quantum
mechanics.

The other two cases will now be treated together.
Referring to (5.1), the corresponding function for the
acoustic or Neumann case is

where

8—LKJ-(K))
BK

Fpl ——g (222+1)
n=0 8—tKI &'(K))

BK

(5.13)

By comparison with the case of the circular cylinder,
let G0 be de6ned by

I
" H &"'(K) A2 1

Go= lim, I dp+ —+—. (5.16)~~ " ~ Hp(l)'(K) 2 24

Within the accuracy required,

and

8
(tK &H &—') (K)—) $~&H "'(K))—

BK BK

8 8—
r K 'H, ("(K)) —LK*'H, '"(K))

BK BK

4i 1 1 H ("(K)
'

I1~ K

2I' $H ) (K)) 4 H &"'(K)
(5.17)

8 8
PK IH (2) (K)) PK$H (2) (K)) H (2) (K)

K BK BK—2
2i H„('& (K) 1 H„&'& (K)

—'
~——K 1+—K

'
LH, (')'(K))' 4 H„&'&'(K)8 8 8—LK

—'*H„&'& (K)) —
I

KlH„&'& (K)) H&'& (K)—
BK BK BK

(5.18)

It is now required to consider integrals of the following kinds:

&(r)"(r)+Q(~)..'(&) -"
p i

- LP(~)»(~)+(~)» (~)) -P(~)»(~)+@(~)» (~)i
(5.19)

with 0~&m&3. Integrals of this type may be evaluated by the procedure given in the last section. A few more
pages of calculation yield the following results:

2Gp 4f(2r) fKy '" t'1 29 ) (Ki ' t' 29 11 i (K)
—'ip

— = —1+ +MII —
I + I

—M2+
K K E2) (,20 240) (2) &12600 600 ) E2)

(' 227 2 29 i &'Ki 'o(2

+I M4 — Ml+ M-2 II
—

I + " (5.2o)
5907200 225 12000 ) (.2)

G,—Gpl 1 iKq-4ip P I 3 i PKi '
P 2 49 37

+I —+—M-4 II
—

I +I Mo+ M-2+
K' 4 42) (,10 40 ) (,2) &215 2400 640 ) E2)

4 283 259 203 i i K~
—'ois

+I — Ml+ M2+ Mp+ M pI
2025 252000 12000 6400 ) 42)

+ (5 21)
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Gs+Gst —2Gp

K

3 p~q-' p1 3
= ——~-41 —

I
—

I

—~-s—~-s
I I

—
I

32 E2) 480 64 ) E2)

( 19 1067 367 343 q (/rq -"/s
x,— x,+ M,+ M, I I

—
I + ". (5.22)

49600 806400 19200 10240 ) (2)

These formulas give all the desired information about the scattering cross sections for the acoustic scattering
by a rigid sphere and the electromagnetic scattering by a perfectly conducting sphere.

6. CONCLUSION AND DISCUSSION

Kith the procedure outlined, it is only necessary to
evaluate the integrals M and 3f„, in order to get the
desired numerical answers for the scattering cross
sections. The main idea of the evaluation is to convert

the integrals into residue series. It is rather complex
to carry out the conversion because of the necessity of
interpreting the integrals in a special manner. After
the numerical summation of the residue series, the
results are

3Ep= 1.25507437e' ~3

M2 ——0.0935216,

3f4——1 0992e"~y

Mg = —0.93486491e" ",
m, = —0.757663e'-~3,

M 2———3.70409389e-' "
3f 4

——3.17579652,

3II 6
——2.06575721e "~i',

My = 0.53225036e'2~/'3,

M3= 0.772793e' ~',

Mp ———1.088874119e' ~'

1lf2= —0.1070199,

M4 ———1.1574e" ",
M 3=0.41682138e—n~y

M s
——2.55965945+3.12247506e ' /s

3I 8= —1.36515171—2.94764528e
—' i'

The expressions for the total scattering cross sections are then

os&&'&/4a=1+0. 49807659(ka) '"—0.01117656(ka) "'—0.01468652(ka)-'
+0 00488945 (kg)

—s/s+0 00179345(kg)
—ro/sy. . .

/r~&c&/4g 1 0 43211998(kg)— 0 21371236(ka)— +0 05573255(kg)—
—Q.QQQ55534(ka) —' '+0.02324932(kg) —o +

o &'&/2&a'= 1+0.99615319(ka) '/' —0.35764983 (ka) s/s+0. 2275982 (ka)
—'
0 0072—753. (ka) /' 0 0074—43.(ka) "/'+

o //&'&/2srg'= 1—0.86423996(ka) '"—0.4162852 (ka) "'+0.7352097 (ka) '
—0.0298539(kg) '"+0.058616(ka)-lc&/s+. . .

ozi'&/2sra'= 1+0.06595661(ka) '/'+0. 7797489(ka) 4 s—2.8713350(ka) '
—P 3385447(kg) —s/s+P P5846P(kg) —10/3+. . .

These series are asymptotic expressions for ka—+~. In
each of the numbers given above, the last place may
be inaccurate. The values of the Airy integrals are
taken from a table by Miller. "

Since exact computations exist only for intermediate
values of ka, a comparison is made for 1~& ka~& 20. This

is given in Fig. 3 for the 6rst four of the above cases.

For km~& 10, the exact curves are computed from known

values of the phase shifts. " Additional points for

ka=15, 20 are obtained by direct summation of the

» J. C. P. Miller, Brass/s Associatso» Tables (Cambridge
University Press, Cambridge, 1946), Part-Volume B.

~4A. N. Lowan et ul. , National Defense Research Council
Report NDRC 62. 1R, 1945 (unpublished).

series expansions. The agreement is excellent as shown
in Fig. 3. The exact curve for the fifth case has not
been computed.

Perhaps a most interesting fact is that, for a circular
cylinder, the contribution to the asymptotic expansion
for the forward field comes entirely from the grazing
rays. In a talk presented at the URSI Symposium,
Michigan, 1955, J. B. Keller has conjectured this to be
true for the first term of the asymptotic expansion. If
this is considered to be a general property of high-
frequency scattering phenomena, then the following
conjecture may be stated. Consider the two-dimensional
scattering problem of a scalar wave by an obstacle
with either Dirichlet or Neumann boundary condition.
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Fn. 3. Comparison of scattering cross sections. (a} The scattering cross section of a circular cylinder with Dirichlet
boundary condition; (b) the scattering cross section of a circular cylinder with Neumann boundary condition; (c)
the scattering cross section of a sphere with Dirichlet boundary condition; (d) the scattering cross section of a sphere
with Neumann boundary condition. In these diagrams, curve I gives the result obtained by geometrical optics with
one correction term, and curve II gives the result obtained by geometrical optics with two correction terms.

If the obstacle is strictly convex and the boundary
curve is infinitely di6erentiable, then

where 'A is the wavelength. Furthermore, a„depends
only on the first is+2 derivatives of the boundary curve
at the shadow boundary points. In particular

as=(-(rt'*+rs'*),

Finally, the possible development from procedures
of this type may be anticipated. For the case of a
circular cylinder or sphere, the machinery as developed
here is in no way restricted to the computation of the
total cross section. For example, it may be used to
study the structure of the creeping wave at 6nite points.
Or else it may be used to obtain the asymptotic expan-
sion of the current near the shadow boundary, in the
cases of electromagnetic scattering. For the cylinder,
the result is as follows. The first approximation to the

where r~ and r2 are the radii of curvature at the two
shadow boundary points, and C is to be determined by
comparison with the case of the circular cylinder If
the obstacle is symmetrical about the shadow boundary
points, a„=o for all odd n.

As an application, consider the case of an elliptic
cylinder as shown in Fig. 4. Then the foregoing con-
jecture leads to

on'/4b= 1+0498076595 (kb. '/a) '+.

a~'/4b=1 —0.43211998(kb'/a) *+

for all positive a and b. Similar statements may be
made for three-dimensional problems with an axis of
symmetry.

FIG. 4. Scattering
by an elliptic cylin-
der.
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current is the Pock current, "and higher order approxi-
mations are furnished. by appropriate combinations of
the derivatives and integrals of the Fock current. When
the near-zone calculation is carried out, it is found that
the general structure is rather independent of the fact
that the obstacle is of the particularly simple shape.
At least for convex obstacles with analytic surfaces and
bounded radii of curvature, this yields an extension of
the eiconal solution" into the shadow region. This kind
of consideration may also decide the validity of the
above conjecture about the scattering cross section.
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APPENDIX. CONCEPT OF CREEPING WAVES

In this Appendix, the relation between creeping
waves and the spaces E and R is discussed for rather
general situations. In Fig. 5 are drawn three curves

gPURCE

Pro. 5, Wave paths.

connecting the points I'0 and I'. Each curve remains
in E. Loosely, a wave originating at I'0 may arrive at
I' through any of these curves. In the intuitive sense,
and also suggested by the work of Friedlander, it is

expected that it is impossible to distinguish between
waves arriving at I' through curve 8 or curve C, but
the wave through the curve A is of a different nature.

"V. A. Fock, J. Phys. (U.S.S.R.) 10, 130 (1946).
"Keller, Lewis, and Seckler, New York University Report

EM-81, 1955 (unpublished).

This intuitive feeling is the basis for the concept of
creeping waves, and may be restated as follows. In the
scattering by impenetrable obstacles, the path of the
wave should be regarded as the homotopy class of
curves joining the initial point and the end point.
Topological concepts are very useful in this discussion,
although they are avoided in the main text.

Next, how is this idea of a wave path related to the
space R? To answer this question, it is necessary to
give a brief d.efinition of the universal covering space.
Let E be a connected, locally arcwise connected,
metric space. Let Eo be a point in E. Define the metric
space F to be the class of all continuous functions on
the closed unit interval L0,1j into E such that 0 goes
over to I'0. The metric is given by

0(/&1

where p is the metric in E. Let R be the set of all arc
components of sets of functions satisfying f(1)= I' with
I' in E. Then there are unique mappings M from F to
R and X from R to 8 such that f is in M(f) and
MEf= f(1). The space R has a natural topology, and
in fact has a local metric structure similar to that of
E because every little disk D in E has a one-to-one
correspondence with any component of 1V '(D). The
space R is here called the universal covering space of
E.With this definition, the correlation with the physical
situation is simple. The space F is just the class of all
continuous curves (parametrized) in the physical space
E, and the space R is just the set of all wave paths
mentioned before. Since the various creeping waves
must satisfy the same field equations as the total field,
they may be found by solving the 6eld equations in R.
This makes sense when the Geld equations are differ-
ential equations (of finite order), because R has the
same local metric structure as E. In the simple two-
dimensional problem where the obstacle is a point, E is
the punched plane, and R is the familiar Riemann
surface associated with the punched plane.

It should be noted that this idea works only in the
case of two-dimensional problems. In the case of three-
dimensional problems, the space E is in most cases
simply connected, and hence R is homeomorphic to E.
Yet somehow from intuition, there should still be a
nontrivial creeping wave structure. There is still a
certain amount of work to be done in this direction.


